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Links in some simple flows

By Kazuhiro SASANO

(Communicated by I. Tamura)

In recent years, several persons are interested in links or knots of closed
orbits of flows. J. Birman and R. Williams [BW] studied knots and links
of closed orbits of Smale flows on S° and J. Franks [F2] calculated the
Alexander polynomials of links of closed orbits of non-singular Smale flows
on S®% The author [S] obtained all of the figures of links of some non-
singular Morse-Smale flows on S® Especially links of closed orbits of non-
singular Morse-Smale flows with 3 closed orbits are determined.

In this paper we use methods in [S] to give all of the figures of links
of all closed orbits of non-singular Morse-Smale flows on S*® with 4 or 5
closed orbits. From our results, we conclude that there are different non-
singular Morse-Smale flows whose closed orbits make the same link, that
is, the correspondence from the equivalence classes of non-singular Morse-
Smale flows to the isomorphism classes of links of closed orbits is not
injective.

In §1, we recall some definitions and known results, and state our main
theorems; Theorem A and Theorem B, and two Corollaries. We prove
Theorem A in §2 and Theorem B in §3. Corollaries are proved in § 4.

After our work had done, M. Wada [W] obtained an algorithm to con-
struct links of closed orbits of non-singular Morse-Smale flows on S2.

The author would like to express his heartly thanks to Professor Itiro
Tamura for valuable suggestions and encouragement. He also thanks to
the referee for pointing out flaws and errors.

§1. Preliminaries and main results.

In this section we recall some definitions and known results, and state
our main theorems and corollaries.

For the theory of dynamical systems with which we deal in this paper,
see [F'3], [M]. [R]is a useful textbook for the theory of low dimensional
manifolds.

In this paper we deal with only 3-dimensional manifolds. Thus we
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assume that a manifold is 3-dimensional unless otherwise stated.

A simple closed curve on the boundary of a solid torus is called a
meridian if it is not homotopic to a point in the boundary and it bounds
a digk in the solid torus. A simple closed curve on the boundary of a solid
torus is called a longitude if it generates the fundamental group of the
golid torus. Even though a solid torus is embedded in S° we do not
require that a longitude is homologous to zero in the complement of the
solid torus in the sphere. We say that a knot K is a (z, y)-cable of a knot
L if K is a simple closed curve on the boundary of a small tubular neigh-
borhood of L which wraps the neighborhood in the longitudinal direction «
times and in the meridinal direction y times, where x and y are coprime
integers. In general, =0 is not permitted (see [R] for example). But we
permit z=0 except for z=y=0. A link is called an iferated torus link
if it is obtained from a trivial link by iterating finitely many times to
add (z,y)-cables of a component of the link previously constructed.

A non-singular Morse-Smale flow (or an NMS flow for short) on a
manifold M is a flow which satisfies the following conditions:

(1) There are no singular points, and the non-wandering set consists
of a finite number of closed orbits.

(2) The Poincaré map for each closed orbit is hyperbolic.

(8) If ¢ and ¢’ are closed orbits, then the stable manifold of ¢ and the
unstable manifold of ¢’ intersect transversely.

The dimension of the unstable bundle of a closed orbit ¢ is called the
index of e. A closed orbit is called wuntwisted if its unstable bundle is
orientable. Otherwise it is called twisted. Let N(2) (resp. N(0)) denote the
number of closed orbits of index 2 (resp. 0), and N(u) (resp. N(t)) be the
number of untwisted (resp. twisted) closed orbits of index 1.

A link of all closed orbits of an NMS flow is called a Morse-Smale
link. We say that Morse-Smale links L, and L, are isomorphic if they
are isomorphic as links and the corresponding components have the same
index and if a component of L, is twisted (resp. untwisted) then the cor-
responding component of L, is also twisted (resp. untwisted).

Associated to an NMS flow, we consider a round handle decomposition
for M.

DEFINITION 1.1. (2) Let X, Y be manifolds. X is obtained from Y
by attaching a round k-handle if there are disk bundles Ef and EZ 7% over
S! where the superscript denotes the dimension of the fiber, and an
embedding 8 : 6EIX EZ*—3Y such that X:Y%}(ES%BEEL"*). The total

space of EISEI™ is called a round k-handle, and the image of the zero-
section of E*2FEI* is called the core of the round handle.
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(b) A round handle decomposition for X is a fltration
R X, cXcXc.-cX,=X,

where X, is a disjoint union of round 0-handles and each X; is obtained
from X;., by attaching a round handle R,. Then we use the notation
Xy Ry~ Rye— -+ — R, and X,=(Xy R« Ry— -+ «R,) for I<k.

D. Asimov and J. Morgan associated an NMS flow with a round handle
decomposition as follows.

PROPOSITION 1.2 [A], [M]. If a manifold M has an NMS flow, then
M has a round handle decomposition whose cores are all of the closed
orbits of the flow. Conversely, if M has a round handle decomposition,
then M has an NMS flow whose closed orbits are all of the cores of round
handles.

REMARKS. (a) For a round handle decomposition R: X,CX,C --- C X,
=X, any diffeomorphism F' of X induces a new round handle decomposition
FX)cF(X)C --- CF(Xy)=X for X. We denote this round handle decom-
position by F[R].

() If Xp~R,— - —R,, then we may regard (R, R, ,\J---UR, )
Ry =Ry Ry —Ryy— -+ <Ry, where R, -+, R, are round 2-handles
and Ry, -+, R, are round O0-handles such that Xo=Ro VIR, ,, by
reversing the direction of the flow associated to the round handle decom-
position.

A round handle is called wuntwisted if its core is an untwisted closed
orbit. Otherwise it is called twisted. We say that round handle decom-
positions R, and R, for X are R-equivalent if there exists a diffeomorphism
F of X such that F[R,]=R..

In the following, we consider NMS flows on S®. In this situation all
round 2-handles and all round 0-handles are untwisted, and a round 1-handle
H is of the form H=FE!DEL and the part oEix EL of 617 consists of two
annuli if H is untwisted, or of an annulus if H is twisted. Each annulus
is mapped to a small tubular neighborhood of a circle on the boundary
surface of a manifold. Such a circle is called the attaching cirele of H.

Unless otherwise stated, u, h, s respectively denotes a closed orbit of
index 2, 1, 0. We use capital letters U, H, S to denote the round handles
whose cores are u, h, s respectively. If we have several closed orbits of
the same index (or, round k-handles for same k), we will distinguish them
by adding a subscript.

We recall some results by J. Franks and the author.

PROPOSITION 1.3 [F1]. Any NMS flow on S°® satisfies the following
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inequalities on the nwmber of closed orbits.
(a) NO)=1 and N(2)=1.
) Nuw)=N0)—1 and Nu)=N(@2)—1.

Let an NMS flow on S® be given.

LEMMA 1.4 [S]. Let U be a solid torus in S°® such that the flow is
outwardly transverse to the boundary oU of U. Let H be an untwisted
round 1-handle with core h, which 1s attached to U. Then one of the
following holds.

(A) The boundary of the resulting manifold (U—H) is the disjoint
union of two tori.

(B) (U<H) is a solid torus, in which U and h are put trovially.

LEMMA 1.5 [S]. Let U be as in Lemma 1.4. Let H be a twisted round
1-handle with core h, which s attached to U. Let S=S°—(U«H). Then
(U—H) is diffeomorphic to one of the following.

(A) A solid torus.

(B) The exterior of a (2, odd)-torus knot. In this case S s the tubular
neighborhood of the knot, and U is an wunknotted solid torus in S2. (See
Figure 1.1.)

S

Figure 1.1.
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THEOREM 1.6 [S]. Suppose that a non-singular Morse-Smale flow on
S? has o single closed orbit hy of index 2, and a single closed orbit h,.,
of wndex 0, and n closed orbits hi, h,, s b, of index 1.

(A) If all of the closed orbits of index 1 are untwisted, then the link
consisting of all closed orbits is trivial.

(B) If all of the closed orbits of index 1 are twisted, then by re-
ordering hy, by, -+~ , h, appropriotely, we Jind B (0SEk<n) such that

(@) hy and hy., make the Hopf link,

(o)  for any i<k, h; is @ (2, odd)-cable of hiyy
and

() for any 7>k, h;.y is a (2, 0dd)-cable of h.

Before we state our main theorems, we explain the notation.

Notation. In List A and List B, 2 (resp. u, ¢, 0) represents a closed
orbit of index 2 (resp. an untwisted closed orbit of index 1, a twisted closed
orbit of index 1, a closed orbit of index 0).

THEOREM A. The collection of all Morse-Smale links with 4 compo-
nents on S® coincides with List A.

THEOREM B. The collection of all Morse-Smale links with 5 compo-
nents on S® coincides with List B.

REMARK. Some links appear in List B repeatedly. But we allow this
duplication to make the list simple.

From our main results, we conclude the following corollaries :

COROLLARY C. Fwven if Morse-Smale links are isomorphic, round
handle decompositions associated to them are not necessarily R-equivalent.

COROLLARY D. Any Morse-Smale link with at most 5 components s
an iterated torus link.

REMARK. There exists a Morse-Smale link with 6 components on S?
which is not an iterated torus link.
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Last A.
[1]
L L, L,
L. / /
o) O O
where
L. L. L, L.
(a) 2 2 % 0
(b) 0 0 [ 2
(e) 2 [ 0 4
(D 0 i 2 t
[2]
Ly
I
L.
LS .:\:I\;
where L, and L, are parallel (z,y)-cables of L, and
L L L L s | v
@ 9 . 9 w4 : 0  arbitrary
\ (b) 2 ‘,M 12 0 2 arbitrary
() 0 1 0 w 2 arbitrary
@ 0 | u 2 0 arbitrary




Links in some simple flows

253
[3]

p. L), and

where L, (resp. L,) is a (2, odd)-cable of L, (res

L1 Lz
2 t

[4] o

i
i
l .
|
I

where" L; is a (2, odd)-cable of L., (1=1,2), and

L Ly, ' L L,

(8 2 ¢ t 0

(b) 0 t t 2
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L

Ly L,
L 4
O

o2

where L, is a (2, 0dd)-cable of L, and

: L, l L, | L L Ly ;
NC N N S A N U
w0 | e w o2 |
[6]
Ll Lz L3 L4
where
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List B.
{1]
Ly L, L, L, Ls
where O ’
L L | L | L | L | L
@ | 2 | 2 | w | w | 0
® 2 ow ow ot b o0
© | 2 o v w0 |
@ o ol w | w | o2 |
(2] -
L,
-
-}
where L, is a (x, y)-cable of L, and
L L Lo L L @ y
L@ ot 2 fuﬁﬂi w ;0 o 2  odd
T® ot 0w w2z 2 o
g @ 2 0 . 2 . u , u o 1
PoAd) 2 } t 47(7)”” % 3 % 0 1
= B R T
) 0 2 0 o 0 1
@ 0 ¢t 2 o 1
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where L, and L; are parallel (x,y)-cables of L, and

L, L L L L

(a) 2 % 0 2 U : arbitrary
o) 2 2 % % 0 : arbitrary
(e) 0 . u 2 U arbitrary
(d) 0 | 0 U % 2 arbitrary
(e) 0 2 0w 2 arbitrary
) 2 0 % % 0 arbitrary
[4]
L,
L,
L, L;
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where L, is a (%, y)-cable of L, and

Lo | L - L L. L . %y
@ ot | o2 o 2w 2 odd
® ¢ 0 2 - 2 % 2  odd
© 2 ( w 0 . 2 | wu , adbitrary
@ .2 w2 0 ' w | oaritrary
@ . t ' 0o 2 u 2 odd
@t ¢ . 0 2 . w © 2  odd
@ ¢t 2t 0 w ' 2  odd
Cm ot !t 2 0 w o2 odd
@ -t i 0 2 0  w , 2  odd
T f 2 0 . 0 | w i 2z  odd |
S o w2 0w | arbitrary
}lar 0 5 U 7 0 4_2' vf % arbitrary
[5]
LS
L1
N/
L, L

R

where L., is a (2, odd)-cable of L, for =3, 4, and

L, L, Ls L, | Ls

@ | 2  w t t 0

(b):‘Oru t't‘z

257
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[6]

Kazuhiro SAsANO

ao

where L, is a (x, y)-cable of L, and

Ly is a (z, w)-cable of L., and

Iy | Lo L Ly E L 3 ¥y o 2 ‘ wo

@ 2 o0 |2 0 ! 0 1 o | 1
| ot o2 | ot o | w 0 | 1 o 1
@ | o | 2 t 2 | u 0 1 2 odd |
@ 1t o ¢ 2 | w 0 | 1 2 | odd |
© 'E £ 2 ¢ 0 w 0 | 1 2 | odd |
® | 2 | o ¢ 0 u o |1 2 odd |
@ ot o t o2 1 u 2 |odd 2  odd J
| (h) 0 | 2 ¢ 2 i ou 0 1 0 1|
w2 oot ot o u o | 1 o 1

[ 7]
L
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where L; and L. are parallel (x, y)-cables of L, and L; is a (2, odd)-cable of
L, and

"Ly L. L, | L |

| Lo o= |
i 7?3377[»“277“4;4M‘ 2 :Wt 0 ! - arbitrary o
C® w0 2 |t 2 | amitray
:~ 6 - ‘5 o 7;17 0 %w* t‘k R‘ 2 } arbitrary
T&)A w2 T. i xt~¥l 0 | arbitrary
© @ u 20 f : 12 i arbitrary
® | w 0 1 2 ¢ | 0 | oarbitrary |

| L Ly Ly | L | L
——— ! o I
L@ | 2 t t t |0
ORI t t t | o2
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L,

where L, and L. are parallel (x, y)-cables of L; and L is a (2, odd)-cable of
L, and

\ L, | L | L, L, L 5 v
i (a) :W'-2“~; w i 2 t 0 - arbitrary
'! by ;: 70 I L2 2 t 2 arbitrary
) T 2 1w :—O.Wfﬁvtv 2 arbitrary
ivaiiigﬁil w 0 t 2 - arbitrary
!ﬂ’?g)_ - 2v o u ~~~0— B t 0 m*arbitrary
!hr(fé) 0 % 2 . 0 arbitrary

[10]
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where L, and L, are parallel («, y)-cables of L, and L; is a (2, odd)-cable of
Ly, and

L | L L | Lo | Li s | oy |

! Ja) 2 2 . % ! t l 0 i\ arbitrary t

| (b)ﬁ o0 2 J % E t ‘} 2 ! arbitrary !

(e) - 0 0 ‘H T;i t ! 2 : arbitrary "E
‘V(;i)ﬂ 7 2 0 “»uF\ t { 0 ! arbitrary

[11]

where L; is a (2, odd)-cable of L;; (:=3,4,5), and

L1 L2 L3 L4 L5

@ 2 ¢ £ :
(b) 0 t tr t
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§2. Proof of Theorem A.

In this section we prove Theorem A. By Proposition 1.3, we have four
cases as follows:

¢ N(0)=2, N(u)=N(2)=1, or
NO)=Nu)=1, N@2)=2.
(In this case, N(t)=0.)
(II) NO)=N(2)=1, N(u)=0, N@t)=2.
III) NO0)=N@@)=1, Nu)=1, N{t)=1.
(IV) N@O)=N(2)=1, Nu)=2, N#)=0.

In case (I), we consider the case N(0)=2, N(u)=N(2)=1. The other
case is reduced to this case by reversing the flow-direction. We have four
closed orbits u;, us, h, s and four round handles U, U, H, S. To make S*
by attaching these round handles, H should be attached to both of U, and
U.. We denote the attaching circle of H on dU; by K;. Let [K]=a,[m,]
+b,[1;] in H(dU;; Z), where m; (resp. [;} is the meridian (resp. a longitude)
of U;, We may assume b;20, and —b;/2<a;<b,/2 if b,>0 by choosing a
longitude appropriately.

If [K,]=[K.]=0, then a((U,\JU,)<—H) has two connected components. It
is impossible to attach S to it so that S*=((U,\JU,)«H<«S).

Assume that one of [K;J's, say [Ki], is trivial, and the other is non-
trivial. Then H/((U\V Uy« H); Z)=ZPZ}b,. Since (U MNUY«—H)=8*—8S is
a knot exterior in S%, H(((U,VU,)<—H);Z)=Z. Thus b,=1, and (U,\MNU,)
«—H) is a solid torus. (See Figure 2.1.). Thus we obtain List A™[1%(a). By
reversing the flow-direction, we obtain List A [1](b).

Figure 2.1.

Assume that [K,]50 and [K.]%0. Then we have five subcases:
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(i) Ifb,=0, then a;==*1. Hence H((U,VU,)—H); Zye=ZB2lb,. Thus
b;=1 and a,=0. Thus we obtain List A [2](a) with z=0, y=1. (See
Figure 2.2.)

(i) If 6,=0, then we obtain List A [2](a) with =0, y=1.

(iii) If b,=1, then a,=0. Thus (U, VU,)—H) is a solid torus as in
Figure 2.3, in which w, and h are (x,y)-cables of u,. (x,y are arbitrary
coprime integers.) Hence we obtain List A [2](a).

(iv) If b,=1, then we also obtain List A [2](a) as in (iii).

(v) Assume b,>1 and b,>1. Then we have

(U Uy H)) =<y, us 5 ult=ul2)

where we use the same symbols as those of closed orbits to denote elements
of the fundamental group represented by those closed orbits. 7, (0((U,\V Uy)
«H)) is generated by ui®t-u%z and ul1, where 2, is the integer such that
0<%;<b; and a;z,=—1 (mod b,). Let ¢ : 3((U,\JU,)«H)—35S be the inverse
of the attaching map of S to ((U,\J Uy« H). The map ¢y induced from ¢
on the fundamental groups is represented as follows:

(ult)y=mel{ and
Guur ™t uizy=mill,
where m, (resp. [;) is the meridian (resp. a longitude) of S, and ad—fr=
+1. Then we have
(U Uy~ HeS) = Cuty, 5 uit=ule, uds(us®-uls) F=1)
Since (U, Y U,)«~H—S)=S? this group should be trivial. Hence, by an
argument similar to that in the proof of Lemma 2.2 in [S], 18l=1. Thus,

by changing a longitude appropriately, we may assume that & (ulny=I,.
This means tnat H is attached to S along two closed curves on 9S homo-

Figure 2.2,
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topic to the longitude of S. Thus (S—H)=S8'xS'xI, where I is a closed
interval. (See Figure 24.) A connected component of 0(S«—H) bounds a
solid torus U, or U, say U, Thus ((Se-H)«~U,) is also a solid torus,
whose center circle is u, and both of s and % are parallel (z, y)-cables of
#; in the solid torus. Hence we obtain List A [2] (D).

By reversing the flow-direction, we obtain List A [2] (e) (d).

In case (II), we apply Theorem 1.6 and obtain List A [3], [41.

In case (III), we have u, s, hy, hy and U, S, H, H, We may assume
that U« H,«~H,~S. We consider the case that H, is twisted. The other
case is reduced to this case by reversing the flow-direction. By Lemma
1.5, (U<~H,) is diffeomorphic to a solid torus or the exterior of a (2, odd)-
torus knot. In both cases, o(U«H,) is a torus. Thus HS—H,) is also a
torus. By Lemma 14, this implies that (S—H,) is also a solid torus.
Gluing (U« H,) and (S—H,), we obtain List A [1](c), [5](a). By reversing
the flow-direction, we obtain List A [11(d), [5] (b).

In case (IV), we obtain List A [6], by Theorem 1.6.

Conversely, any link in List A is a set of all closed orbits of an NMS
flow on S®.

The proof of Theorem A is completed. il

§3. Proof of Theorem B.

In this section we prove Theorem B. By Proposition 1.3, we have
three cases as follows:

(I) N0)=2, N(2)=2, N(u)=1.

(II) N@O)=2, N@2)=1, Nu)=3 (j=1,2), or
N(O)=1, N@2)=2, Nu)=3j (=1, 2).

(IID) N@©0)=1, N@2)=1, Nu)=3 (j=1,2,3).

In case (I), we have close orbits u,, s, h, s;, s, and round handles U,,
U, H, S, S, corresponding to them. To make S® from these round handles,
H should be attached to both of U, and U, Let K; be the attaching circle
of Hto U;. ((U,\VU,)« H) is the exterior of a 2-component link {s1, 8o}, and
thus 8((U,\VU,)«<H) should have two connected components. This implies
that both K, and K, are trivial on 9(U,JU,. Hence (U JU)«—H)=
(S'>xDH5(S*< D% in S*. A 2-sphere C, which is used to make the connected
sum, bounds 3-balls on both sides in S® and separates the houndary com-
ponents of (U, VU,)—H). Let D, D, be solid tori in S® obtained from
(U,\VU.)+H) by cutting along C and pasting 3-balls. D, and one of S,
and S, make S°. Thus they are standard solid toriin S°. The same holds
for D,. Consequently the round handles are put in S* as in Fizure 8.1, and
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Figure 3.1.

we obtain List B [6](a).

In case (II), we consider the case N(0)=1, N(2)=2. By reversing the
flow-direction, the other case is similar. We have closed orbits u,, us, hy,
hs, s and round handles U,, U, H;, H, S and we may assume that (U, \VU,)
—H«—H,~S. We have two subcases:

(Subcase 1. N(u)=1.) Assume first that H, is untwisted. Then H,
should be attached to both U, and U, Let K, be the attaching circle of
H, to U,, and let [K;]=a{m,]+b,l;] in H(3U,; Z) as above. Since (S« H;)
is a solid torus or the exterior of a knot by Lemma 1.5, H(((U,\V Uy)«H)) ; Z)
~7 Thus the same argument as in case (I) of §2 implies that either one
of K, and K, is trivial and the other is non-trivial, or both X, and K, are
non-trivial. In the former case we can prove that the non-trivial attaching
circle is a longitude ; hence ((U,\WU,)«—H,) is a solid torus as in Figure 2.1.
We may regard this solid torus as a round 0-handle. Consequently this
case reduces to Theorem 1.6 with 3 closed orbits, and we obtain List B
[41(a) (b). In the latter case we have

(i) 5=1 or b,=1, or
(i) B >1 and b, >1.

In case (i), (U, JU)«—H,) is a solid torus and we obtain List B [7](a),
[9](a). In case (ii), since H((U,\JU)«H,); Z)=Z, b, and b, are coprime
integers, and =,((U,\V U)—H))=<u,, uq; uirt=u32>. Hence (U Uy«—H,) is
the exterior of the (b, b.)-torus knot. (See [R] p.54.) Thus (S« H,) is a solid
torus. Consequently this case reduces to (I) of §2, and we obtain List B
{10] (a).

Secondly we assume that H. is untwisted. Then we may assume that



Links in some simple flows 267

U«H,. If (U+H) is a solid torus then this case reduces to (I) of §2,
and we obtain List B [4](a), [6](c), [7](D) (e), [10] (b). If (U<H,)is not a
solid torus then S*— (U« H,)=((S+-H,)«U,) is a solid torus. To investigate
how S, H,, U, are located in a solid torus, we consider that the solid torus
is a standard solid torus in S°. Then the complement of the solid torus is
regarded as a round 0-handle. We obtain the link of s, hs, Uy in a solid
torus by deleting L, or L, in List A [1](a), or L, in List A [21(a), (b), or
Ly in List A [2](), or I, in List A [2](a) when xz=1 or y=1. By
embedding the solid torus as g tubular neighborhood of a (2, 0dd)-torus
knot, we obtain List B [4](h), [6] (h), [97(b) (c).

(Subcase 2. N(u)=2) Assume first that H, is attached to one of U,
and U, say U,. To obtain S* by gluing (U,—H,), U, H,, and S, o(U,«—H,))
should be connected. Hence (U,—H,) is a solid torus by Lemma 1.4, and
this case reduces to (I) of $2. We obtain List B [1](a), [2] (c), [3](a) (e),
[4](c). Assume that H, is attached to both of U, and U, Then
o((U,\JU,)«H)) should be connected. Hence (S« H,) should be connected.
Thus (S« H,) is a solid torus by Lemma 1.4, and this case also reduces to
(I) of §2. We obtain List B [1](a), [3] (b), [4](d).

In case (III), we have five closed orbits u, h,, hs, hs, s and round handles
U, H,, H,, H,, S corresponding to them respectively. By reordering k., ks,
hs if necessary, we may assume that UeH,« HyeH,«S.

Case 1. If N(u)=0, weobtain List B[8](a) (b), [11](a) (b) by Theorem 1.6.
Case 2. If N(u)=1, we have three subcases:

(Subcase 1. H, is untwisted.) By Lemma 1.4, either (U« H,) is a solid
torus or o(U«H,) has two connected components. In the latter case we
can choose a simple closed curve in S® which intersects each component of
d(U«—H,) at one point: a contradiction. Thus (U+H,) is a solid torus, in
which % and h, are put trivially. Now this case reduces to D) in §2.
Consequently we obtain List B [4](e) (f), [5] (a).

(Subcase 2. H, is untwisted.) If either (U—H,) or (SH,) is a solid
torus then this case is reduced to (III) in §2, and we obtain List B [6]
(d) (e) (g). Suppose that neither (U—H,) nor (SeH,) is a solid torus. By
Lemma 1.5, (U~H,)) is the exterior of a (2, odd)-torus knot. Thus §' =
S*—(U«H,)=((Se Hy)«H,) is a solid torus. We consider how H; is embedded
in the solid torus S’. Let K, and K, be the attaching circles of H, on
(U« H,)=3S". Then we can prove easily that one of K, and K,, say K,
is trivial in 45" and the other is non-trivial. Since K, and K, are homotopic
in H,CS’ and K;=0 in S’, K, is the meridian of S’. Thus S'—H, is a
cube with a (knotted) hole. On the other hand, by Lemma 1.5, S'—H,=
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Figure 3.2.

(S« H,) is the exterior of a (2, odd)-torus knot. Thus F is embedded in
S’ as in Figure 3.2. Consequently we obtain List B 161 (b).

(Subcase 3. H, is untwisted.) We can apply subcase 1 by reversing
the flow-direction, and we get List B [4](2) (h), [5](b).

Case 3. Assume that N(u)=2.

If H, is twisted then 8(U+ H,) is connected, and thus o((S—H,)«—H,) is
connected. Hence, if 3(S«+H;) is not connected, we can choose a simple
closed curve and & torus which intersect at one point; a contradiction.
Thus 6(S+H,) is connected. That is, (S« H,) is a solid torus, and (S Hy—H,)



Links in some simple flows 269

is also a solid torus in which s, ks h, are put trivially. Hence this is
reduced to Theorem 1.6, and we obtain List B [2] (a) (h).

If H, is twisted, then both of (U« H,) and (S—H;) are solid tori. Hence
this is reduced to Theorem 1.6, and we obtain List B 1] (b).

If H; is twisted, then this case is the case that H, is twisted with
the flow-direction reversed. Hence we obtain List B [2](b) (g).

Case 4. If N(u)=3, then we obtain List B [1](c) by Theorem 1.6.

The rest of List B is obtained by reversing the flow-direction in all
of the cases above.

Conversely any link in List B is the link of closed orbits of an NMS
flow.

The proof of Theorem B is completed. !

§4. Proof of corollaries.
In this section we prove corollaries.

PROOF OF COROLLARY C. We give two round handle decompositions,
each of which consists of a round 0-handle, 2 twisted round 1-handles, an
untwisted round 1-handle and a round 2-handle. Consider two round handle
decompositions consisting of 4 round handles corresponding to List A [3].
In one of which, let L, be a (2, p)-cable of L, and, in the other, let L, be
a (2, py)-cable of L;, where p, and p, are different odd integers. By embedding
a solid torus consisting of a round 2-handle and an untwisted round 1-
handle as (B) of Lemma 1.4 to the tubular neighborhood of L, in each of
the round handle decompositions, we obtain desired two round handle
decompositions, which are not R-equivalent, but the links corresponding to
which are isomorphic. This implies Corollary C.

C
PROOF OF COROLLARY D. Immediate from List A and List B. ]
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