J. Fac. Sci. Univ. TokyoSect. IA, Math.31 (1984), 283-286

Existence of good transversal slices to nilpotent orbits in good characteristic

By N. SPALTENSTEIN

(Communicated by N. Iwahori)

Let G be a connected reductive algebraic group defined over an algebraically closed field k and let \mathfrak{g} be its Lie algebra. Recall that any 1-parameter subgroup $\lambda: G_m \to G$ gives a decomposition $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i^{\lambda}$, where $\mathfrak{g}_i^{\lambda} = \{x \in \mathfrak{g} \mid \operatorname{Ad}(\lambda(t))x = t^i x \text{ for all } t \in G_m\}$.

THEOREM. Assume either that G is simple, not of type A, and that the characteristic is good, or that $G=GL_n$. Let $x \in \mathfrak{g}$ be nilpotent and let C be the G-orbit of x in \mathfrak{g} . Then there exists a 1-parameter subgroup $\lambda: G_m \rightarrow G$ such that:

- (I) $x \in \mathfrak{g}_2^{\lambda}$.
- (II) $T_x(C) \supset \mathfrak{g}_i^{\lambda} \text{ for all } i > 0.$

REMARKS. 1) A consequence of the hypothesis on G is that the morphism $G \rightarrow C$, $g \mapsto \operatorname{Ad}(g)x$ is separable [3].

- 2) When char(k) is sufficiently large (or 0), the theorem of Jacobson-Morozov gives immediately the required λ .
- 3) Condition (II) is equivalent to the existence of a subspace $S \subset \mathfrak{g}$ having the following properties:
- (II₁) $g = S \oplus T_x(C)$.
- (II₂) S is G_m -stable for the action given by Ad $\circ\lambda$.
- (II₃) $S \subset \bigoplus_{i \leq 0} \mathfrak{g}_i^{\lambda}$.

If S has these properties, and if G satisfies the hypothesis of the theorem, then the morphism $G \times S \to \mathfrak{g}$, $(g,s) \mapsto \mathrm{Ad}(g)(x+s)$ is smooth in a neighborhood of (1,0). In view of the homogeneity argument of [5,p.111], this means that S+x is a transversal slice to C at x in the sense of [5,p.60].

We review first some results on the classification of nilpotent orbits. They are valid for arbitrary connected reductive groups in good characteristic (Bala-Carter [1], Pommerening [2]).

A nilpotent element $x \in \mathfrak{g}$ is distinguished if the connected centre of G is a maximal torus of $C_G(x)$ (this differs slightly from [1]).

Let P be a parabolic subgroup of G. Choose a Borel subgroup $B \subset P$ and a maximal torus $T \subset B$. Let Φ be the root system of G with respect to T, let Δ be the basis of Φ corresponding to B and let $\Phi_P \subset \Phi$ be the set of roots of T in the Lie algebra of P. Define a 1-parameter subgroup $\lambda : G_m \to G' \cap T$, where G' is the derived group of G, by

$$\langle \lambda, \alpha \rangle = \left\{ egin{array}{ll} 0 & ext{if} & lpha \in \mathcal{A}, & -lpha \in \Phi_P \ 2 & ext{if} & lpha \in \mathcal{A}, & -lpha \in \Phi_P \ . \end{array}
ight.$$

If U is the unipotent radical of P and M is the Levi factor which contains T, then $\mathfrak{u} = \bigoplus_{i>0} \mathfrak{g}_i^2 = \bigoplus_{i>0} \mathfrak{g}_{2i}^2$ and $\mathfrak{m} = \mathfrak{g}_0^2$ (we shall always use the corresponding gothic letter to denote the Lie algebra of an algebraic group). The parabolic subgroup P is distinguished if $\dim M \cap G' = \dim \mathfrak{g}_2^2$.

The main result of the classification of nilpotent orbits in good characteristic is that for any distinguished nilpotent orbit C in \mathfrak{g} , there exists a distinguished parabolic subgroup P of G such that C contains a dense open subset of \mathfrak{u} , where U is the unipotent radical of P. Moreover P is unique up to conjugation.

It was shown by Richardson [4] that in such a situation P acts transitively on $C \cap \mathfrak{u}$. If λ and M are chosen as above and $x \in C \cap \mathfrak{u}$, the U-orbit of x is dense in $x + \Big(\bigoplus_{i \geq 2} g_{2i}^{\lambda}\Big)$, for dimension reasons. As U is unipotent it is also closed, hence equal to $x + \Big(\bigoplus_{i \geq 2} g_{2i}^{\lambda}\Big)$. In particular C meets g_2^{λ} . If $x \in C \cap g_2^{\lambda}$, it is easily shown that λ , viewed as a 1-parameter subgroup in G, is unique up to conjugation by $C_0^{\alpha}(x)$.

If the nilpotent element x of \mathfrak{g} is not distinguished, let S be a maximal torus of $C_G(x)$ and let $H=C_G(S)$. Then x is distinguished in \mathfrak{h} , and we get as above a 1-parameter subgroup $\lambda: \mathbf{G}_m \to H' \subset G$ (with $x \in \mathfrak{h}_2^{\lambda} \subset \mathfrak{g}_2^{\lambda}$), where H' is the derived group of H. If λ is viewed as a 1-parameter subgroup of G, it is unique up to conjugation by $C_G^0(x)$ and λ determines the orbit of x.

PROOF OF THE THEOREM. Let $x \in \mathfrak{g}$ be nilpotent and choose λ as above. Let G_Z be a split reductive group scheme over Z which gives G by extension of scalars. Let T_Z be a maximal torus of G_Z . We can assume that λ comes from a 1-parameter subgroup $\lambda_Z: (G_m)_Z \to T_Z$. We get also a Lie algebra \mathfrak{g}_Z over Z, with a grading $\mathfrak{g}_Z = \bigoplus_{i \in Z} (\mathfrak{g}_Z)_i^{\lambda}$, such that $\mathfrak{g} = \mathfrak{g}_Z \otimes k$ and $\mathfrak{g}_i^{\lambda} = (\mathfrak{g}_Z)_i^{\lambda} \otimes k$. If A is any commutative ring, let $\mathfrak{g}_A = \mathfrak{g}_Z \otimes A$, $(\mathfrak{g}_A)_i^{\lambda} = (\mathfrak{g}_Z)_i^{\lambda} \otimes A$.

By extension of scalars from Z to A we get also a group scheme G_A and a one parameter subgroup λ_A . If B is an A-algebra and $y_A \in \mathfrak{g}_A$, let $y_B = y_A \otimes 1_B \in \mathfrak{g}_B$.

Let now K be the algebraic closure of Q in C, and let A be a valuation ring of K with maximal ideal m and residual characteristic equal to $\mathrm{char}(k)$. We identify A/m with a subfield of k.

We can certainly find an element $x_A \in (\mathfrak{g}_A)_2^{\lambda}$ such that

- i) x_c lies in the orbit of g_c corresponding to λ_c ;
- ii) x_k lies in the orbit of $g_k = g$ corresponding to $\lambda_k = \lambda$.

We can clearly replace x by x_k . We have:

(1)
$$\dim_{k}[x, \mathfrak{g}] = \dim_{k}[x_{k}, \mathfrak{g}_{k}] \leq \operatorname{rank}_{k}[x_{k}, \mathfrak{g}_{k}] = \dim_{c}[x_{c}, \mathfrak{g}_{c}].$$

Since the Lie algebra of $C_{G_k}(x_k)$ (resp. $C_{G_C}(x_C)$) is $\mathfrak{c}_{g_k}(x_k)$ (resp. $\mathfrak{c}_{g_C}(x_C)$) (see Remark 1), we have therefore

(2)
$$\dim C_{G_k}(x_k) \ge \dim C_{G_k}(x_k).$$

We shall show that we have actually equality. Assuming this, we get also equality in (1). Using row and column operations, we can find a pair of basis of \mathfrak{g}_A with respect to which $\mathrm{ad}(x_A)$ has a matrix of the form $\begin{pmatrix} I & 0 \\ 0 & M \end{pmatrix}$, where I is an identity matrix and all the coefficients of M are in \mathfrak{m} . As we have equality in (1), we must have M=0, and $[x_A,\mathfrak{g}_A]$ is a direct factor of \mathfrak{g}_A . We know already by the Jacobson-Morozov theorem that $(\mathfrak{g}_c)_i^2 \subset [x_c,\mathfrak{g}_c]$ for every i>0. It follows that $(\mathfrak{g}_A)_i^2 \subset [x_A,\mathfrak{g}_A]$, for i>0, and therefore $(\mathfrak{g}_k)_i^2 \subset [x_k,\mathfrak{g}_k]$ for i>0, as desired.

It remains to check that we have equality in (2). Let N be the number of positive roots of G. If q is a prime-power, there are exactly q^{2N} nilpotent elements in \mathfrak{g}_{F_q} [7]. Suppose that the characteristic of \mathbf{F}_q is good, and let $n_{\lambda}(q)$ be the number of nilpotent elements of \mathfrak{g}_{F_q} which belong to the orbit in $\mathfrak{g}_{\bar{F}_q}$ corresponding to λ . Then

$$\sum_{\lambda} n_{\lambda}(q) = q^{2N}$$

where the summation is over a set of representatives of the 1-parameter subgroups considered by Bala-Carter. It can be shown that $n_{\lambda}(q)$ is of the form $q^{-\delta}P_{\lambda}(q)$, where $P_{\lambda} \in \mathbf{Q}[X]$ depends only on λ and $\delta \in \mathbf{Z}$ is such that $\deg(P_{\lambda}) - \delta$ is the dimension of the orbit in $\mathfrak{g}_{\bar{F}_q}$ corresponding to λ [6]. We can normalize P_{λ} in such a way that $\delta = 0$ if $\operatorname{char}(\mathbf{F}_q)$ is large enough. Then (3) gives also

By (2), we have $\delta \ge 0$. Comparing (3) and (4), we find therefore that

we must have equality in (2). This proves the theorem.

REMARK. One can show that there exists $x_Z \in (\mathfrak{g}_Z)_2^2$ such that for every algebraically closed field K of good characteristic the element $x_K \in \mathfrak{g}_K$ lies in the orbit corresponding to λ_K . If R is the ring generated over Z by the inverses of the bad primes, one finds similarly that $[x_R, \mathfrak{g}_R]$ is a direct factor of \mathfrak{g}_R .

References

- [1] Bala, P. and R. W. Carter, Classes of unipotent elements in simple algebraic groups, Math. Proc. Cambridge Philos. Soc. 79 (1976), 401-425 and 80 (1976), 1-18.
- [2] Pommerening, K., Ueber die unipotenten Klassen reduktiver Gruppen II, J. Algebra 65 (1980), 373-398.
- [3] Richardson, R.W., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. 86 (1967), 1-15.
- [4] Richardson, R. W., Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull. London Math. Soc. 6 (1974), 21-24.
- [5] Slodowy, P., Simple singularities and simple algebraic groups, Lecture Notes in Math. 815, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- [6] Spaltenstein, N., Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic, To appear in J. Austral. Math. Soc.
- [7] Springer, T.A., The Steinberg function of a finite Lie algebra, Invent. Math. 58 (1980), 211-216.

(Received September 16, 1983)

Forschungsinstitut für Mathematik Eidgenössische Technische Hochschule CH-8092 Zürich Switzerland