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Functional equations of L-functions of varieties
cver finite fields

By Shuji SAITO

§1. Introduction.

Let X be a projective smooth geometrically irreducible scheme over a
finite field F, and z,(X,s) its algebraic fundamental group with s a fixed
geometric point of X. For an l-adic representation (I+# ch(F,))

o m(X,s) —> GLg,(V),
we define its L-function, following E. Artin and A. Grothendieck, by :

Lx(p, t)zrg det(1—p(F )% | V) '« QIt]].

Here X, denotes the set of all closed points of X, d,=[x(2): F,] («(x) is the
residue field of x= X;) and F, is the geometric Frobenius over z (it is
defined as a conjugacy class of n(X,s). For the details, see §2). By the
theory of Grothendieck we know the following facts.

(1) Lx(p,t) is a rational function over @, more accurately,

Lxlp, t)= ﬁodet(l—FtlHi(X’ gp))('”i“ ,

where n=dim(X), X:X®Fq?'_q, F is the Frobenius map on X, and &F, is
the smooth @,-sheaf on X corresponding to p.
(2) Lx(o,t) has the following functional equation
Toxlp, )= A-t7 -LX<,B, _qlt_> ,
where A=Q and Be Z, and p denotes the dual representation of p.

Now, the purpose of this paper is to determine A and B explicitly
using the unramified class field theory for X (cf. § 3. Main Theorem).

In case dim(X)=1, the problem is classical and solved by A. Weil, R. P.
Langlands and P. Deligne ([1]) including the case X is not necessarily proper
over F,. In this paper, our problem is reduced to the classical results,
using Lefschetz pencils, the theory of vanishing cycles and the theory of
Chern classes. By the similar method, A. N. Parshin has solved this prob-
lem in case dim(X)=2 in his paper [5], which the author feund during
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writing this paper.

While this paper treats only the case X is projective over F,, the
generalization to the case X is not proper over F, seems interesting. For
example, in case dim(X)=2, it is expected that the class field theory for
X including ramifications, which is described in K-S [4], makes some con-
tribution toward this direction.

The author wishes to express his sincere gratitude to Professors K.
Kato and T. Shioda for their helpful advice on this subject.

§2. Unramified class field theory of schemes over finite fields.

Let X/F, be as in §1 and #3®(X) its abelian fundamental group. For
2 < X,, the natural injection x—X defines a homomorphism 7, : z3%x)-->z?>(X).
Since x(x) is a finite field, we have an isomorphism Z =~73%(x) which sends
the topological generator 1=Z to the Frobenius over k(x). We define the
geometric Frobenius F, over x to be the image of —1=Z under i, (or the
conjugacy class in (X, s) defined by it). Now F.’s for all x= X, define
the homomorphism

D ZNX) S D Z—— (X)),

zEXg

where Z,(X) is the group of rational 0-cycles on X.

LEMMA (2.1) (K-S [3] §8). The map ¢ annihilates the subgroup of
Zy(X) consisting of 0-cycles rationally equivalent to zero.

We recall that this is deduced from the classical reciprocity law for
curves over finite flields. Now, by (2.1) we obtain the fundamental homo-
morphism in the unramified class field theory

¢ : CH(X) — 73%(X),
where CH(X) denotes the 0-dimensional Chow group of X.
THEOREM (2.2) ([8]). The map ¢ is injective and has o dense image.

We have the following commutative diagram

deg
CH(X) ———> Z

P,

D - -
(X)) ———> Gal(In[F) — Z

where the right vertical arrow sends 1eZ to —1EZ, dez denotes the
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degree map (¢f. §3 (32) and p is the natural map. DMoreover, the
induced map Ker(deg)—Ker(p) is an isomorphism of finite groups.

REMARK. The finiteness of Ker(p) is known by Katz-Lang [2].

§3. Main results.

First we introduce some notations. In general, let X be a projective
smooth variety over a field k& of dimension #.

DEFINITION (3.1). The canonical zero cycle ¢y on X is cxy=—{(4-4)
eCH{X). Here, 4 denotes the m-cycle on Xx X defined by the diagonal
X, Xx X and 4-4 is the self-intersection of 4 in the Chow ring of X< X
(This can be naturally viewed as an element of CHy(4)=CHy(X).).

DEFINITION (3.2). The Euler-Poincaré characteristic y» of X is yx=
—deg(ey) e Z, where

deg : CH{(X)—~ Z; Z}}{ax-xH EK alelx): k]
re 0 3

rEX

is the degrée map.
The following facts are well-known.

(8.3) x;fzg)(—l)idimqllii()?, Q), where X=X®.k and | is any prime
=0

number =+ ch(k).

(3.4) If n is odd, yr is even.

DEFINITION (3.5). Assume that k=F, Then ry==+1 is defined as
follows: If n is odd, then ry=1. If » is even, xxy=(—1)", where v is the
multiplicity of —¢™* in the roots of P,({)=0. Here, P,(¢) is the character-
istic polynomial of F on H™(X, Q).

Now let X/F, and p be as in § 1. We make the following assumption

on p.

(3.6) There exists an infinite set L of prime numbers 2 satisfying

(3.6.1) L=l L5p, and for eacn 2L we are given a 1-adic representation
0: @ m(X, s) —> GLQ/:(V,:)

which satisfles

(3.6.2) o1=p.

(3.6.3) Each p, is Q-rational and p;’s are compatible with each other.

Namely, for each i=L and z€X, Pz, 1) def det(1—po(F)t]V;) has all
coefficients in @, and for 1, pcL, Pz, t)=P,.(x,t) (€Q[t].
The condition (3.6) implies that Ly(p,t)= O.[[t]], where O, denotes the
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subring of @ consisting of all elements of @ which are integral at any
e L.

MAIN THEOREM. Under the assumption (3.6), we have

3.1 Lo, )= det ple)(—aPt) e Lo, - )

q
where r=dim(V), det p: z3(X)—~Q/ is the determinant of p and CH(X) 1s
considered as a dense subgroup of n3(X) via (2.2).

REMARK. According to (3.4), there is no ambiguity for the notation
“g in (3.7).

COROLLARY (3.8). Let X/F, be as before and suppose that dim(X) s
odd. Then there exists ¢’ € Zy(X) such that cy is rationally equivalent to 2¢”.

REMARK. (3.8) in case dim(X)=1 is due to A. Weil, and the following
proof is just an imitation of his proof.

PROOF OF (3.8). By (2.2), CH(X) is finitely generated, so it suflices to
show that for any character of order 2 o : CHy(X)—{+1}c.Q/, we have
alcy)=1. First suppose that ¢ factors through deg : CH(X)—Z. Then our
assertion follows from (3.4). Next we suppose that o does not factor
through the map deg. By (2.2) we can view o as a character of 72 X).
Let f: Y—X be the double covering corresponding to s. By the assump-
tion, this covering does not contain any constant fleld extension. From the
definition, we can easily see that

Zy(t) :LX(Uy t)ZX(t) s
where Z(t) (resp. Zy(t)) is the zeta function of X (resp. Y). By the func-
tional equation (3.7), we have an equality
(=) Fr=alea)(— g"*) - (— a0 7,

from which we obtain o(cy)=1 as desired.
For the proof of Main Theorem, we need the following preliminaries

(84 and §5).

§4. Canonical zero cycles on fibered varieties.

Let X be a projective smooth scheme over a field % of dimension n--1,
C a projective smooth curve over k and f : X—C a k-morphism satisfying
the following conditions. For v=C,, we put X,=XQcr(v).

(4.1) There exists a finite subset ¥ of C(k) satisfying
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(4.1.1) If velC,—2, f is smooth over v.

(412) If ve2, X, has as singularities only a finite number of k-rational
isolated singular points ., -+, Ty.r,.
For vel and 1<i<y, we define the Milnor number of X/C at x,.

pv_i_dlmk<@X,xv.i/<a-Xl—) I aXn-(—l >> ’

where {Xi, -+, X,.i} is a system of local parameters at x,., on X, and g=
u-f with a local parameter w at » on C. The independence of p,., from
the choices of {Xi, -+, X,.i} and # is easily seen.

In addition to (4.1), we make the following assumption.

(4.2) There exists a rational differential form o on C which satisfles the
following conditions. Let (w)= 3 #,-v (n,=Z) be theldivisor of w.
vEC,
(421) For veld, n,=0. ‘
4.22) If n,#0 for v=C, then v=Ck).

Under the assumptions (4.1) and (4.2), we have the following

LEMMA (4.8). We have the following equality.
Cx= _< E %v'iv(CXv)>+('— 1)n E 2 Hoei” Tpei 5
vEY vE 2 i=1

where 1, : CH{(X,)—CH{(X) is the natural homomorphism.

COROLLARY (4.4). We have the following equality.

P . _J\_*l‘/l-l‘l 5 .
== S 1V S E

VE,

Based on the fact that —c¢y is equal to the (n-+1)-th Chern class of

Qfm (due to Mumford), (4.3) is proved using the theory of Chern classes
(cf. the argument of SGA 7 XVI §2).

§5. The theory of local eonstants.
In this section, we review briefly some results in Deligne [11.

(5.1) Let K be a complete discrete valuation field with finite residue field
F,, /A a field of characteristic sch(F,), Rep,(K) the category of all pairs
(V,p) with a finite dimensional vector space V over 4 and a continuous
homomorphism p : Gal(K/K)—>GL (V) (GL4(V) is endowed with discrete
topology). We fix a non-trivial additive character ¢ : K—A* and a Haar
measure dz on K with values in 4 (cf. [1] 6.1). Then Deligne defined a
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function e(*, ¢, dz) : Ob(Reps(K))—A*. We recall only some properties of
s(*, ¢, dx) necessary for the proof of Main Theorem.

(5.1.1) For any exact sequence 0—V,—V,—V;—~0 in Rep,(K), we have
eo( Vs, &, dx)=eo V3, ¢, d)eo( Vs, ¢, d) .
In particular, (%, ¢, dx) can be extended to a homomorphism
so(x, ¢, dx) © Ry(K) — A%,
where R,(K) denotes the Grothendieck group on Rep(K).

(5.1.2) If (W,p) is unramified, that is, p factors through Gal(K/K)—
Gal(F,/F,),
dim(W)
17, 6, de)=det(FI Wy~ o),
K

where Fe Gal(E/Fq) is the geometric Frobenius over F, (=the inverse of
the Frobenius over F,) and n(¢) is the maximum integer such that ¢=1
on z"Og (z is a prime element of K).

(5.1.3) Let V, WeRep(K) and suppose W is unramified, then
60(V® W, ¢Y} dx):det(Fl I’V)SW(V)erim(Vx"w)H)-so( V, gﬁ, dx)dim(W>,

where Sw(V) is the Swan conductor of V.

(5.2) Let C be a projective smooth geometrically irreducible curve over
F, K its function field, K, (veC(,) the completion of K at v, x(v) the

residue field of v and F,< Gal{¢(v)/x(v)) the geometric Frobenius at ». Let
A be a field of characteristic = p=ch(F,), and fix the (unique) Haar measure

dx= & dz, on the adele ring Ax of K with values in /4 such that g de=1,

vEC JAR/K
and a non-trivial character ¢=(¢,), : Ax/K—A4*. We define “the divisor of
&” to be (¢)=2 ny-v With n,=n(d,) (cf. 5.1). Then, it is well-known that

there exists a one-to-one correspondence between the set {(¢)]¢ : Ax/ K—A%,
non-trivial} and the set {(w)|® : non-zero rational differential on Cj}.

For a variable t over A, we define an unramified character o, :
Gal(K, K, —At)* by oi(F,)=t* with d,=[«(v):F,]. Then, for a con-
structible sheaf & of 4-modules on Cg, we define its local constant at v by

(321 (Fo, o s, )= F &, Q0 $r, divy) - det(— Fiot ™| Fra) ' € A
where Fz, (resp. Fiw) is the fiber of & at the geometric point Spec(X,)—C

(resp. Spec(x(r))—C). Let KXC, 4) be the category of bounded complexes
of sheaves of A-modules on Cs whose cohomologies are constructible. Then,
for K =Ob(XKUC,. 1), we define its local constant at v by
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E(LKU; ¢v) dxv; t): IIZ 5((&“1’)”’ ¢v; dﬂ')v, t)(_1>i;
S
where Fi=9*(XK). By (5.1.1), this definition makes sense for Ke
Ob(DI(C, 4)), where DX(C, 4) denotes the derived category of K2(C, A).

Now, let f: C—Spec(F,) be the natural morphism. By SGA 4% Th.
de finitude, for K & Ob(D(C, 4)) we have Rf«(K) = Ob(D(Spec(F,), A)). Hence,
Rf*(J{)fq is quasi-isomorphic to a bounded complex (V?¥);e; of A[F}-modules
V* which are finite dimensional over 4, where F denotes the geometric
Frobenius over F,. Then we define

oo( K, t)=det(— Ft|Rf (K5, ) == 11 det(— Fe| V',

THEOREM (5.3) ([1], Theorem (7.11)). For K <=Ob(DYC, ), we have
O'C'(JC: t): If?[ 5(JC7}; ¢v) dmv; t) .

§6. The proof of Main Theorem.

Combining (3.6) with the fact that the map ©,— II O./20, isinjective,
AEL

it suffices to show (3.7) after reduction modulo 2 for all 2 L. Thus, let
A be a fleld of characteristic #p=ch(F,) and p : 7(X, s)—»GL (V) a con-
tinuous representation of (X, s) on a finite-dimensional vector space V over
A(GL4(V) is given discrete topology). As in §1, we define its L-function
by :
Lix(p, t)= I det(1—p(Fo)t®=| V)~ te A[t]].
TEX,

Then, Main Theorem follows from

THEOREM (6.1). Lyx(p,t) is o rational function over A and satisfies the
Sfunctional equation (8.7).

By the theory of Grothendiek,
Lo, ) =det(1—Ft| Rf(F )z) ",

where &, is the locally constant sheaf on Cs corresponding to o, Rf(F,)
=O0b(DX(Spec(F,), 4)) is its direct image by the natural morphism f: X—
Spec(F,) and F' the geometric Frobenius over F,. Therefore, (6.1) follows
from

THEOREM (6.2). Let r=dim(V), then
det(— FLR[ . (Fo)r,) " =rk-det o(cr)(—q"7t) 7",
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We prove (6.2) by the induction on dim(X). First, in case dim(X)=1,
(6.2) follows from (5.3). Assuming that (6.2) is proved for varieties of
dimension=n, we prove (6.2) in case dim(X)=n-+1. For this, we first
make the following assumptions.

(6.3) There exists a fibration g: X—C (C is a projective smooth curve
over F,) satisfying (4.1.1) and the following (4.1.2)". (The notations are the
same as §4.)

(4.1.2) If vel, X, has as singularities the unique F,-rational ordinary
double point x,. We denote by p, the Milnor number of X/C at x, (cf. §4).

(6.4) There exists a rational differential w on C satisfying (4.2.1) and (4.2.2).
We fix a non-trivial character ¢: Ax/K-—A* such that (¢)=(w) (cf. (5.2)).

Now, let h:C—Spec(F,) be the natural morphism (f=h-g). Then, we
have

(6.5) det(— Ft|Rf«(Fo)7,) =det(—Ft|Rh(H)7,) ,

where K =Rg.(F,)c0bD¥C, 4)). We apply (5.3) to K. Thus, let do
:vgodxv be as in (5.2), and for ¢ fixed in (6.4), put (g[))zvgz%nv-v. Then, we
compute local constants e,=e&( K, ¢, dy, 1) using the formulas (5.1.1)~(5.1.3).

Case (i). ForveZ, Rg.(F,)z,is unramified and we have an isomorphism
of Gal(x(w)/x(v))-modules Ry .(F,) e, =Ry«(F ). Hence, by (5.2.1) and (5.1.2),

av:50<<—}€1?v®w1t': Sbv: dxv)det(_thdvIJCm)_l

o

:det(thdvIRQ*(gp)m)an<— qdvnvgg df’fv>€v det(—Fot®| Ry (Fo)imn) ™"
Ky

—det(— Pyt Ry (G o) (— Do =gl da, e

O K,
where e,=dim +(Rg«(Fo)zw). On the other hand, by the proper smooth base
change theorem, Rg«(F o= R(g:):(Folx)iwy With g,=g®cr(v). Hence, by
the induction we have

e, ="%x, and for v=CF),
det(— Fot| Ry F awy) ™=, det plin(ox (=g )7,
where 4, : CHy(X,)—~CH{X) is the natural map. So we can write
(6.6) ey=det p(—n0(cx,))

where g, =A% is independent of p. Since n,=0 for v& C(F,) (cf. (6.4)), (6.6)
also holds true for any v=(C,— 2.

Case (ii). For v=2, by the theory of vanishing cycles (SGA 7 XV),

rnvly

T CLU R
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we have the following long exact seguence
(6.7) o> HY( Xy, Fo)—>H Xz, Fo)—>OF )+
where Xo=X®cx(®), Xg,=X®K, and
_ 0 i a#n
@;(S}“p):
{ Arv(m_%)®/l(£z:p)fv if 1=n

where we put n=2m or 2m-+1 according as = is even or odd, =, :
Gal(K,/K,)—A* is a character which is determined independently of p,
A™ is one-dimensional vector space over 4 on which Gal(X,/K,) acts via
A7(m—mn) is its Tate twist, and (F,);, is the geometric fiber of F, at x,
on which F, acts as I, (=the geometric Frobenius over z,). By SGA 7
XVI (24) {or (1.13)), Sw(A™)=pu,—1. Hence, by the similar calculation as
Case (i) (using (6.7), (5.1.1) and (5.1.3)), we have
(6.8) ey=det((—1)" gy~ 2,) - 7",
where a,= 4" is independent of p.

Lastly, combining (6.6) and (6.8), we obtain

I s,=det pla)-i™#- A7,
920,

where a= —<U§ n@'%(cxv)>+(—1)"<veﬁz ptv°90v>,
ﬂ:v§7@v‘XXv+('—1)”U§#v,
and AeA* is independent of p. By (4.3) and (4.4), we have a=cy and
f=—xx- Hence, by (5.3) and (6.5), we obtain
det(— Ft|Rf(Fo)r,) ' =det plex)t ™x- A
Consequently, to complete the proof, it suffices to show the following
LEMMA (6.9). Let X/F, be as before, then we have
det(— Ft{Rf (A5 ) 1= rx(— g7 1) 72 .

This follows from Riemann hypothesis and the Poincaré duality for X.
Now, we prove (6.2) in the general case. By the theory of Lefschetz
pencils (cf. SGA 7 XVII), we can see the following fact.

LEMMA (6.10). We can find relatively prime integers ki, k. such thot
of we blow up Xi:X®quqki (1=1, 2) along an appropriate smooth closed
subscheme defined over F,#;, then the obtained scheme X, satisfies {(as
F,z;-scheme) (6.3) and (6.4).
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We have already proved (6.2) for X;, and comparing the behavior of
canonical zero cycles and L-functions under blowing-up, we can verify (6.2)
for X,. Combining this with the following commutative diagram

N;

) g

(X)) —> =(X),
where N; is the norm map, we obtain
(6.11) det(—F*t* | Rf(F )5,) ' = rk, det(Ni(ex ))(— g ) Fxe
Noting that Ni(cx,)=kicy, (6.2) follows from (6.11) for ¢=1,2.
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