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On holomorphic cusp forms on quaternion unitary
groups of degree 2
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(Communicated by Y. Thara)

A.N. Andrianov proved the functional equation of the L-function as-
sociated with a Siegel modular form of degree two. In this article we
extend his results to some non-split cases by using adelic language.

§0. Introduction

The main purpose of this paper is to prove the meromorphic con-
tinuation and the functional equation of the L-function associated
with a holomorphic cusp form on a quaternion unitary group of
degree 2.

Let k& and o be a totally real algebraic number field of degree =
and its maximal order respectively, and let B be a quaternion algebra
over k such that B,=B &), k, is isomorphic to M,(R) at each archimedean
place v of k. Denote by a—& (< B) the canonical involution and by
O a maximal order of B. We define an algebraic group G over k by

G= {g ¢ GL(B)

o glomroly o) moew]
9109—#910,#9 »
where g*:(% g) for g:(g g) € My(B). Let ¥ be a two-sided O-ideal,
and for each prime p of &k we define a maximal open compact subgroup
U, of G, by

ool

o, 8€0, B, ¥ U, ulg) eo;}.

Put U;=1I, U,, where p runs through all prime ideals of k. Let
=q, ---,1,) [resp. d=(d, -+, d,)] be an n-tuple of integers [resp.
non-negative integers], and 0=p,, be a finite dimensional representa-
tion of GL,(C)" determined by ! and d ((1-7)). In §1 we define the



522 Takashi SucaNo

space &(p, n; Uy), which consists of holomorphic cusp forms on G, of
weight o, with central character A, and with respect to U,. This
coincides with the space of so-called Hilbert-Siegel cusp forms when
B=Mk) and d,=-.--=d,=0. For each Fe&(p, n; Us) we introduce a
function @4, ((1-22)), which is called a generalized Whittaker model
([13], [16]). Some local properties of @4 . will be studied by elementary
manner in §2. In §3 Main Theorem (Theorem 3-2) is stated and proved.
When F is a simultaneous eigen function of the Hecke algebra S#(G,, U,)
for all primes p, and @ is an unramified grossencharacter of kX, we
define the L-function Z.(w, s) of F, whose p-part is essentially equal
to the denominator of the local Hecke series. Let @ be the trivial
character. Our theorem asserts that

L1, 8)=2Z5(1, $)(d(k)V N(D)/(2r)") IZI1 I(s+(d;+1)/2) (s +1;-+(d;—3)/2)

is continued analytically to the whole s-plane as a meromorphic function
and it satisfies the functional equation

Cell, 9= (= DFD)(T] oralel) Jor (L, 1-9).

Here d(k), d,, D, and N(D) denote the discriminant of & over @, the
different ideal of k, the discriminant ideal of B over k, and its norm.
F’ is the element of &(p, A7 Uy) defined by F'(g9)=F(9)n'(x(g)), and
o7 ,(e) is the eigen value of some special element in 5#(G,, U,) for
each prime p ramifying in B ((1-30)). In the last section §4, we
calculate some examples explicitly in the case k=@ by using Oda’s
lifting (ef. [22], [14)]).

The above theorem has been proved first by A.N. Andrianov (cf.
[1], [2D) in the case: B=M, Q) and d=0. V.G. Zhuravlev proved it,
under some conditions in the case where the class number of k is 1,
B=Myk), and d=0 ([23]). In [4] T. Arakawa has obtained the above
result under some condition for vector valued Siegel modular forms.
And for congruence subgroups it has been studied in Evdokimov [6, 7},
and Matsuda [12]. But we treat only the full modular cases here.
Since it is more convenient and natural for investigating the L-funec-
tion to take the adelic setting, we adelize Andrianov’s results. Our
proof of the Euler product expansion (Theorem 3-1) is reduced to
the local properties of @7 . (Theorem 2-1) and rather different from
Andrianov’s. On the other hand, the proof of the analytic continuation
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and the functional equation is similar to his argument. When B=M,k),
I. I. Piatetski-Shapiro has established the above result for more general
modular forms by a representation theoretical method ([18], [16]). The
author (who has been working independently of Piatetski-Shapiro) hopes
that his approach is of separate interest.

The author wishes to express his deepest gratitude to the late
Professor Takuro Shintani, who suggested him to reformulate
Andrianov’s theory in terms of adelic language by investigating @7,
which plays a crucial role in this paper. He would like to express
his hearty thanks to Professors Tomoyoshi Ibukiyama and Ki-ichiro
Hashimoto, who drew his attention to non-split cases. He also thanks
Professors Hideo Shimizu, Shin-ichiro TIhara, Yasutaka Ihara, and
Takayuki Oda for their wvaluable advice and warm encouragement.
He is very grateful to the referee for many valuable remarks.

Notations

We denote by Z, @, R, and C, respectively, the ring of integers,
the rational number field, the real number field, and the complex
number field. For an associative ring R with identity element, R~
denotes the group of all invertible elements and M,(R) the ring of all
matrices of size m with coefficients in B. We put GL,(B)=DM,(R)".
If R is commutative, we denote by SL,(R) the special linear group of
degree m. Let k be a number field and o [resp. d,] be the ring of
integers [resp. the different ideal of k]. For each place v of k, we
denote by k, the v-completion of %k, and by [#|, the module of z for
an z€ky. k, |resp. k%] means the adele ring of %k [resp. the idele
group of %] and for z=(x,) €k}, put |zl,=TI,lx],. For an algebraic
group G defined over k and a field K containing k, we denote by Gy
the group of K-rational points of G. We abbreviate G,, to G,. We
denote by G,, G., and G, ; the adelized group of G, the infinite part
of G,, and the finite part of G,, respectively. Similar notations are
used for an algebra or a vector space. Each prime ideal p of % is
identified with the corresponding finite place, and we denote by o, the
ring of integers of k,. If there is no fear of confusion, the maximal
ideal po, of o, is written as p. We denote by 7, a prime element of k,.
When L is an o-module, put L,=L &,»,. For a (fractional) ideal a of
I [resp. xek;] we denote its p-order by ord,a [resp. ord,z]. When
r=]l,», is an unramified grossencharacter of k%, namely a character

whose restriction to k¥ ], oy is trivial, put Ma)=T[, \,(7™%*). For ze(,
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we put e[z]=exp(27V —12). The cardinality of a finite set S is denoted
by £S or |S|. When K is a finite extension of k, we denote by Trx,
[resp. Ng,] the trace of K over k [resp. the norm of K over k]. For
a quaternion algebra B over k, we denote by #—Z (2 € B) the canonical
involution of B over k, and put Trp,(@)=x+% and Np,(x)=z%. We
denote by B~ the set of pure quaternions, and for any subset S of B
we put S—=B—NS.

§1. Definitions of &(p, »; U;) and @4,

1-1. Let k be a totally real algebraic number field of degree =»
over @, and let B be a quaternion algebra over k; and denote by ©
the discriminant ideal of B over k. We assume that B is unramified
at any infinite place of k; so the matrix algebra M, (k) is included as a
special case. We denote by oo,, -+, oo, all infinite places of k. Then
by the above assumption on B, B.,=B® k.; is isomorphic to M,(R).
Fix such an isomorphism once for all, and identify B..; with M,(R).

Let G be a linear algebraic group over k defined by

0 1 0 1
g<1 O>g=#(9)<1 O)m(g)ek},
a v

where g*:<E 5) for g:(,o; §>GM2(B). Then %wjl is isomorphic to

GSp(2, R)={g € GL(R)|*9Jg=(g9)J}, where J=<_ 10 ) Denote by G*
2
the algebraic subgroup defined by the condition p(g)=1. Put

A1) G {g ¢ GL(B)

9j,+= {Zj € Be; QrC| Trzu(Z;)=0,

(1-2) (Im Z) <0 -1
1 0
9;,-={—2Z;12;€9;.}, 9,=9;+U9;_,

where Im Z; means the imaginary part of Z;, Both $;, and $,_ are
isomorphic to the Siegel upper half plane of degree 2, and G, acts on
9, transitively as a group of holomorphic automorphisms via the
mapping

(1‘3) Zji—’gJ<Z_,’> :(AJZJ+B7)(C]Z?+D])—1

/A. B.
f =7 TN e@G...
or g, &CJ- Dj> 5

> is positive deﬁnite},
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Similarly G, acts transitively on §;, and §,_. Put

01

(1-4) Zj,o=1/—1<_1 0

Jen Vo=l elosin =25,

The group Uooj, which is a maximal compact subgroup of G, is iso-
morphic to the unitary group of degree 2, and &, is isomorphic to
GL,/U.. For gi:(é" lf-;{)erg. and Z;¢ 9, we define GIL,(C)-valued

holomorphic automorphicjfactor Ji95 Z;) on G, X 9; by
(1-5) I, Z)=C;Z;+D;.

Let § [resp. ©.] be the product of §; [resp. §,.] 1=<j=n). Then 9,
is a connected component of $. We put Z,=(Z,,, --+, Z,,) and U.=
Us X +++ XU, The action of G. on § and automorphic factor on
G X9 are given componentwise, namely,

9Ly =(9:{Z}, * **, 9.4Z.)),

1-6
(-6 0, BY=(T Gy Z), -, T(gns Z.)) € GLCY,

where g=(g,, ***, 9,)€G. and Z=(Z, -+, Z) € .

For an n-tuple of integers I=(, --.,1,) and an n-tuple of non-
negative integers d=(d,, -+, d,), let p,, be a holomorphic irreducible
representation of GL,(C)" defined by

(1-7 01,4(9) =j®:1 (det g,)' - 04,(9,),
where g=(g,, -+-, 9,) € GL,(C)" and o,, denotes the symmetric tensor

representation of GL,(C) of degree d;. We denote by V,, its represen-
tation space. The dimension of V,, is [[},(d;+1). We fix I and d
and often omit the indexes I, d. o defines a representation of U. by

(1-8) Ussu=(u;, -, U )—01,4(J (%, Z,)).

Fix a positive definite hermitian inner product in V such that the
above representation of U. becomes unitary.

Now, we fix a maximal order © of B and a two-sided ©-ideal 9.
Then it is well known that ¥ is uniquely written as

(1-9) A=9,-q,
where U, =11,» Bir (B, is the prime ideal of O,), ¢,=0 or 1, and a is a
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(fractional) ideal of k. We denote by ©, [resp. D] the product of all
prime ideals such that p|{® and ¢,=0 [resp. ¢,=1]. For each prime
ideal p, put

(1-10) U= {g: (3 'i) eG,|a, 0D, BeY,, TeWT, u(g) €vt,

where ©,=90 @, 0, and ¥,=AQ,0,. Then U, is a maximal open com-
pact subgroup of G, and G,=P,U,, where P is a parabolic subgroup of

G defined by P,=1{g=(% £)eG,|v=0}. We abbreviate I, U, to U,
Y
and U.U; to U.

1-2. Let x=Tl,», be a character of ki whose restriction to
E kX T1,<w 0F is trivial (i.e., an ideal class character of k). We say that
a V,s.valued function F on G, is holomorphic cusp form of type (0,4,
x; Uy) if F satisfies the following three conditions:

(1) F(regusus)=Mz)0yaJ U=y Z0) F(9)
for YveG,, Yzekl, Yu.<€ U. and Yu, € Uy,
(ii) For any g=gofs (9=€Gw, 95€ Gy y),
(1-11) 0(J(gwy Z0)) ]I=II |G )| 942 F (gl s)

depends only on g, and Z=g.{Z,», and it is holomorphic
on 9 as a function of Z.

S Fng)dn=0 for vgeG,,
Ni,k\N1,4

where N, is the unipotent radical of any proper parabolic
subgroup of G.

(iii)

We denote by &(po, »; Us) the space of such functions. When B is a
matrix algebra M,(k), it is nothing but the space of Hilbert-Siegel cusp
forms. If d; is odd for some j, then &(0,4 N Up)={0} by (i) and (ii).
So let d,, ---, d, be all even integers hereafter. Note that such cusp
form F is bounded on G,.

For each ¢g;eG, s, and Fe&(p, »; Uy) put

(1-12) I'g)=G.N(Goxg,Urg7?),

and define a function on $ by

(1-13) F(gs: Z)= 01T (goy Z2) H |G )|~ 4 F(gag ),
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where g. is an element of G. such that g.{(Z,)=Z. Then F(g;; Z)
satisfies

(1-14) F(gs; v{Z))=p(J(7, Z))j]jl (a2 F (g5 Z)
for Yv ef(gf).

We define a lattice L(g;) in B~ by

(1-15) L(g))= {x ¢ B-

1 =z r
<0 1)e (gf)}-

Let §, be any connected component of $. Then F(g;; Z) has the
following Fourier expansion on £:

(1-16) oy 2)=_ L%f)* a(9y; 8)s,elt(62)] (Z€ 9,

where 7=Tr;q°Trs;, and L(g,)* is the dual lattice of L(g;) with
respect to z. The Fourier coefficient a(g;; &);, is given by

A1) algr96=,  Fs Del-cCOliRe2) (Zed),

where d(Re Z) is the Haar measure of B normalized so that the total
volume of L(g,)\BZ is 1. It is easily seen that a(g;; &)s,=0 unless
—1/ =1 ¢ belongs to 9.

1-3. Let x=1II. %, be the character of @, such that %|,=1 and
Y(x)=e[x] for any xe R. For Fe&(p,n; Us) and £¢ B, put

1
F(( ”)g)x(—r@x»dw (@eG),

(1-18)  Fig o= 0 1

B\

where 7=Tr,e°Try,; and dx is the Haar measure on B; normalized
that the volume of B;\BJ is 1. The relation between (1-17) and (1-18)
is

(1-19) Fi(gegys; &) =0 (gey Zo)) ™ JI=II [1(gep)|tit e
X algs; E)g.elt(& - 9lZ))],

where $.=9-(9,) and we understand a(g,; &)s,=0 unless &¢ L(g,)*.
From the definition Fi(g,; & has the following properties:
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Flguauys; &) =0 (Uey Z))'Fiy(g; ) for Y(te, up) e U,

0

Fx<<6(()x )g; 5) =Fy(g; e "tar) for Yeek™ and Ya € By,
«

(1-20)

1
Fx<<0 C;)gr; $>=x(f(éx))Fz(g; g for YxeBj,

1
F((O f)g)i;_mg; DUe(ew)  for VeeB,

where the series in the last identity converges absolutely and uniformly
in any compact subset of G,.

Now we introduce a function on G,, which plays an essential role
in this paper. For each x ¢ B, we put

(1-21) z:(m 0> G,

0 =z
Let & be an element of Bj such that & is not a square element of £,
and set K=£k(¢). Note that K™k} is a closed subgroup of K and the
quotient group K*k\K} is compact. For an idele class character 4 of
K such that 4|ki=>, put

22 ehdo=| .  F@gor@da  (ged),

EX\
where d*a is the normalized Haar measure of the compact group K*k;\K .

LemMA 1-1. Let F be any non-zero holomorphic cusp form of type
(0, n; Ug).  Then there exists an element £c By and an idele class
character A of K satisfying

(i) AlEi=),

(ii) @f. is not zero as a function on G,.

PrOOF. By (1-18) we can take a geB; and a g,¢G, such that
Fy(g;;£+0. Note that by the equality (1-19), Neilfoy)=—£>0
(9=1,-+-, n). Therefore K=Fk(&) is a totally imaginary quadratic
extension field over k. The closedness of K*k% in K assures that
there exists an idele class character 4, of K whose restriction to k%
is equal to ». We define a V,,-valued function f on K*k3\KZ, which
depends on g, & and 4,, by

fay=Fydg,; &) A7) for aeKj.
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Since f is continuous on K*BX\K; and not identically zero (f(1)=
Fi.(g;; £ #0), its Fourier transform

=,

- Sl a)d e,

j:da}”

is not identically zero, where 4, is a character of K*kX\K;. Take a
A, such that f(/ll)io. We may regard 4, a character of K} whose
restrictiorg to K*k} is trivial. Put A=4,4,. Then A|ki=4,k;=x and
P79 = F(4)#0. Q.E.D.

This function @#.(¢9) has the following properties:

1 «
@&((O 1>g>=x(f<£x>)¢;,g(g) for Yxe B,
(1-23) @t (@g)=Aa)pr(g)  for YaeKJ,
P QUi ) =0 (Ueo, Z)) "' P% (9)  for Y(te, us) e U.

Denote by o, the maximal order of K. For an integral ideal  of
k, put

(1-24) D(F) =0+ fog.

Take a character A=][, 4, which satisfies the conditions stated in
Lemma 1-1. From the continuity of 4 and the unramifiedness of »,
there exists an integral ideal | of k such that

(1-25) A0 =1 for any p<oo.

The maximal integral ideal  satisfying (1-25) is called the conductor
of 4 and written as f,. Using the notations in (1-19), we have

(1-26) P (Gl ) = OraT (G Z))™ H |4(ga )t 457
X e[T(&(gu(Z)))]
X T4 %7“1 g Aﬁl(uz)a/(ﬁigf; E)gw@p}’

where 7Z'A4=§ ) 01,0 AN e End(V, ), Ki={ue KJ|ui=1}, and
KOO

Uy +-+, U, i a complete set of representatives of K KX [[,cni{z€

0.(f0; 97T, € UKL such that u, ;=1 1<j=<n, 1Zi<7).

REMARK 1-1. If @f.(g.g;)#0, then @f.(¢g.g;)#0 for any g such
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that g¢.¢z' is in the identity component of G.. The equality (1-26)
shows that for each fixed g€ G, and £¢ By, there is only finitely many
4 such that ¢%.(9)#0. Hence in the Fourier inversion formula

F(ig; &) =1Z P (@A),
the right hand side is a finite sum for a fixed g.

1-4. Fix a right G, invariant measure dg of G, k\G,. We introduce
a positive definite hermitian inner product (the Petersson inner product)
into &(0.4, N; Uy) by

(1-27) (F, F 2>=§ . Fi), Fg)dg  (Fy, F.e&(0, % Uy)),

where (,) is an inner product in V,, defined in 1-1. Because of the
finiteness of the volume of G,k3\G, and the boundedness of F), the
integral of the right hand side of (1-27) converges. Equipped with
this inner product &(p, »; U;) becomes a finite dimensional Hilbert
space.

For each prime ideal p, denote by 5%, the (local) Hecke algebra.
Namely, it is the space of bi-U,-invariant C-valued functions on G, with
compact support, and forms a C-algebra by the convolution product

(1-28) (¢1*¢2)(g)=86 ¢(gh™)gs(R)dh  for ¢, ¢, € 27,

X
k*4

where dh is the normalized Haar measure on G,. When p is unramified
in B, we identify O, with M,(o,), and put

ﬂ:b
T
¢¥ =the characteristic function of U, ? U,
TCP
72'-1?
1
. e . 1
(1-29) ¢ =the characteristic function of U, U,
n‘?
7r¥’
1
T
¢ =the characteristic function of U, ? U,
ﬂb
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where 7, is a prime element of k,. On the other hand, when p is
ramified in B, we denote by I, a prime element of O,, and put

1l
¢’ =the characteristic function of Up( ? H)U“
(1-30) ) ’
¢’ =the characteristic function of Up< >U,,.
ﬂp

Then it is well known that (e.g., [17], [19]),

SH=Cle, 7 o, o] i P,

1-31
-0 =C[e?, ¢, ¢ if p|D,

and ¢/’s are algebraically independent over C.
Let T(p™) be the characteristic function of the subset

el e

Then the following identity holds (ef. [19], [10], [9D).

a,0e9, B, veU;", ord,(pg))=m}.

(1-32) > Tyt =H,1)/Q,(),
where t is an indeterminate and ﬁp(t) and @p(t) are polynomials given
by (1-33) and (1-34) respectively.

(1-33) Ht)=1—¢ct if o,
=1+g%cPt if p|D,

(1-34) Q) =1—cPt+q(e? +(g*+ 1)) — PPVt + ¢ttt
if pID,
=1—{cf’ — (g% —DeP R+ et
it pID,

where g=|o/p| and A, means 2 [resp. 1] if p|D, [resp. p|D].
The local Hecke algebra 5%, acts on &(o, n; Uy) by

(1-35) Flo0)=| Fompmdnr.

Therefore the restricted tensor product 57, ;= R, 5%, acts on
&(o, »;Uys). For F,e@(o, n; Uy) (=1, 2) and ¢ € 57, 4,
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(1-36) (F\l¢, Foy=(F\, F;|$),

where $(g)=¢(g7") (T denotes the complex conjugation). Especially
each element of 57, is a normal operator with respect to the
Petersson inner product (1-27), so &(p, »; Uy) is spanned by simultaneous
eigen functions of 57, ;. When F is a simultaneous eigen function, it
determines a one-dimensional representation ¢,=Q),<w 07, of 57, ; by

(1-37) Flo=04(8)F for all ¢ 57, ;.

§2. Some local properties of @7

2-1. Notations are the same as in § 1, and throughout this section
we fix ¢ and 4 satisfying the conditions stated in Lemma 1-1. Put
K=Fk() and K,=K®, k, for each prime p. Let <7 be the space of
C-valued functions on G, satisfying

(i) olguw)=¢(g) for any ue U,
1
2-1) (ii) ¢<<0 f>g>=xp(r(§x)>@(g) for any z ¢ B;,
(ii) @l@g)=4,a)p(g) for any ac K/,

where y, [resp. 4,] is the restriction of x [resp. 4] to @, (p is the
prime number divided by p) [resp. K*]. Note that for any fixed ¢’ € G,
whose p-part is 1, the function @7 .(9'g,) on G, belongs to Z,XV.

The local Hecke algebra 57, acts on &7, in the same manner as
in (1-35); in this section we investigate some properties of eigen
functions in %4%. The main result in this section is Theorem 2-1,
which asserts that each eigen space is one dimensional, and in which
the generating function will be calculated. Put

(2-2) ()" ={x € By | Trp,u,(2y) €0, for any y €U},

where 9, is defined in (1-9). We define integers v, and g, by the con-
ditions:

(2_3) &= 71';"50,;” (zfo,p)2 = dpﬂ:iﬂp,

where ¢,, is a primitive element of (%(;,)" (i.e., # being an element of
k, x&, is in (¥;,) if and only if # is in o,), and d, is a generator of
the discriminant of K,/k,.



Holomorphic cusp forms on quaternion unitary groups 533

In 2-2 [resp. 2-3], we shall determine U, supp ¢, where ® runs
through all elements of %%, and supp ® means the support of ®; and
describe the action of 57, on &7/, explicitly in the case p/® [resp. p|D].
The existence and the uniqueness up to constant multiple of each eigen
function in &%, will be proved in 2-4.

2-2, In this subsection we assume that p is a prime ideal of k&
not dividing ®; so B,=M,(k,) and ¥%,,=9,.

LEMMA 2-1.

(i) pz0.

(ii) There exists a k,<-algebra isomorphism j, between B, and
M(k,) satisfying

. . ay/2 b,
jp(gp) = M2(Dp) and ]p(Eo,p) = < >7

1 —a,/2
where a, € p* and b, € p*s,

(iii) K, N0, =0x(p™),
= Dp + Dp(go,p - ao/2)~

ProoF. Take a k,-algebra isomorphism j' between B, and M,(k,)

4 I4
such that §'(0,)=M(v). Putting 7'&,)=("}% _¥ ), the primitivity
of &, in (%U;,) means that o/, ¥’, ¢’€o, and one of these is a unit of
o,. Since (2:&,,)=d,n}", we get a’*+4b'¢’=d,z%. TFirst, we shall prove
that g, is non-negative. If p does not divide 2, it is obvious because
ord,d,=0 or 1. Suppose that p divides 2, and put

e=ord, 2, (28,,)'=mle (cen)).

When g is even, let ¢ be the maximal integer satisfying

1°) 0Zt<e.

(2°) There exists an z in o such that 2*—cep*.
Since 1 and #;7"(x+27,%%,,) span 0., over o,, we obtain that ord,d,=
2(e—t) and y#,=p/2—e+t. To see that y£,>0, we may assume B/2<e.
In this case, a’e€p?* and a*/xf—cep**#?; from the choice of ¢ (by
(2°)), we have p,>0. On the other hand, when 8 is odd, 1 and
2¢,,7, 7?7 span og, over o, and ord,d,=2-+1 and p,=F—e. It is
clear that ¢,>0. Secondly, we shall prove (ii). By the primitivity of
&, there exists a U, in GL,(0,) such that
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al’/z bll >

Ul—l ! Zo U1=
76 (1 —a"j2

We can take two elements ¢, and b, €0, such that a§+4b1:dp.r Then,

Uzz((l) (“"—flﬁf”)/z) is in GLy(v,) and

., ‘o, /2 b,
U U;IJ (fo,p) U, U2:< ' ? u >
1 —a, e
Thus the isomorphism j,: j,(X)=U;'Urj"(X)U,U, (X< B,) has the re-
quired properties. Finally, (iii) is checked easily by using an o,-basis
of og,. Q.E.D.

From now on we fix such an isomorphism j,, and identify O, with
M,(0,) through it. Put

% or v is in o)},

2-4) S, = {<u> e ot
K

For each non-negative integer m, we introduce an equivalence relation
+~ into S,:

u u'
(2-5) ( )',7;( ,>«=there exists an « in o such
v v

that au—u' ¢p™ and av—2' €p™,

and denote by S,/7 the set of equivalence classes. For <Z>GSP, set

U
(2—6) fo< > :u2—a0ﬂ;1‘pu’v-—b0ﬂ;2ﬂp7}2.
v

The following two lemmata are easily shown (cf. §2.3 in [2])

LemMA 2-2.
(i) Let X be an element of S,/%. Then there exists a representa-
tive (1’;) of X in S, satisfying

@-7) 0§ord,,fo<:>§m.

Moreover ord, f0<z> is independent of the choice of (Z) satisfying
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2-7) (we denote it by Ord(X)).
(ii) For m=1,
#{XeS,/%|0rd(X)=m}
=2 if K,=k©>Dk,
=0 if K, is an unramified extension field,
=1 if K, is ramified and m=1,
=0 if K, is ramified and m=2.

LemmA 2-3. Let V:(Zl ?) be an element of GLyk, and B be an

2 2
integer. Assume that detVeof and —uw +auw, +bu,v, belongs to
p°=¢, where p=ord,(ui—amu,—bu3). Then there exists a V' in GL,o,)
such that

1 1
V( ﬁ> =(u,;+ uz(go,,,—ao/Z))< o > V.
P24 T,

»

LeMMA 2-4.
1 0 .
B =GL,(k,)=11 Kf( )Qj (disjoint).
mz0 0 mymt™

Proor. Although this is a well-known property as the locally
principality of lattices in a quadratic extension (¢f. Proposition 1 in
[11]), we give here a proof for the sake of convenience. We shall only
prove that B} is the union of K, X( ﬂ__;,pm)@x (m=0,1, ---), because
the disjointness is easily checked. Take any element g of B and put
gl_<(1) ﬂ%p)g By the elementary divisor theory, there is a z,€k} and
m=0, such that glez@x<0 " >®X As there is nothing to prove in
the case m=0, we assume m=1. Note that when U= (ul v‘) e L) and

u2 2
ug

1 1 A 1 1
2-8) <“>~<“)<=>U:<” ”)e@: and U’( >eU( )@:.
U/ ™ \Ug Uy Uy Ty Ty

Thus, by Lemma 2-2, there exists a U= (ul vl)e%: such that g, ¢

Uy V,

U<é 7?)8* and ord f(,<u‘)<m, S0 gez(ﬂ;ﬁiluz ﬁ;:lel n;“»*’")g“x’

By Lemma 2-3, we know that ¢ belongs to K,X<1 ﬁ_#p+m_,,>£)§, where
p
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o=ord, £(1). QE.D.

LEMMA 2-5. Let ¢,=ord,{,, pe 5 and tekl. Then

Y S N o<
Plo 1\ peen) =0 Jor 0=m<en

ProoF. Let ¢,=1. Note that 1 and =;*(& ,—a,/2) span o, over
o,. From the definition of f, there exists a z=a-+zr'""(g ,—a,/2)y
in 0g(p»~")F such that 4,(z)1. When 2 is a unit, we may assume that
z=1 because the restriction of 4, to k) is unramified. Put u=z"'""y,
where 0=m<c¢,. By Lemma 2-3 there exists a Ve O} such that

1 10 _ 1 v
75;#"+m w 1 =z n.;y,+m
So we obtain

oflo I ) =sonlly U ne)

which implies that @((6 ({)(1/;;;»:0 If xep, then ¢, must be 1

and ¥ must be in o}; so the only possible m is 0. Applying the same
argument as above to

A R .
n-;#z: Y 0 - ﬂ;ypy 0 71:;“» y

——
we obtain #((* )(1 1-))=0. Q.E.D.
Put
(2-9) h,(m)= (1 n—pp’—%“"m) € By for meZ,
4

t 7Z'_a¥‘+m+l
g;z(m, l):< o

1>h,(m) eq, for m,leZ,

where ¢,, is a generator of b;'fm, ¥, a,=ord,q, ¢,=ord,f, and g,
v, are defined in (2-3). For any le Z, we put g¢,(0)=g,(0, 1.
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ProposiTION 2-1. Notations being as above, we have

U supp p= H N, K g,(m, U, (disjoint),
¢

l>0

where @ runs through all elements of <7, and

1 «
N’:{(O 1> G

X= Usuppcp and Y= UNK g.(m, DU,.

l

xeB;}.

Proor. Put

By using the Iwasawa decomposition, Lemma 2-4, and Lemma 2-5, we
have
: 0
XC U NK O 1 p(m) UP'

mz=0
tekX

—1 P
For any x ¢ B, <0 1>h( )@ olc> (é thp(m)xhp(m) )(t 0)h m). So, if
(t 0>h (m) e X, then ,(c(ethy(m)zh,(m))) must bo 1 for any ze s
namely nt;im; ™t € 0,; this means that XC Y. As it is easy to see that
the right hand side of Y is disjoint union, it remains to prove that
XoY. For each m=0 and =0, put

o <<1 >zg( " > {AT(E%))/MZ) it (m,l)=(m,1),
“lo o 1ff 0 otherwise,
- X r oy 1z
where z€B;, z€¢K), ueU, and w/, 6UI'zZ0. If <O 1)zg,(m, b=
(5 3 )rasim, ', then 1,(re)=1,(c() and A@=A4E); s0 Pus is
well-defined. Since @, is in &%, and its support is N, K g.(m, DU,
our assertion has been verified. Q.E.D.

Let @ be an element of <74. Then @ is a simultaneous eigen
function of 2% if and only if @ is a common eigen function of ¢,

¢l and ¢ (see (1-31)). Take a system {(3;1)} of representatives of

2
S,/~, and for each <Zl> choose an element (Z’) in S, such that V=

(ul 271> is in OF. DenoteQby L(p) the set of such Vz"s; then 8;(1 - )Qf:
b

Uy Uy



538 Takashi Sugano

Myez V(l n)s; (disjoint union). We recall the right U,-coset de-
composition of supp ¢ (1=0, 1, 2).

7:9
T
(2-10) supp ¢ = ’ - U,
»
n‘b
T
’ X
T P
(2-11) supp ¢’ = I : U,
x=(7_Y 1
@ zze_{p
Y, [ 1
1
1
a U,
ﬂ"b
Ty
1
X
P — U
VelLp 1 p,
x=(S8) weots
Ty
n'v
%X
x| 7
7 »
(2-12) suppe= I V U,
Ve Lg») 1
X=(:: —npx
zeoly,zeolp? Ty
1
T
P Up
VelLp) 7'Cp
2
T,
e
? X
T
’ » Up,
x=( 2 T
TCU

where in the last union in (2-12), (%, ¥, %) runs through the set
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{(z, ¥, 2) € (0/p®|2*+yz €D, one of z, y, z is a unit}.
We denote by (%) the Legendre symbol, i.e., it equals to —1, 0,

or 1 according as p remains prime in K, ramifies in K, or splits in
K. Unless <%>:—1, we can take an element o, of K, such that

Ny (@) €mo;. When ¢,=0, namely 4, is unramified, put

0 it (ipf) =1,
2-13) 6, =1 4(Tx,) if (%) 0,
A0 )+ A E) it <_§> =1.

Note that ¢, is independent of the choice of wg,.
LEMMA 2-6. Let teky, m=0 and € #,. Then
s ™)
P
VeL{p)

0 1hp(m)V p
=q<;0<<t O)hﬁl))wg(zp)@((t O>hf77[~{1)> if m+e,=1,
0 1 0 1
K t 0\ —~—rro t O\ —~—o .
(o= (ENolls ) esl(s W) a6 mmamo

where q=o/p| and ¢,=ord, {,.

Proor. First we suppose that m+c¢,=1. We may take

(V., V'iscofp} as L(p), where Vs=<§ ‘1)) and V’:<(1) ‘(1)). Applying

1 1 1 :
Lemma 2-3 to hy(m) V.( m):(ﬂ;m%ms ) ﬂ;ymmH), we obtain

1 0
ham) V. <0 . > & (L4 Tt msmro(2, , — auf2) Py (m+ DOE

p/

Since 1+ ™ s(s,,—ay)/2) is in 0g(p®) and hp('m)V'<1 ﬁ) is in
P

7':1,(1 - 0F, our assertion is proved. Secondly, we suppose

that 7;L=cp=0. As above, we know that the contribution of V=

(3 ) such that £i(j)eor s o((§ Q)ilm=1): by Lemma 2-2 Gi)
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and Lemma 2-3, the contribution of the remaining (1—&—( %)) elements

is e;p((é S))}Z(\/wz)) Q.E.D.

Let @ be an element of <%, and put
) if m=0 and 120,
214 alm, = {@(gv(m IS m_. and >
0 otherwise.
PROPOSITION 2-2. Notations being as above, for m, =0 we have
(Ple")gy(m, D)= Az, )alm, 1),
(1) — 3 — E —_—
(@le)(a,tm, D)=gatm, 1+1-+q(g-0.( ) Jatm+1, 1-1)
+ongs,a(m, )+ qd(m,)alm—1, 1+1)
+ A, )a(m, I —1) if ¢,=0,
=q¢’a(m, I+ +ga(m+1,1-1)
+qd,(z)alm—1, 1+1)+ 4,(x,)a(m, I —1)
of =1,
(@1e2)gum, D)=¢(a4—0( ) )atm+1, ) +5,0%,a0m, 14+1)
p
+¢ A (m)a(m—1, [+2)
2 2 K
= 1-0g+o0.a( )] Amatm, 1

+(q—5m(%>>/1p(x,)a(m+1, 1—2)

+0,d,(m)e,alm, I —1)+ Az, a(m—1, )
if ¢,=0,
=q¢'a(m+1, )+¢A(x,)a(m—1, [+2)
+(@*—1-0,¢")4,(z,)a(m, 1)
+94d,(z)a{lm+1, I-2)+ A(z, Y a(m—1, 1)
if ¢,=1,
where ¢=Io/p| and 8,=1 or 0 according whether m=0 or not.

This proposition follows easily from (2-10)-(2-12) and Lemma 2-6.

2-3. In this subsection p denotes a prime ideal of % dividing 9.
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Let K, be the unique unramified quadratic extension field of k,. We
realize B, as a cyclic algebra (K, x,); ie., B,=K,+K/ll, ==,
I,=—1, and II,XII;*=X for any Xc K, (1, is a prime element of the
division quaternion algebra B,). We denote by O, the maximal order
of Ky; s0 O,=0,+O,/I, is the maximal order of B, and 3,=7,0,+O,11,
is the maximal two-sided ideal of ©,. Take an element ¢ of O such
that /= —¢.

LEMMA 2-7. Let &, be a primitive element of (As,). When
W, =2, [resp. U ,=B,], &, s written as

(2-15) &, =/ X+ YN [resp. &,=2x,) X+ Y],

where X €0, Y€, and one of them is o unit of O, If K,=k,(&,,) is
unramified over k,, then Y € 7,0, [resp. X e o}] and p,=0 [resp. p,=—1].
If K,=k,s,,) is ramified over k, then Y e O; [resp. Xep] and p,=—1.
Here, p, is defined in (2-3).

PrROOF. Assume that 9,,=9O,. It is clear that &, is written as
in (2-15). Put (25,,)0=0X’+4n,'Y¥Y=xfe (cco). If Yer,D, then
(28,,)'=X" (mod4p). As Xeo}, K, is unramified and =0, g,=0.
Let Y be a unit of ©,, When p}2, our assertion is trivial. Thus we
may suppose that p|2 and use the same notations as in the proof
of Lemma 2-1 (i). If g is odd (i.e., Xep°), 8=2¢—1. This means that
K, is ramified and pg,=—1. If g is even (i.e., X ¢, we use the
following two sublemmata, which are easily seen.

SUBLEMMA 1. There exist elements a and v of of such that a™*=
1+7%v.

SUBLEMMA 2. Put e,=1+n2"'u with ueo’ and 1=m=e. Then

k(e ) is ramified and the p-order of the discriminant of ke, )k,
48 2(e—m-+1).

Put 2=7w and X=x{*X’. From Sublemma 1 we obtain
(28, ) =(aX){1+rm; P @i v+ N, (wa X' Y))},

where ¢ and v are given as above. It follows from Sublemma 2 that
K, is ramified and g,=—1. The other case 9,,=%, is treated quite
similarly. Q.E.D.

Since B, is a division quaternion algebra,
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(2-16) Br= {Kf = if K, is ramified,
KO I KX 11,07  if K, is unramified,

and

(@-17) O,NK, =0y ..

From the Iwasawa decomposition and the definition of &%, (see (2-1)),
we may assume that 4,|o%,=1, namely, ord, {,=0. Put

to,pﬂ;ab+l 0

(2-18) g,(l):< ; 1)6G, for leZ,

where t,, is a generator of b;'w;»p,, and «,=ord,a. By using the
same argument of Proposition 2-1, we obtain

ProprosiTION 2-8.
U supp =11 N,K g,(D) U, if K, is ramified,
© 1z0
=]210 (N,K:g,) 11 N,K:11,9,)U,)

tof K, is unramified,
where @ runs through &, and N;,:{((l) f)ixeBg}.

The Hecke algebra 57, is generated by ¢ and ¢ (see (1-31)).
We recall the right U,-coset decomposition of ¢’ (1=0, 1).

/4 0
2-19 L U,
( ) supp ¢; ( 0 II,) ,

w, weX 1 0 >
U U,
ma%w&jo 1) "H<O )

o (II,, 72:;,’»]7,,Y> U,
Yetrtng, a5 g, \ O 1,
where a,=ord, a (see (1-9)).
Let @ be a non-zero eigen function of ¢ with eigen value ¢,(c{”).
Then from the definition of &, ((2-1)), 0,(c!”) must satisfy the
condition:

(2-20) supp ¢ =

o,(c" )= A,(x,) if K, is unramified,

{2-21) 0,(0;0)):/1»(@/1(;) if K, is ramified,
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where @'y, denotes a prime element of K,. Put for leZ,

?(g,(D)) if 1z0,
0 otherwise,

(2-22) all)= {

PROPOSITION 2-4. Let ® be an eigen function of ¢ with eigen
value 6,(c). Then for 1Z0 we have

P16 (00) =g+ D+ o) ¢ —1—¢33( (1 )=0) o)

+4,(z)al—1) A %,=9,
=ga(l+1)+a,(c) {q— 1——q515<<—§) - 1)} a(l)
+ A,z )a(l—1) if U=y,

where q=|ofpl, 6, means 1 or 0 according as =0 or wnot, and 6((x))
means 1 if (x) 1s satisfied and O otherwise.

PrOOF. Put t=¢,,z;%". Then by (2-20),

t 0 71',' T X\ ) Tt O
ZX‘,<P<<0 l><0 ’ ))—;xp@ao,,msX»@(( " 1))

=¢’a(l+1),

t O\(H, nI,Y
¥ollo s n )

I
- Stz e ()
=0c,(cMa(l) zy:, LTt mie I, YIIY)).

and

If 1=1, the summation of the right hand side is equal to ¢%—1 (4, is
defined in (1-34)). Suppose that [=0 and 9,,=9O, Writing &, ,=
¢ X2+ Y, II;* as in Lemma 2-7,

;Xp(z.(to,vﬂiEHpYH;l»: > AT (@ Y b, 2)).

Z € (Dg—7ypBe) [7yDy

It is equal to —1 if Y, €0 and to ¢*—1 if Y, ez, 0, By Lemma
2-7, our assertion is proved. The other case is treated quite
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similarly. Q.E.D.

2-4. Let a, 8, A, A, A, A, and A, be given complex numbers
such that A,=A4,4, and A4,(A,+A,)+#0. We consider the following C-
valued recursion formula: for non-negative integers m and I,

aa{m, D=a(m, | +1)+(A,+ 6, A)a(m+1,[—1)
+0,4.a(m, )+ Aa(m—1, [+ 1)+ Aa(m, I—1),
(2-23) Ba(m, )=(A,+6,A)a(m~+1, 1)+d,4,a(m, [+1)
+Aa(m—1,1+2)+(24,—5,4,— 0,0, 4. A)a(m, )
+ A4, +0,A)a(m+1, 1-2)+ A, Aa(m—1, 1)
+0,4,4a(m, I —1),

where we put a(m’, I')=0 if m’ or I’ is negative.

PROPOSITION 2-5. The recursion formula (2-23) has solutions and
each solution {a(m, )} is determined uniquely by a(0, 0). The generating
Junction of a(m,l) is

S alm, Damy'=a(0, O)M

=0 P@)Qy)’

where x and y are indeterminates and the polynomials appearing in
the right hand side are given as follows.

P(z)=1—(8—24,4A) A0 + (" — 28+ 24 4,) AT A
—(B—24,4,) AT Alx* + A,

Q) =1—ay+pY —aAy’ + Ay,

H(z, y) =1+ A, Ascy®) (M. (2)(1 + Ayx) + A A AT a?)
— AxylaM (x)— AM(%)}— A Pw)y— A, APy,

M(x)=1-A7(A,+ A) (A da+ AR — A A —2A A A )+ AT ALA Y,
My(w)=1+ A4, A, — Ble+ AT A (A A, — B)" + Al

Especially,
3 a0, Dy =a(0, 0)(1— Ay~ A:AY)/QW).

This assertion is checked by direct calculation. Since it is too
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tedious to reproduce the proof here, we omit it.
Let o, be a homomorphism from 5% into C. We define a subspace
of &7, by

(2-24) Ziwon)={p e L] Ple=0,(9)p for any ¢ ¢ 57}
We may assume that o, satisfies the following conditions.
O'p(cx(’w):Ap(ﬂh) if ‘p’l/@’
Y : K
(2-25) o(e) =4 (wy,) if p|D and <F>:O’

o =Ax,) if p|D and (LS): ~1.

THEOREM 2-1. Let g, be a homomorphism from 57, into C satisfy-
ing (2-25). Then £i(o,) is one-dimensional, and each element @ of
Fy(0,) is determined by the value at g,(0) (see (2-9) and (2-18)). More-
over, the following identity holds.

(i) Assume piD.

3 20O =2,V H,®)/ Q).
Here

QY =1—q%0,(c")y +{0o,(c?) + 4,(m, )¢+ D}g~*y
—q~ %0, (c") A,(m )yt + A () gy,

1 if ¢=1,
1-4,(m)q~*y* if ¢,=0 and <E> -1,
p
Hy(y)= X
1-4,(wk)q "y if ¢,=0 and <—5> =0,

A= 4,( )07 Y) (1 — A, (7, @ 5})g*Y)
. _ K
if ¢,=0 and (—5->

Il

1.
(ii) Assume p|D.

2 P00 =2(0, 0V H,1)/Qy(w).
Here
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Q,(y)=1—{0,(c;") — (g**— Do, (e)la "y + 4,(7,)a Y,
1+¢7%6,(c™)y if p|D, and p ramifies in K,

1 if 1D, and P remains prime in K,
Hb(y)z 1

if »ID, and b ramifies in K,
1+q¢7%, ™)y if 9D, and p remains prime in K.

Proor. When p does not divide ®, ¢(g,(m, 1)) satisfies the recur-
sion formula (2-28) with

a=0,c"q?,  B={o(cP)+4,z,) ¢+ D)g?, A=q7,

— (%)q‘z if ¢,=0,

0 if ¢,=1,

Az = A»(ﬂp)q—2; A4 =

’ gq? if ¢,=0,
A=1"
’ {0 if e,=1,

where ¢, is defined in (2-13). Hence our statement is merely a corollary
of Proposition 2-5. When p|D, our statement is clear from Proposi-
tion 2-4, Q.E.D.

We denote by @,, the element of .&7(s,), whose value at ¢,(0) is
1, and we call it the normalized function in &%, (g,).

§ 3. Functional equation of the L-function

3-1. Let F be a non-zero element of &(0,4, »; Us), which is a
simultaneous eigen function of the Hecke algebra 5 ;=Q,< 5.
We denote by 0=®,<- 07, the one dimensional representation of.57#, ;
determined by F. By Lemma 1-2, there exist an element ¢ of B~
and an idele class character 4 of K} such that A|ki=X and @;.=#0.
We fix such F, ¢ and 4. Put

(8-1) =11 9,000 G, ;,

p<o

where g¢,(0) is defined in (2-9) and (2-18). The next proposition is a
direct consequence of Theorem 2-1. Note that the right hand side is
' essentially a finite product for each fixed g.g;€ G.,.

PROPOSITION 3-1. For any g€ Ge. and g,=(9;,) € G4 s, we have
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Pr.e(gel ) = 0 Pop9r0): Pr.(ges),
p oo

where P, , is the normalized function in F7\(05,).

Since F' is bounded on G,, there exists a positive constant C, not
depending on P, such that

o e < Ca® for all p<oo,

-2
32) Orae®)=Cqt  for all p (D).

Take an unramified unitary grossencharacter w=T1], ®, of k%, namely
® is a unitary character which is trivial on £* [],.. 0. For each tc R}
call z(t) the idele (z,) such that z,=1 for every finite place p and Zeo; =1
for 1=j=n. Then k] is the direct product of z(RY) and k., where ki
is the subgroup of k} defined by [2],=1 (ef. Ch. IV-4 in [21]). Hereafter
we assume that

(3-3) w is trivial on 2(R%).

This assumption does not lose generality for our purpose. Put

(3-4) Zow, S>:,go Qp,F(O)p(ﬂ'p) 7,53
IT (10 (e),(m) 7,57

Here @, »(y) is a polynomial in y given by

@y, r(Y)=1—07,(c;")q Y + (05 ,(c2) +Np(7,) (@ + 1))~y

—0r (e WN(m)G Y 0yt i PID,
=1—{op4(c;")— (g% — Doz (¢!} "y

+ (7, )g Y it plY,

where g=|o/p| and A, is defined in (1-84). By (8-2), the infinite product
(3-4) converges absolutely and uniformly on some right half-plane, so
Z(w, s) determines a holomorphic funetion there.

We normalize the Haar measure d*t=]],d*t, on kX by the conditions

| @t=1 and dt=To
°p

where dt.; is the usual Lebesgue measure on kw;,=R. TFor g.cG., we
put
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t 0
(3-5) 0t gss 0, 9= %(( )g«,%)w(w lel:ed e,
k) 01

This integral converges absolutely and uniformly on some right half-
plane. For any grossencharacter A'=T][, 4, of KX, the L-funection of
A" is defined by

(3-6) Lg(4, s)=1I (1—A5(wg) |wele)

where P runs through all prime ideals of K such that A4; is unramified,
and @, denotes a prime element of K.

®

- THEOREM 3-1. Let g@:(O 2) € G.. and assume that —p(g)) —1ce
Do Then, in some right half-plane, the following identity holds.

. o sraid (88,14 (d;—83)/2)
07493 @, s)-—j]l& ! (27Ca1>3+s]j+lj+(]dj—3)/2

X llIg (1407070, (7,) |7,[;7)
i (& H)

x I A+ oe (o) ml
PR

X L4y, $+1/2)7 X Zp(®, 8) X PF (9l

Here 2(K/k) denotes the discriminant ideal of K/k and

(3-7) ajoTBwj/kmj(—l/:—l §(9,{Z;.))) (1=5=n),
(3-8) We () =7% for any e RY,
(3-9) A,(2)=AZ)w(2Z) for any ze K.

PrOOF. Proposition 3-1 asserts that

t
ot 0 9=1§ 2o [ Jonent i,
P

p<lo

tm
<\, @é,e<< l>gwgo) Ot a5

By (1-26), for any t.c€kZ,
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(,-I:Il |toojliifdi/z)e[r(tmg(gw<Zo>))]v

([t
<PF,5<< 1>9°°90>: if t.,>0 for all j,
0 otherwise,

where v is a constant vector in V,, not depending on ¢.. On the
other hand, we have

t, 0
Sk; ¢6F’”<<Op 1>go,p> a)p(tp) It?'§~3/2dxtp

H,p (0,7 |7,[7)[Q, (@,(x,) [7,[;7),

where H, p(y) and Q,,F (y) are the polynomials defined in Theorem 2-1.
Let Iy, (4;, ,,s+1/2) denote the p-part of Lg(4, s+1/2). If p)D, it is
clear that H,,F L@, |7 3/2)—-ZK”(/11 p» 8+1/2)7. We assume that p|D,.
If p ramifies in K, then H,, (@0,() |7, 7") =1+0p,06")0,(x,) 7,7 and
le,(4;, s+1/2)7" =1~04 I,(c“”)co‘,(7z',,)[72:‘a » % since A, (Wg,) = og,(c)”) (cf.
(2-25)). If p remains prime in K, then H (wp(ﬂp)]n,,[‘,‘s/z) 1 and

IF.p

Le, (A $+1/2)7 =1+ 05,(0," )0, (), [;*7)
X (1= 05 (D)@, (T, i),

the case p|D, is treated similarly. Q.E.D.

The rest of this section will be devoted to proving the next
theorem.

THEOREM 3-2 (MAIN THEOREM). Let Fe®&(0,4,)\; U;) be a si-
multaneous eigen function of Hecke algebra 57, ;=Q,cn S5, 0r=
Xy<o 05, be the one dimensional representation of 57, , determined by
F, and @ be an unramified unitary grossencharacter of k satisfying
(3-3). Put

Crl@, =11 I(s+s;+(d;+ /2T (s +5;+ 1+ (d;—3)/2)
X (d{k) N(®)"|2rY") Zs(w, s).

Then Tlye, A+05,c)0,(m)lm, ;") X L@, 8) is continued to the whole
complex plane as a meromorphic function. This function is holomorphic,
except possible simple poles at s=3/2 and —1/2, and unless d,=---=d,=0
and Ww*=1, it is an entire function. Furthermore, {z(®,s) satisfies
the functional equation:
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Le(@, 9)= (=D ) 0D 0(D) 11 ors(ey er (@™, 1—s).

Here, F'(g)=F(g\"'(iK9)), which is an element of &(0,4 V7" Us) and
also a simultaneous eigen function of 5, ;, and b, denotes the different
ideal of k over Q, and s; (1=j<n) is a complex number given in (3-8).

REMARK 3-1. Assume that F(g;&+0. Then the first statement
of the above theorem still holds if we replace

p]};; (1+O'F,p(cz(am)wp(ﬂp)[ﬂ:p(;_l/z) X CF((D’ S)
by
IT (47 )@y (7l 7 X @, 9),

where §’ runs through all prime ideals dividing ©, and the discriminant
of k(&) over k.

3-2. We take an element 7 of B* such that
(3-10) Trp.(7)=0 and Trz.(&n) =0,

and fix this 7 once and for all. Then B=K+K» and zp=7%% for any
xe K=k(¢). We introduce an algebraic group G’ defined over k& by

(3-11) Gr={9 e GL(K)|det gck*}.
The mapping
a B a B??)
3-12 e G,"—’G, ) = s |2
(3-12) v v<7 5) (77_1,7 5
determines an algebraic group homomorphism defined over k.'f Note that

(3-13) £,<0 and 72,>0 (1=j=n).

_(aj/Z b; )
S ¢;  —ayl2

under the identification of B.., and M,(R), and put
(3-14) Ko, =&,

7 I

We write as
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Put
7o b, O n
(8-15) R.,= (‘/VOJ ? A > €G.; and ER.=]] R, &G,
ooj =1
where

feo,=

E)

(1/ T

> €B}..
0 2¢; !

Obviously — (R —1 ¢ belongs to $, and

(3-16) a;=Trpu(—V —1ERu{Z; o)) =V — (&)W
Put
(8-17) M.,={ge G| det g=1, ‘gg=1}, and
Mo=]1 M.,

M., is isomorphic to the special unitary group of degree two. We can
easily check that

(3-18) Ry (me)Re € Us for any M.¢e M.
We define a representation g of M. in V,, by
(3-19) P(me) =01 J(J(RZ W (Me) Ry Zy)) (M € M),

This representation does not depend on I and is equivalent to a unitary
representation &7, g,; of SuU(2)".
Let p be a prime ideal and write £ as in (2-3). When p/® and

m:@» —(a‘)flf’;b(’y*’)) through the identification of B, and M,(k,) stated
in Lerilma 2-1, lgWe put

/

o (xp by,
’ Yo Xpy— QoY

(3-20) > e K7,

where Eo,p:<ai/2 —ZZ/Z)' So E;lﬁp:<é :%") is a unit of ©,. When
pID, put

we it p|a(K/k) and pID,,
(3-21) £,=iwg™ if p|d(K/k) and p|D,
)

N
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where d(K/k) is the descriminant of K over k, e,=ord,7’, and oy,
denotes a prime element of K,. Note that if p/d(K/k) then ¢, is odd.
From the above definition of &, for §|D, we have

0 if pIdK/k) and p|D,,
3-22 dg, £;7'7=
(8-22) Ot £ 7 {1 otherwise.
Put

—1

tor O
R,= < ’ )g,(O), R;,=]l R,
0 1 5<00

R:RooRf, t0: H tO,b

p<eo

(3-23)

where ¢,, is defined after (2-9) and (2-18). Let D(¢) be the product
of all prime ideals dividing ©, and not dividing d(K/k). For each prime

b, we put
1 a B a,B,v,BeoK,,Ml >
M = fe G' ’ ,
i < ic){g ('7 5>e *ldet g e o} K
a} B, 77 6 eDK(f.{)v } <1 )
k)’

(3-24) M= <1 > {g: (a B) €@,
K, det g € o}

Y 0
M= (1 > {g: <a B) cG! a, B, 7, 6 € ox(f.), } (1 )
K, Y 6 det g € o}, v € D(E)ox(.), £

These are all open compact subgroups of G, and M, is a maximal
compact subgroup of G,. Put

(3-25) M=1I M, M=TI M, and M'=IIM/,

v

with M.,=M,=M., for eacth.
Let us define a function F on G, by

(3-26) Fg=Fy@R (geG).
Then it satisfies
(3-27)  F(vgmem})=p(m.)""Flg) for YveG,, geG, m.m}cM".

For any character o of Ki={u¢e K.|uii=1}, put

ﬁ(u >v:a(u)v for all uwe Ki;.
%

(3-28) V,= {v eV
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Since {(a u);ueK;,} is commutative, V is decomposed as V=&, V,;
we denote by P, the projection V—V,. Then P, commutes with all
ﬁ(a u) (we K!). For any character 2 of KX, we abbreviate Vo
[resp. Pgix:] to V, [resp. P,]. Note that for any 9,€G, ; and tek},

@1@,5((8 ‘{)ngf> is in V..
Assume that Re(s) is sufficiently large, and put
t 0\
(3-29) 4t (@, 5)= ¢(< )R}w(t)ltlrwm
) 0 1
= @(t,) |4/ 07 (Reo; @, ).

Since

. [lat _ L[t 0\ ax
b %‘(( 1>R>‘sz\xz {ZF<“<0 1>R’ “5>}A(u) .

and

1 ay

0 1>ﬁg>dx for ge Gy,

5 Fi(iig; ag)=| F((
aek® E\K 4
we have

[ /1 t
(3-30) A (o, S)ZS S S F<< 90)(” ">>
R REa AR VRN VAR

x A(w) " o(t) [t ded “ud*t.

We define an algebraic subgroup B’ of G’ by
(3-31) B,::{b':(j ;) ]a@em, xeK}.

For b’:(“ g) e B, we put 8()=p8 and t(b)=af~'. Taking a suitable
right Bj-invariant measure d,b' on BikX\B), we obtain

(3-32) Az (@, 8)=§ . F@) a7 (BRI o)), b,

EEa\BYy

We denote by X the characteristic function of B,M"; namely,
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X(g)=1 or 0 according whether ¢ belongs to B,M" or not. For any
g€ B.M", we put g=b(g)m(g) (b(g) € Bi, m(g9)=m«(g)m,(g) e M"), B8(g)=
Bb(g)) and t(g)=t(b(g)). Since B,M" is an open subset of G, and M"”
is compact, the integral representation (3-32) is transformed into the
form

(3-33) Ai (o, 8)=S o P, X(g)w(det 9)47(B(9))

kAN A

X [Hg) 5B lme(9)) F(g)dg
ZS{ > X(rg) 47 (B(v9)

re B[\G;

X r9) 5 P.fma(79) o det 0) F(o)dd,

where 4,(z)=AZ)w(zZ) for z¢ KX and dg is a suitable invariant measure
on Gik5\G,. Note that the integrand in (3-33) is well-defined.

3-3. TFirst we quote some results on Eisenstein series from
Godement [8] with a slight modification. Let W=K@K and view it as
a vector space over k. We denote by S7(W,, §) the space of End(V)-
valued Schwartz-Bruhat functions @ on W, satisfying

(3-34) Plame)=P®)P(m=) (VM€ Ma).

For o (W, p) and ge G, put
(3-35) Li(g, s)=|det g|5"” S () [ttt o(t(0, 1)g)d*t,
Ky

where /4, is a grossencharacter of K defined in (3-9), and the Haar
measure d*t on KX is normalized as below;

re=Tdt, |
v oK(pc")b
by = by D e oo

d*t,=1,

where 2’1ldtwj/\dfwj[ is the usual Lebesgue measure on K., =C._ The
integral in (8-35) converges absolutely in Re(s)>1/2. If g=<t§ {Z))m
(m=mem,;€ M), then

(3-36) Lip(g, 8)=AT(B) [t Ly (my, 8)P(me).
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Note that
(3-387) Ligs, 8)=Ligsy s)Pr for Yg,e Gl

We define the Fourier transform ¢* of @ by
(3-38) P, )=\ P, (Trgelos—up))dudv,
4

where du and dv are the self dual Haar measures on K, with respect
to ¥oTrg,. Put

(8-39) Ei(g, s)= >, Li(7g, s).

re Bl’c\Gl::

For any fixed g€ G, it converges absolutely on some right half plane.
For ge G, te¢ K} and o F(W,, 0), we put

(3-40) 0.(t, 9) =0¢§Wk P(tvg).

As in [8], using Poisson’s summation formula we obtain that

B 1 - _ *
0,2, g)+¢(0>-—————IN@det(g)[i{ﬁw(t (det 9)7, @) +9*(0)}

Put

(3-41)  Efg, 5" =det g1 | 0t DAE) T

B\K i 4z 1get gl

This integral converges absolutely for any s, thus, Ef g, s)* determines
an entire function of s. Since

(3-42) Eig, $)=Idet gl |

00(t, 9)A,(E) [LEF A,
B\x%

we obtain

(3-43) Ei(g, s)=E&(g, s)* + A7 (det 9B (g, 1—5)"
—8(4,=1)efP*(0)/(—s+3/2) +P(0)/(s+1/2)},

where ¢, is a positive constant and §(4,=1) means 1 or 0 according as
A,=1 or not. Therefore E%(g, s) is continued to a meromorphic function
on C and it is holomorphic except possible simple poles at s = —1/2
and 3/2.

Now we shall use this formula (3-43) to prove the theorem. Let
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®, be the characteristic function of £,0.(f,),Pox({,),, and

(3-44) Pu(we) = (11 %),

J=1

where =1t (0, D)me E=(t;,"«+,1,), £;=0, M € M.). Then e=T[,®, belongs
to (W, 0) and Ly(g, s) has Euler product expansion, namely, if we
put

15(9,, )=|det g,[;*"/ ZSKXCP;,(%(O, D)4, (E)18,E 152,
»

(3-45) )
lo(gw, 5)=1I |det g, f:,.”zg Pty D)gew) Ay cobeo) [Eool oo 52 b s
§=1 Kco
then
(3-46) Lia, )={ I Ur(@ 9} X12(Ge 9.

Let us calculate local factors (3-45). Because of the usual Iwasawa
decomposition, we may assume g, = m, € M,.

LemmA 3-1. (i) Let ¢,=0 (i.e., 4, is unramified). Then

(L= 4, @)l ) if (5)=—1

— s+1/2y—1 . _IS _
sy )| ATRIRE i () =0

(1= A, (W e I [ 7 (A = A, (7, w5, /)

. (K\_
it (;)‘1’
where Wy, denotes a prime element of K,.
(ii) Let ¢,>0. Then
0 if m,& B,M,
o s S)= 1 .
oy (s 9) {/1;;(,81) if mp=<c:) ;>m; with m, € M,.

PrOOF. As (i) is well-known, we shall prove only (ii).

(3-47) Leve(m,, s):S . 0, Dm) A, ()N [sH7d ¢
Ky Neg p=0% 4

+|, 20, vm)a, .
DK,p
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Put mp=<1 Kp><$ ,(;)(1 ’C_1>. Then (0, 1)m,=(k,7, ). First assume that

i€ KX Nog,—0%, and t7 € 0(p™),. Then for any e of og(p>")%, et is in
0g(p%),. Thus, from the non-triviality of 4,, on og(p>)>, we know
that the first integral in (3-47) vanishes. Secondly assume that teo},
and (0, 1)m,esupp ,. Then as easily seen, m, must be in BM,.
Hence, lit*(m,, s)=0 unless m,e B,M,. We may assume m,e M,. If
7, 0, t7, 10 € Dg(p™), and ¢ € 0% ,, then ¢ € 0. (p*)*. Thus the second integral

in (3-47) is 1 for any m, c M,. Q.E.D.
Note that
L T d; + 12
(3-48) o1, 9 = (e [ OS2 Dp

where s; is defined in (3-8). Put

(3-49) B, s) = Iy(e)(l T 05,,(¢7) 07 () m [ )
XTI @)t B (s 45,4 (d;+1)/2)
X Lg(dy, s + 1/2) X A% (@, s).

LeMmA 3-2.
Bidw, 9=\ . wldet 9B, 9F(0)dg.
EYANT 4

Proor. For each prime p dividing D(g), we put

= JE T )

Then by (8-45), we have for m,c M;=M,,

17,/ o (am, 5) it m,e My

3-50 Lo Ty 8)= i
( ) i "%y, 5) {Ahp(ﬂp)lﬁp]fvﬂ/zyl (1, ) if m, & M,

We put
L'g,s)= 3 (—1)¥ II ATz )|m, |5 e Lig II Ty 8),

Pcd(e)

where @(;) denotes the set of all prime ideals dividing (), and P
runs through all subsets of @(ﬁ) By (3-50) and (3-36), for g-(o /3>
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(meM’), we have
L'(g,s)= wlgm =47z 7= A7 (R) B |5

0% ﬁ (27t>1—(s+sj+<d5+1)/2)]‘v(s+Sj+ (d,+1)/2)

X Lig(4,, s+1/2)PA1—1ﬁ(mm) if meM”,
=0 otherwise.
Using the integral representation (3-33) of A% .(w, s), we obtain

Bz (@, s)=

piD

X (1 O-F x‘(C(D)) w—z(ﬂp)lﬂpt_gs-l) —1

xg . wodetg) 3, L(vg, 9F(g)dg
TEN\G, 7eBl’c\G;°

Gk 4\¢y

H (1+0-F p(c(o)) lw;l(ﬂ:p)lﬁp(;(s+u2))

=11 (1——O'F,,,(cém)—lw;l(ﬁv)mp|;(s+1/z)>._1

i)

X Z ( 1)$P H Cr p(6(0))— —2(71-")]72-”];(3-%-1/2)

Pcd £)

x|, ., o@eto) 3 Lig T @, 9F(0)dd.
G4k \GY

TEBL\GE

Here we have used the fact that P:1=P, and if p|D(g), aF ;,(c“”)z

A (x,). Since R;'W(r;)R, € supp ¢, transformmg g to gl,er7;" in the
last integral, it equals

Sa,k ‘o, H ®,(7,)o5,,(cw(det g) E (g, ) F(g)dg.

Therefore we have

BFA,e(w, S) = H (1-O-F,p(c;(am)—la);l(ﬂp)lﬂy|;(3+1/2))—l

X Z (=1 1L or,(e”) 0y (@) lm, ;™

PC3(¢)

x| . wldet ) Big, 9F()ds. QED.

1ha NGy

Using the formula (3-43), we have
(3-51) [, @det 9B, 9F(9)g
GE NGl

., (@A7)(det g)

Gk g\G)

4\Gy

=S ., o(det 9)E(g, S)+F’(g)dg+g
Gk ,
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X B5(g, 1-8) Flg)dg— 34, =D 2* 0)/(~5+3/2)
% | w(det )F(9)dg +2(0)/(s +1/2) | widet 0)F(g) dg].

Note that, s being in a fixed compact subset of C, |Eji (g, s)*F(g)|-and
IEgl(g, 1—s)"F(g)| are both bounded on G,. As F(g) is also bounded,
from the finiteness of the volume of Gjk,\G%, the integral representa-
tion (3-561) gives a meromorphic continuation of Bf .(w, s) to the whole
complex plane. This function is holomorphic, execept possible simple
poles at s=3/2 and —1/2. If A, is not trivial or V is not one-dimensional,
then B{ . w, s) is an entire function. By Theorem 3-1 and (3-49), we
have

(3-52) Bi (o, s)=cz(@)eic;
X T (A 05,,(67)@y(,) 7, 77)

I
pIo{K k)

X Lp(@, 8) X PF e(Rely).

Here

n
ch(@)=11 a7* 1 0r,(c") 707" (z,) X o(t),
= »

% 1
27— (s
= 7

¢, =(2m)

ap .
+a; o] TT |7, |7 TLas—dd tighvas,
MEIG) j=i
&=t A0 N@) " [ a7 T [
i=1 HEIG)

Therefore I[,isp00~1 (1+07,(c)@,(z,)|7,l;7*) X (@, s) is meromorphically
continued and the first half of Theorem 3-2 has been proved.

3-4., In this subsection we calculate the Fourier transform @* of
@, and prove the functional equation of {,(w, s). For each prime p, put

(8-53) ox(fof ={x e K,| Trg,(ve) by, for all weog(fy),},
and
(3-54) V,=@8) 'm0,

where v, and p, are defined in (2-8), 4,=ord,d, and ¢,=ord,f,, Then
it is easily checked from Lemma 2-7 that
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(3-55) 0x(f 0y = V0 (f ),
LEmMMA 3-3.
PH(@) = (= 1)t EN(Y )] f(5)P(7 50),
where Yi=11,cV, € KI5 7,=£,V;, &, is defined in (3-20) and (3-21),
ond 1=((§ "B (2 )
Proor. We must check only
Pi@)=(—L) WG pa(z) (ve Wa).

Using the fact that g is equivalent to ®adj, we can verify it quite
elementarily. Note that all d; are even. Q.E.D.

From this lemma, we get
Efi(g, 8)=(— 1) A N(7 )3 47 ) B By, 9).
Therefore
(38-56) B (@, 8)=(—L)E AN ) A )E)
<1, @det B, 9" Flg)dg
), (@4t )BT (6, 1-9 Flg)dg
—3(4,=1)a( PO (—s+3/2)| w(det ) Fg)dg
+2*O)f(s+1/2)|0(det )F0)dg )}

Since F(g)=A"(1(R) det ¢)F(g), we obtain

(3-57) B, )= (=155 A,(1 )N PG R))
x{{ @ 4)(det ) Bg, 57 F'(a)dg
+ o et BTG, 1-9* F(9)dg
—0(4r*=)e( P(O)f(—5+3/2)| 0 (det ) F"(g)dg

+@*(0)/(s+ 1/2)§co‘1(det g)ﬁ'(gmg)}.
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Comparing this with (3-51), we get the functional equation
(3-58) Bi (@, 8)=(—1)=2A,(Y )IN(Y ) |5720(3)
XME(R)Bi (07", 1—s).
Finally we shall rewrite this equation in terms of (e, s).

LeMMA 3-4.

PP e(Reall) =N Relo)) A5 (K ) Aeol o) (— 1) E G55/
X H(Q)UF,;:(C;(:O))@ﬁ,e(ngof

p1D;D

Proor. Put S=R.g,.

ZEOR I

RO

KXF;(vZS; Aw)d u

o FES; A @d .
KETEN\KE

By transforming w—a=7"‘uz,

(359 PFiS) =1

XX
KXB\K

=\ U Aw) {FASW; 4~ a,

xe<u~v<'“1 1)S; e)A-%u)qu

where W=S’17£:77(_1 1>S (k=1l,&,). If p does not divide D, W, is in
U,, and if p divides D, the p-component of £~'n belongs to [], O} or
Oy according as p|DDE) or PDDE)L. So we have

FZ(?,NLS W; E) = H o O-F‘p<cf,o)>F1(ﬁS Woo; E).

pISal
By simple ecomputation we know that
WelZy) =2,
and
P(3) = (=1)=i7%%0, J(J(( W)™ Weay Zo)) ™
Thus our assertion is verified. Q.E.D.

Recall that @4 (R.g,)#0. By (3-52) and (3-58), we have
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(3-60) (o, s)=(—1)*" 11_'3[, oryc") X €
X (cﬁlN(ﬁ’f)lZ‘m g([é)_1|7z§,l,,)“s+1/2

X (@72, 1—35),

where e=]],zp00-1 W@)(@7Y) Toiee W@ (@) X (40) (k£ ) A (ViNo(VF VY
X Al o) @el — 2N (MW@ (&), We can easily check that N(v/)IF?
X Haisgo—1lm,l,=1 and e=Q@’)(d;)@w(D). Therefore Theorem 3-2 is
proved completely.

§4. Examples by Oda lifting

4-1. In this section we give some examples of cusp forms on a
quaternion unitary group of degree 2 over @ by using Oda’s lifting
([14]). First, we describe the action of Hecke operators on the space
of cusp forms of half-integral weight at various cusps. We use the
same notations as in [20].

Let N be an odd square free integer and & be a positive odd integer,
and we put M=4N. For a positive divisor 4 of N, we define a
Dirichlet character (modulo M) ¥, by

(4-1) x4<m>=(£_).

For any 7:(3 3) e I'(M), we put 1s(Y)=74d). We denote by S.(M, 7,)

the space of holomorphic cusp forms of weight £/2, with respect to
I'(M) and with character %,.

By the assumption on M, the equivalence classes of cusps under
the action of I'(M) are bijectively corresponding to positive divisors
of M. For each divisor M, of M, put M,=M/M,, d,,=(M, M,) (the
greatest common divisor of M, and M,), wy, = M,/dy,, and N,=M,/(4, M,)
(¢=1,2). We take a pair of integers (a, 8) so that

(4-2) aM,+ Bw,, =1,
and put

W, —
(4-3) A_u1=( M“l" 5 > and

A} =(Ay, V' Mz+pg).
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Let f be an element of S,(M, %,). The Fourier expansion of f at
the cusp corresponding to M, is given as follows:

-4 A= 5 arwd )
(u,“d}yﬁigylel 2
where
0 if dy=1,
1 i d4,=2 and 4N,=¢ (mod. 4),
Ty, =% 4
% if d,=2 and 4N,=—x (mod. 4).

Note that the Fourier coefficients a}":)(u) are independent of the choice
of ¢ and 8. For a prime p, the Hecke operator T, (p") acting on
S.(M, %4) is defined in [20]. For an odd integer m, we put ¢, =1 [resp.
V' —1] if m=1 (mod. 4) [resp. m=3 (mod. 4)].

PROPOSITION 4-1. Let f be an element of S.(M, %5 and p be a
prime. Put g=fIT!,,(0*). The Fourier coefficients of g at the cusp
corresponding to M, is given as follows.

(i) When p does not divide M,

ab i u) =¥ (p*u) + p e (u/p?)

00 (M N
b

(ii) Assuwme that p divides N. When p|N,,
a7 (u) = af"(p*w).

When ptN,,

all(y) =¢x (MJZ;A/p > po(pi2u)—1 a?“fﬂ(pu)

_J_p(lf——3)/2€p< Mld-’;';u/p >a§?“’ﬂ(u/p)

+p" a1 (u/p?) i o4,
2
=1'p “lez‘l(———ANQd‘“u/ 2 )a‘f“’ﬂ(pu)
P
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+p 7 po(p*|2u) — 1a P (u/p)
+p e u/p?) if pl4,

where 0((x)) means 1 or 0 according as the condition (x) is satisfied or
not.
(iii) Assume that p=2. Then for any posttive divisor N, of N,

0 ) = af"(du),

af") = (2 Jaitaw),

2+4V2

a000) = Lty )0 I0) + 20 )

+ 2(lc—4)/26[%]<—ZI—%—>G/%N1]<M/2)?

where 4,=(4, N,) (1=1, 2) and

o= T (T (225

Proor. We shall prove only (ii) in the case p/N, (cf. [5; Lemma 2}).
For 5 and [ e Z, put

o= b=l ) e (] )

Fix a and g satisfying (4-2). If B—M,j € Z7, there exists a u € Z such
that u=0 (mod. 4M,p~*) and (B—Mj)u=a+w,Jj (mod. p*). Thus

(4-5) gray=vrazia(1, o (2DR)),
p

where 7; is a suitable element of I'(M) and it satisfies

% it pid,
(—ANlu/(lez))

p

XV =
if  pld.

If B—M,j=pB;(B8; € Z;), there exists a u € Z such that u=0 (mod. 4},/p)
and uB;=a+wyJ (mod. p). Thus



Holomorphic cusp forms on quaternion unitary groups 565

(4-6) grax = Az (1, (2%@@))

where 7, is a suitable element of I'(M) and it satisflies

jl if pi4,
X (7]'): f .

4 (<pN1u]{)(4M)> it pld.
If g=M,j7 (mod. p*), then

(4-7) FALT =P AT 0%,

where 7; is a suitable element of I'(M) satisfying x.(v;,)=1. Using
(4-5)-(4-7), we obtain the required result easily. The remaining cases
are treated similarly. Q.E.D.

4-2, Let B be an indefinite guaternion algebra over Q, D its
discriminant, and © a maximal order of B. lLet G and G' have the
same meaning as in §1. For any positive divisor D, of D, we take a
unique two-sided ©O-ideal ¥ such that Ng,(A)=(D,). Let I'y be the
intersection of G§ and {<§_1 %)} We denote by &,(I'y), for a positive
integer [, the space of holomorphic function f on 9. such that
4-8) (1) fOLZ)=NUJ(, Z)Yf(Z) for all vely,

(i) flgl{Z )N(J(g, Z,))™" is bounded on GL.

Here Z, and J(g, Z) have the same meanings as in §1. Since G =
QiGo,GLU;, this space is identifled with &(0,, 1; U,) through
(4-9) f——Fp F(7Cu)= N, Z))"' f(E{Zy),

for VY e Gy, V(e GL and Vue Uy.
For each positive integer m we define Hecke operator T,(m) acting

on &,(I'y) by
(4-10) (TP Dy=m S NJ(a, 2)F(0(2)),

where Sm:{g:<f¥/ %)eGQI a, 0, BeU, TeU, y(g):m}.
Put

(4-11) M=4D|2, D,)=4N, 4=D,2, D), D=D,D,.
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We assume that D, is odd (so, N is also odd). For any positive divisor
N, of N, put N,N,=N and

)()

Ny = (10 TEN] ~L] ew( Aﬁ )

P(N,) =sgn(e)(—1)"¥?V Z, Ny (

(4-12) W@N) =|z](— 1) DT N,e, ”(

where 7 is 1 [resp. —2] if D, is odd [resp. even], 4=4.4, (4,|N,, 4,|Ny),
and n(N,) denotes the number of primes which divide N,. For a rational
number » such that udyM;'—r, =t Z, we define &x,(u/M,) by

wy (1 it dy =1,
(1% 5”1<E>:{(~1)t if dy =2

PROPOSITION 4-2. Assume that D, is odd. Let ] be an even integer

(=6), f be an element of S, (M, %,) with Foumw expansion tn (4-4).
. For each ¢ (U)*, put

C=5yrt B0l (ML),
'r>_0

dpy Myr?

M=H My djll
ki

where m= —4(2D.£)? and + is defined in (4-12). Then
J(f)(Z)= Z _Cr@e[Tr(c2)]

«/1ef>«

belongs to S,(I'y).

Note that G' is isogenous to SO(2,3). In [14], T. Oda has con-
structed holomorphic cusp forms on SO(2, ¢), and when ¢ is even, their
Fourier coeflicients are calculated by using so-called Zagier identity
([14; Corollary of Theorem 5]). When ¢ is odd, similar formula holds
(this is mentioned in [15; p. 336]). Though the value (M) is not

calculated explicitly in [14], we can evaluate it in our case, and our
assertion follows.

PROPOSITION 4-3. Assume that T3, , (0O f=w,f and put F=J(f).
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(i) If p does mot divide M, then

T F=(w,+p' " +p")F,
(@)= TP ) F={p'(p+ D, +p"~*+2p" 7} F.

(ii) If p is an odd prime dividing D, or if p=2 and D, is even,
then

Tp)F={w,+p' "+ p"“w;*} F,
where A, means 2 or 1 according as p|D, or p|D,.

From Proposition 4-1, we know that ®,=0 if p|M. We can prove
this proposition by direct calculation using Proposition 4-1, Proposition
4-2 and the definition of + (cf. formulae (18)-(16) in [3]). So we omit
the proof.

REMARK 4-1. Assume that p is an odd prime dividing D, and f
belongs to S, (M/p, ¥s), which is a subspace of S, (M, y,. If

i (0O =y f, then
T2 (f)=(w,+ 0" )J(f).

REMARK 4-2. Assume that pld4 and f belong to S, _.(M/D, X.)-
Then ¢(z)=f(pz) is an element of S,,_,(M, ¥4 (see [18]). We can easily
check that J(g)=0.
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