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Spectral theory on a free group and algebraic curves

By Kazuhiko AOMOTO

(Communicated by S. It6)

In this note we develop a spectral theory for linear difference opera-
tors on a free group, and give the eigenfunction expansions for random
walks on a free group by explicit computation of Green functions which
turn out to be algebraic. Our method is in some sense a generalization
and a unification of the result about spectrums by P. van Moerbeke-D.
Mumford on the one hand and the usual Poisson kernel formula on a free
group by E.B. Dynkin and others on the other. (See [3], [4], [5], [8], [21]
and [25]) Our main results are Theorems 1~4.

The author would like acknowledge Dr. Y. Kato for very useful and
stimulating discussions.

§1. Algebraicity of Green function.

Let I" be a free group generated hy a system of free generators
A=Aa;, a5, -+, a,}. We consider a random walk on I” with transition matrix
P=((p;,7))rrer P €R on (')

2 Prp=1
rer

1.1 2 Prp=1 and p,,.=0.
rel

Then the matrix P defines a bounded operator on the Hilbert space
(') as follows: For a fixed yer,

(1.2) (Pu)(r)ngr Dy u(y’) .

The operator P can also be regarded as a difference operator on the
Cayley graph (group complex) & attached to I. We shall denote by g,
the subgraph consisting of elements ;&7 such that ;<y’, where r<y’
means that the reduced expression of 7' contains that of ; as its initial
part. We say 7' is greater than 7.

We shall firstly consider the matrix P under the weaker condition
than (1.1):
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(1.1 ;ipr,r' =M,

for /I and a certain positive number M. Assume that
(J.1) P has ¢ finite range, namely for a certain posilive integer m,
(1.8) Dy =0 for LGy )>m

where L(y) denotes the length function of the reduced expression of 7
with respect to A.

(9(.2) There exists a subgroup Iy of finite index of I', such that P 1s
left-invariant with respect to [y, namely

(1.4) Drorior =D
for an arbitrary yye .

(9. 3) e have o regularity condition
(1.5) Py 70
W LG ' Em oond ¢ <y.

In case of I"=27, these conditions satisfy the classical Hamburger’s
ones related to continued fractions”. In the same way we can show that
for z=C, [2]»1, there exists the unique Green kernel G(r,7'|z) for P in
I¥{I") such that

(1.6) (z— P)"'uly) :Ep G@r, 7' 12u(y’)

where G(y,;'|2) is holomorphic with respect to z, |z[>1 and
(1.7) ;IG(% 7P <o

for a fixed y&I.
Then we can prove

THEOREM 1. For fized 7, ws ", G(y, w|z) can be prolonged algebraically
on the whole plane C, such that we have the Laurent expansion

(1.8) G(rail, wlz) _ Coalr) NI if Lle™y)=0 modm
Gly, wl2) 2
=C A7)+ if Ll ')#0 modm

at the infinity if o 'y <w i-yai respectively, where C5i(y) denote constants
different from zero depending on 7, and i.

1) T. Carleman, Sur les équations intégrales singulieres 4 novau réel et symé-
trique, Uppsala, 1923.
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G(r, o]z) becomes a meromorphic function of z on an algebraic curve §
ramified over CP! and satisfies

(1.9) Glror, rowl2) =G, ®|z)

for yo&l. The curve € is independent of 75 0.

This is a generalization of a theorem in [21], which has proved the
above in the case g=1, namely for periodic ordinary lnear difference
systems. In fact the eigen-function equation

(1.10) wu)= 2 prpul)=0
y

can be regarded as a generalization of Toda lattice equation on Z to the
case of an arbitrary free group.
To prove the theorem, we put ai,(r|z) to be equal to GGai?, ol2) ac-
Gly, 0[2)
cording as o™y <o -ra; or 0 -y <o '-ye;’. Then G(y,w|z) satisfies the
equation (1.10) except for y=® namely.

LEMMA 1. For all yeI', y#e, we have

(1.11) 2= 2 Prrtaiyle)+ 3 Dyyatt X _T_l___lh
r<raEt ' rrat ¢ ail(yait]z)

+ Prraflediaso(rai[2)ai.r|z)

r<reii<raglay?

+ =+1
- > gl X ﬁiw(ﬂlf 2)
T Iailprual a; ai*,w(ra/fllz)

ES1 Hl o=
roy <r.ropy<peia;

| 1

=+ = Dy, el X — _ = .
bz af(raP et (raes 2)

=
743

N =
g P W;amilmail

IR N s S S | ‘m
A PR A T P A T

. 1
PaN T = . = - - — — .
@rolraiad, oraias|2) - ai, J(rai'ag - aflz)

We first want to prove Proposition 1 which shows the basic symmetry
property of the Green functions G(r, w|z).

For arbitrary elements w, yeI” such that o'y has a reduced expres-
sion Fail---aim (7&I') we call “y-twig” of m-th degree with base point w
and denote by 45”(y) the set of all elements 7’ &I such that FEo Y,
dis(;’, 7)=m and dis(w, 7)<dis(e,7). We also denote Py, iy e d97(r).
(See the figure.) The number m* of the elements of 49(;) is given by
the following formuls:
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AL P I YO
{(29‘“1) +(2¢—1)"—1 for m=2m—+1

29—2

l (2g—1)"—1
29—2

(1.12) mH=

for m=2m.

We say that 49°(y) and 49%(y.) are equivalent with respect to 717, if
there exists yo=1, such that yori=7. and 7457 (r)=45"(r).

m=1, g=2 m*=1 m=2, g=2 m*=2
AP = <
7 7

m=3, g=2 m*=5H

-2

m=5, g=2 m* =17

~U
~

PROPOSITION 1. There exist m* algebraic functions of 2z a;,.(y'{2)
for v’ e 45—y} depending on w and 457(y) such that

(1.13) Glw, rl2)= 2 .7 '12)G(o,7|2)
7’648")(7)

where a; (7 |2) satisfy

(1.14) a’;.w(;/’iz):g;i~I—O<Zl2 > ot the infinity 2=

and the periodicity

(1.15) ayno(ror’ ) =a; W(r 12)

provided 45(;"Y and 4(rq") are I'yequivalent.

PROOF. We want to prove this proposition first by constructing the
Green functions on finite domains and then by its limiting procedure of
exhaution to the whole I. Let D,(w) be the subdomain consisting of
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elements ye /[ such that L(e'y) <!, for certain I>m. We denote by B)(w)
the boundary of Dj(w). Then we can uniquely construct the Green func-
tion Gp,(y, 7'12) on Dyw) so that Gp,uor, 7'12) vanishes on Bi(w) in m-th
order:

(1.16) Gpyanr, 7'12)=0

for yeD(w) such that dis(y, Blw))<m, where dis(y, B{w)) denotes the
distance between 7 and B;(w). This Green function can be computed, step
by step, from the boundary seeing that I” is a tree.

Assume that {2/>1. Recall that we have put m=(1/2)m or (1/2)(m—1) ac-
cording as m is equal to even or odd. Let y, be an arbitrary vertex lying
in Bfw) and [=[7, 7] be the unique geodesic of length # in & starting
from 7, and ending in 7, for 7,<y,, Then we have

(&) z2ufy)— 2{,“;/1»7'”(7):0 for u(y)=Go,(r, wl2).
re
We denote by y¥=ry, 7&”,---,7‘}'“% the vertices y lying in B(w) such that

71<y. Then there exist the (g—1)"—1 other equations similar to (&),
each corresponding to 7, 1Sv=(g9—1)™.

& 2uly$)— Era,rgw,,u(y) =0.
Since Gp(r, wlz)=0 for L(y)>1, we can uniquely solve these with respect

to Gp,(y$”, w|z) which has the following expression:

(1.17) Golrrolz)= 3 afl )G, olz)

o~ IyFe=1r;

where af,(r]z) denote rational functions of z depending on y; and » such
that

(1.18) o (7 1z)=o(%> for 2> 1.

Similarly as above for an arbitrary y,=D; such that L{w 'y)=m we can
prove by induction decreasing in L(w™'y,) that the following relation holds:
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(1.19) Giroola)= X a6, olz),

o=lyRo~1ry
o) .(rlz) having the same property as above for y,&€l'—{w} such that
L(w™'r;)=m—1, we have from (&,)), by substitution of (1.19),

(871)/ : 0=2zu(r)— ;arlru(r)
ZZZL(71)~L(7>;Em-1 arlr%(ﬂ

where d,,.=a;,.+0(1/z). Since the number of vertices y, €I — {w} such that
L{w 'r)=m—1 is equal to g{g—-1)™% there are g(g—1)"* such linear equa-
tions which are linearly independent.

On the other hand there are g(g—1)""* unknowns G(7, w|z) for yel'—
{} and L{w '7)<m—1 in the equations & - Hence

GDZ()’CLJ'; olz)
G (7, w|2)

(O+

a5 (rlz) if o'y<o'ra; or

(1.20)
EDJO’&;I, w|?)
GDl(r’ CUIZ)

O

a5 (rl2) if ol <eolail,

according as o 'y <w 'ra; or o'y <w 'raj!, are completely determined.
On the other hand, the Green functions Gp (7, wlz) and G(r, ®|z) have
the Laurent expansions for |z|»1:

& CP(r, w)

(1.21) o)1, 0l2)= 2 e
(122 67, 0l)= 2 A
For fixed y and n, we have

(1.23) m G2, @)=(A");.0

and

(1.24) Hm G (7, 0l2)=G(r, 0l2).

This implies that the following limit exists:
(1.25) lim ) J(rl)=a;,..(rl2)

for o yirnw 'y, and |2]>1, so that we have (1.13) and (1.14).
For y,el"—~{w} such that L{o 'r)=m—1, G(7, w|z) satisfies the equa-
tions (&;). These equations, together with (1.13), completely determine
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the ratio

(1.26) azulrl)= i oty

according as o 'y <w 'y, or 'y <w 'yai'. Hence we have the formulae:

1.27) lim a$25 (rl2) = aiu(r]2) -
o0

LEMMA 2. Assume that two Cayley subgraphs G.-y;, and &,-1, are
isomorphic to each other modulo I's, then for two geodesic limes 1,=I[71, 1]
and l,=[7,, rs] such that o ‘7, <o 'y and o F<w Yy, the equality

(1.28) a;. (1) =ap, W (ror]2)

holds if ro1i=71s and 745 (0 'y )=45 (@ ') for some o€l

This implies that among all a,.(y'|2) for o 'y'imw 'y there are only a
finite number of different ones. In fact this follows from the corollary
of the following lemma which is elementarily proved.

LEMMA 8. For an arbitrary reduced expression ail---ail and an
arbitrary element y <1, there always exists a reduced expression y €y
such that ¢ contains ail---ail as its final port, namely

{1.29) 7= ail.

COROLLARY. We can find a finite set E such that I'=1F and that
the intersection of each coset of I'\I" and E contains reduced eXPTESSION
having as their final parts of', 1=7=g.

Now for an arbitrary y<I” such that L(e 'y)zm, the equation (&.)
can be expressed by using «; .(7'|z) as follows:

130) =z X 17a;',w(r’lz)G(r’,w12)

= S el (Ran a2 o a6, @l2)
w_lf;-iw—lf;_lﬂ"'ﬂw_l}'i

o~ ip@me~ly

+ 3 ainanl(hlR) W (lRar W (126G, @)
o~ ly=0~ 1y Ro~ 1y _ BT~y
O

Since G(7',w|z) for w 'y’ Mw 'y are linearly independent we have the

equalities (This also follows from the limiting procedure of a®,(y'12).):

For o 'y'mo "y,
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(1.31) zae,(r'2)

= > G o(ralz) e o (rrlR)
0y o=l Tl B-To~ 1y
o~y Fie =1y
,

TR D) (R o 12)
o= lr=o~ly@m- o~y

o™l o1y

=a; ;. +(higher degree terms of a,..(;"{2) or a;.(;'|2)).

i

Hence these algebraic equations have the unigue solutions a, ,('|z) which
are algebraic functions z such that (1.14) holds. The proposition has com-
pletely been proved.

PROOF OF THE THEOREM. The Green function G(r, w|z) satisfies the
g{g—1)""* equations (&,) for Lo y)<m—1 and

(&) 2Gw, w|z2)— %aw,,G(r,wéz)zl.
7e

On the other hand owing to the relations (1.19) the above 1-+g(g—1)""2
equations are reduced to the linear equations with respect to the unknowns
G(y, wlz) for L(w™'y)<m, which have exactly 14+g(g—1)"% Hence we can
solve them in a unique way such that

o, o}z)— %+o<§>

Gy, wlz)= awz,;, —}—O(;l,;*) for Ll '7y)<m—1.

This shows Theorem 1.

REMARK 1. It seems probable that Theorem 1 still holds without
(A.3).
Let 7y=e,7:, -+, 71_; be a system of representatives of left cosets of I’

by I,. We denote by B,(y) the quotient GOrle) for y=I',. Then

GG, 7'12)
(1.10) are equivalent to the following:
(1.33) 28 (7 ruli)— % DrrBr7” T uF”) =0

if y#e, where 7 and 7” denote some of {7}os;<».: in the same cosets as 7
and y” respectively. To solve the equations (1.33) we have only to con-
sider them for a finite set of {y}. For the existence of the solutions
u(7), Br(yo) (ro=l,) must satisfy certain system of polynomial equations,
which define the same algebraic curve €. Therefore each u(7) is a mero-
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morphic function on € As in the one dimensional case we can make the
following conjecture:

Conjecture. Has each 8,(r)) (yo=[y) poles in & only at places over
z=o0? Further, do B,.(r,) generate the whole group of units & in the ring
of meromorphic functions on € whose poles lie only at places over z=o0?
In the next section we shall give a simplest case where this is true.

§ 2. Left-invariant random walk on a free group (nearest netghbour
case).

Now we consider the special case m=1 and [y=I". Then P is rep-
resented as follows:

2.1 (Pu) = 2 (0 Pulrad+ o ulrar)

g
where 3 (p{7+pi)=1 and p{™, pi—=0.
i=1 .
In this case, G{(y,7’|z) being left-invariant with respect to /7:
(2.2) GGy, ror12)=G(,7'12),  Yresl

we have only to compute the function G(y,elz). Let € be the algebraic
curve consisting of the points (z, W), satisfying

23) 2+ (g—DW=vVW H4pPp + - + VW H4dpiPps7 .
The function W(z) can be determined in a unique way such that

23 pi P
(2.4) W(z)=z— =t 1 ...
z

at the infinity. Then

THEOREM 2. The Green function G(y,elz) can be explicitly determined
as follows :

) Gle, elz)= -2~

. W(z)
(2.5)
i) af,(rlz) are independent of y and y', and given by the
formulae
(2.6) i

— W+~ WeHdppi
2pi™ '

lazw(réz) =ai(z)=
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Consequently, for a reduced expression y=az---a;r, we have
2.7 Gy, elz)=Gle, e|2)-a§P(2) -+- alim)(z) .

Remark that for |z|>1, the inequality |Wi»1 holds, and therefore |ai(z)]
<1. This implies,

(2.8) lim G{(y, eiz)=0 for lzi>1.

L)oo

PROOF. Under the condition of Theorem 2, (1.11) has a very simple
form:

=
ai(z)= ) <pl> eSS
Z-;p;‘ a;” —Jé_pj aj
(2.9) e 1<i<g, where
) S - B e
it Fi
a q
(2.10) p— W= ; 5757+ El 05757

(2.5) and (2.6) follow from (2.9) and (2.10).

It seems interesting to remark that the transformation 7 defined by
the right hand side of (2.9) is not projective but Cremona transformation
on a space of points (af, -, a7, a7, -, a;)” (For the definition see [11].).
(&P, af) 1=i=g becomes a fixed point of 7, so that it can be regarded
as a limiting point of 7™ for n—*oco. In a sense, this is a generalization
of periodic comtinued fractions or more generally, periodic Jacobi-Perron
algorithms in ordinary linear difference systems, where shift operators
given by the corresponding Riccati systems were projective (See [2], [17],

{191, [211).

REMARK 2. The group of units & attached to the curve € is iso-
morphic to Z##*®? and generated by the units ai(2), pial —pjaj, 1=15]
<g. This cannot be realized by any Jacobi-Perron algorithm except for
the case g=1. This fact is an essentially different situation from one
dimensional cases. It seems to be interesting to understand what algorithm
is going on in our case.

$3. Symmetric random walk on a free group and the spectrum.

We assume further that

2) More exactly this is called “standard Cremona transformation” by LV.
Dolgachev, See 28]
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) py=p=p5720

3.1 o

i) 2% p,=1.
i=1

Then the matrix P defines a symmetric random walk on [’ and be-
comes itself a self-adjoint operator on P’(/7). We are interested in the
spectral property for P. The equation (2.3) becomes now

(3.2) 2+ (=)W=~ WHdp] + - =~V W dpj .
The following five Lemmas can be proved in an elementary way.
TEMMA 81, The functions z=0(W),
(3.3) QW)= —(g— D)W~ Widpf = - =V W Hdp]
have the only two critical points +=W, (1= W,=0) on K.
We denote by =z, the corresponding value of z, namely
2= —(g— D Wot-VWi+dp! + -+ +VWitdp

3.4) W, W,
P A N AL J—
0=~l=D+ T VWit

LEMMA 32. We have 0<2,<1 for g>1 and 2,=1 for g=1.
We now assume that
(3.5) D> P>t > Py
Consider the equations (3.3),
(3.3).: 2 (g— D) W=eVIWH4p] + -+ +e,V WiHdp;
for e;= 1. Then figuring out the graphs of (3.3)., we see

LEMMA 3.8. i) For z€R, (3.3), has one real root with respect to W
except for e= - =g,=+1.

i)y For 2>z, (83)qi.n has 2 different real roots. For z<-—z,
(8.3)otn-1y has 2 different real voots.
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VW AP} + e, VWH4D]
W —1
._.'[/V0

eV At e eV WD

z-plane

As a result, we have

LEMMA 3.4. The equation (3.2) with respect to W has 2° real dif-
Sferent solutions for |z|>z,. The W(z) defined by (2.8) is characterized as
the unique maximal solution for z>z,. (3.8). have (2°—2) real different
solutions for z<(—z, 20 and 2 different imaginary roots. In particular,
dW/ldz+ oo for z€ R except for z=xz.

LEMMA 3.5. The function W(z) defined on the domain 4=C—{—2, 2]
1s univalent, and its 1mage by W(z) 1s disjoint from the union of inter-
vals [— W, WolI—p11, pil. Remark that W(co)=oco,

PRrROOF. First we remark that the image W({dN({Imz>0)) lies in the
upper half-plane because every branch of @(W) is real.
Suppose that W,=1it ¢>0 for p;,.;=t<p,, Then Im @(W,)<0:

(3.6) O(W,)=—(g—1)it £ Vpi— = - =V pi—¢®
V= ph £ e 2P

In other words the interval [0,ip,] is disjoint from W{(Imz=0)Nd).
Similarly [—ip, 0N W({(Im2=0)"4)=¢. On the other hand the boundary
correspondence is bijective because dz/d W =0 there. This implies that W(z)
maps conformally from 4 onto W(J). Lemma 3.5 has been proved.
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REMARK 3. It seems probable that the complement of the image W(J4)
is convex.

From Lemma 3.5, we have
PROPOSITION 2. 1) For —z,<1=<z, W(A+1i0) exists and we have
W(a+10) = W(2—10)
8.7
W+ W{(A—10)+0

Jor —2,<2<z. =z, are the branch points of W(z) of order 2.
i1} a7(z) are all holomorphic in 4. Actually in 4 we have the in-
equality

3.9 laz(z)]<1.

This corresponds to the following well-known properties of Green kernels :
THEOREM 3. 1} G(;,7'12) are holomorphic in 4. We have
(3.9) Z GG, o)l <o
rel
Jor a fized y'el’ and
(3.10) GG, 7' 1)=G(", rl2) .

i) The spectral kernel
B1) 6,7 0= "5 (Gl RH0 Gl 71a-10),  i=R,

are different from zero if and only if —z,<2<z. O(r,7’|3) is continuous
on [—zy, 2). Therefore the operator P on (") has an absolute continuous
spectrum on the whole interval [—z,, o).

In the special case where p, are all equal to 1/2¢g, this theorem is
classical and has been proved by H. Kesten (See [18]) and recently by A.
Figa-Talamanca and M. A. Picardello using spherical functions on free
groups® (See [6], [7] and [22].).

§4. Poisson kernel and eigenfunction expansion.

As has been developed by many authors, the concept of “wave packets”
or “asymptotic waves” such as plane waves, distorted plane waves, hori-
spherical waves plays an important part for eigenfunction expansions of

o 3) This was communicated to the author by Mr. Y. Watatani. Seealso 29" and "30".
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linear differential or difference operators®. TFor the Schrodinger operator
— AV this has been established by T. Ikebe by means of Lippmann-
Schwinger integral equations as early as 1959 (See [12], [16] and [23].).
In representation theory of semi-simple Lie groups, this has been known
as “Helgason-Okamoto conjecture” and established by M. Kashiwara, K.
Okamoto and their coworkers in full generality (See [10], [15].).

Here we want to show that a similar result holds for the transition
probability matrix P. When z=1, from the equation (1.10) we can define
Green functions for harmonic functions whose Martin kernels have been
studied by many authors, for example see [3], [4], [5], [14], [26]. H.
Furstenberg has made an interesting observation about certain equivalences
between random walks on non-compact symmetric spaces and on discontin-
uous isometry groups acting on them (See [8], [131). Following this prin-
ciple, we shall define Poisson kernels and Poisson boundaries for arbitrary
spectrum 1, —z,=1=2.

Let 5 be the boundary of I’, namely the compact totally diconnected
I"-space consisting of all infinite sequences of reduced expressions in I':

(4.1) E:{E:ajiai;aig .-.azz...}

where 4, #tye1 OF 1p =Ty eueus1>0. We say that the n-th initial part of
g, a5l ai® divides & (or is smaller than &) and write agt---a;?<¢.

Let £ and yel have reduced expressions aglai?-- a:? - and
afiaft--- a5 respectively. We denote by 7’ the greatest element in I” such

m

that 7' <y and y'<&. Then y’ has the reduced expression
4.2) r=ailair (r=m)

where ?:1:_7‘1, "';ir:jr and ST Ky, & Ky but that ir+1¢jr+1 or ,l:T-I-l:jr-.Lly
&41,41<0. Under these circumstances,

PROPOSITION 3. Let {7}icvce be a sequence of reduced expressions
which tend to a boundary point E€&. Then for z€4,

. G.rle) o
(4.8) %{%—JG(e,r;lz) =Ky, &l2)

exists and defined as follows:

ajr+1(z) e aim(z)

(44) Ko 8la=— 0 a (2)

Ky, &lz) satisfies the equation (1.10), for a fized £€ & and plays the role

4) The author is grateful to Prof. A. Inoue for this suggestion.
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of “wave packets” coming from the direction & at the imfinity. This is
the Poisson kermel for P. If z=1, then K(r,&|l) is mothing else than the
Martin kernel for P (See [3], [4], [24], [26].). Remark that

4.5) Ky, £[2+10)=K{(r, £]2—10)

for 2e[—z2y, 2. This ts generally different from K(y, &|A-+-i0).

Let Z(r) be the set of all £ & such that y <& Then the family of
all 8(y), relI' gives a fundamental system of open neighbourhoods in =.
Now we define the measure p(d&]2) as follows:

DEFINITION.

1 1 1
(4.6) Ss”(dgu)—ﬁ< Wa—i0) W(2+i0)>

(0 gEcaﬂ..,ae_m)P‘(dfu)
_ 1 lapAFi0)f - lay,,  (A4+90)'pyp 0y, (A= i0) —ay, (2+10))
o [W(A+40)F

for m=1. Remark that the right hand sides are all positive because
Im W(a+40) >0, Im a;(2+40)<0. Further

LEMMA 4.1. We have the identity:

o la Qi)

4.8 T
48 71 1+ e (2+10)

PrOOF. (1.10) gives

_ . . 1
(49) 2—2J§kpjaj(2+@0)+pkak(2+20)+pkm
2 5P A0+ P10+ 2o
We put a;(1+i0)—a,;(A—i0)=A4,. Then (4.9) implies
(4.10) 230~ prd= s e L)
R a,(A—10)  a,(24-10)
_ P: A
lax(2-H30)]*
Consequently
(4.11) fa/]-(,2+i0)12 Pl

T, (i)~ 4
]a]( v )l 2?29]'14]'
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which gives Lemma 4.1. (4.8) guarantees that u(d&]2) has the countable
additive property, so that u(déi2) gives a Borel measure on 5.

PROPOSITION 4. K7, &lz), z€ 4 and u(dE|2), A€ — 2, 2] have the follow-
wmg quasi-invariant property with respect to I,

a(z)K(r, &l2) if o7'<&
(4.12) (i) Klo7'y,07%l2)=1 1 . L
a—j(g)—K(r,Elz) if o7'€E.

(413) () pd@Fo)ln= iwiw SR
la;(2+10) 12 u(d€]2) if oi'E.
Consequently the kernel | K(y, E12-+10)*u(d€]2) s invariant with respect to I :
(4.14) K(rars o€ 12+10)K(ror”s 7o§12—10) p(d(3ro8) [ 2)
=Ky, E1A+90) K, £]2—10) (d]2).
Sfor an arbitrary yoel.

It is instructive to give p(d£]2) in case of p,=1/2¢. In this case a,(2)
are all equal:
_ gz— Vg —(2g—1)

4.15 —a(z)= 1=j=
4.16 ooy (0= Dzt VP —(2g—1)
(4.16) W(z) S
and
g 1

4.17 A+10)2 = -
(4.17) la(2+10)] 571

\ v @g—1)— &
1.18 _vg—l)—gA
(4.18) \, 1

“ V3gTicg® 1
419 5 s Y29 g
e satpatp M= T
for n=1. These relations are well-known except for the factor @2:5157_2

g—

(See [5], [18]).
The crucial fact is the following:

PROPOSITION 5. We have the Poisson formula:

(4.20) e, elz)zgsK(r, £|12+10) (dZ | 2)
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for —z, =25z,

This is proved by standard techniques in potential theory and spectral
theory (See [1], [14] and [19]). In fact it can be proved by the following
two Lemmas which are well-known.

LEMMA 4.2. For two functions u(y) and v(y) satisfying (1.10) in a
Jinite domain D, with smooth boundary B, we have the equalities for the
Direehlet form :

(4.21)  D(u,v)= . (w(y)—ulra))wG)—v(ra))p+(—1-+ z)gbu(r)v(r)

TiraieEDLy

= 3 () ) 5 Oy,
TED v, ey dy,

where B denotes the boundary of D and

(4.22) —QC%(Q =(uly)—ulyai’))p,

such that ya;'€®D and y=B. Since B is smooth, ra;' is wniquely deter-
mined by 7.

COROLLARY. Under the same condition as above,

(4.23) = u(r)%’(f—) — 3 () 0MT)

LEMMA 4.3. Let Galy,7'12) be the Green function on . Then u{y)
satisfying (1.10), we have

(4.24) uly)=— 3 uly’) M/I‘z)_

7EB Vys
provided that z is not any eigenvalue of the Dirichlet problem om D.

PROOF OF THE PROPOSITION. Consider the Green function G, (7,7 12)
on the domain D, consisting of elements ye&7" such that L(y)<l’ with
the boundary 2B,. We can apply the formula (4.24) to O(y,eji1-+-15), §>0
(Remark that O(y,elz) can be analytically continued near (—z., z,).).

_ o 0Ga, (7,7 1A+10). .., . ..
(4.25) Oly, elA+i6)=— 2 O——‘l[M»»»@(;' ,eli—10)
rED, oy,
0Gs, (7, 7' | A-+16)
N vy, 0Gz (e, 7' [2+i0)
B, e 150 o
ovr.

XOG, eii~1id).
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if L(y)<l and I<!’. For [’—oo, the kernel

3G», (7, 7' |A+10) / 9Ga, (e, 7' |3+19)
vy vy

tends uniformly to the Poisson kernel K(y, £[2+10) for y=D,CD, provided
that 7" tends to certain £ 5. Ky, l2-+140) depends only on the first [ letters
of & On the other hand, for a fixed y” %, owing to (4.23),

(4.26)

4.27) s oGsl(e:9 7'1A+148)
B, Yy

= 3 p][(Ggl (e, 7"aF'|2+10)—Gz,(e, 1" |2+10))-O;", €| A +10)

e

—(OG"as, e|1+i8)—0O(1”, e|2+16)) - Go,le, " [2+10)]
= 2 ZJJ[G% (e, 7" aF'|1+18)0(", e]A-+10)

7 ]

—Ga, (e, 7"12+10)0(r" a7, el 2+10)].

oG, e|a+1id)

B

For [—co, this tends to

(4.28) - X pJ[G(e,;"'a?l/?Jru?)@(r” e|4-+-19)

r<rra!

—Gle, 7" 12+18)0(G" a3, el2+10)].
When § tends to 0, this becomes

(429 — I piGle ;" ai!|a+i0)0G", eld)—Gle, "1 2+10)0(r a7, €l A)]

el ]:
which is equal to

: . ’ _ijé(2+'i0) ca;(2-+10)a ,(A-+10)
(430 27’[ W(2+90)
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y_l»/(g“()\—i()) "'afjl(l”_'io) _ a]1(2+7:0) “'CZZL(/?"‘;*?:O) >

2 W(2—10) W(i-+10)
- L (i) it i)
2 W(a—10)
a; (2410) -+ a;,(A410)a (2 --10) > a;,(A+40) -+ a; (2+10) ]
- W(2+10) W(2+10)
— % &[ la;,(A+90) [ -+ Jar; (2+10) [ (2 4-30) — ar (21— 50)) ] ‘
it 2 [W(+i0)}?
Therefore for L(y)<I,
(431) O(r,el)= = K agieeaii- [2440)
;'”:as.lu o €3,

&[ Ja;,(A+30) 2 -+ lat;,(A+10) P(— (22 30) +a (21 —10)) ]
AN [W(@+1i0)? i

which is exactly equal to
(1.32) | K0 glatio) izl

The Proposition has thus been proved.
Proposition 4 and 5 imply immediately :

THEOREM 4. We have the canonical decomposition
(433) 00, 7' 10=\_ KGr, 12+ 00K (", £12-i0) (21

In fact Kle, £]2+i0)=1 and O(;, 71=0G"", el).

For general theory of this kind of statements see [16], [20], [23].

Now we are in a position to give the eigenfunction expansion for the
operator P as follows:
Let u(r) and o(y) be two arbitrary elements in I*(77). Firstly we define
the generalized Fourier transform of u(y) and v{(y):

(4.34) W&l =TEZF Ky, £]2-+10)uly)
(4.35) B(&] 2)=TEZP Ky, & 2+1i0)v(y) .

Then we have

(436) (u,0)= Sl =\" i a1 25CT0 szl

F=4

and
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(£.37) P, v)=\" zdzg AEIRE D pdE12) .
J-zg Z
Finally,
(4.38) Pu(7)=1im. S xsz CAEIDK (G, Ea—i0) (1) .
-zq £

This gives a discrete analogue of the eigen-function expansion for the
operator (1—a’—y")¥8%0x*+0"/0y") in the unit disc 1>2'+4% See [9]

§5. Remarks and questions.

Green functions of the operator (2.1) can be defined for an arbitrary
group with finite generators and relators.

1) The algebraicity of Green functions holds for groups which are not
necessarily free, for example, for finite free products of cyclic groups or
finite groups. [t seems interesting to characterize groups whose Green
functions are algebraic or rational:

Is a group with finite generators and relators commensurable with
certain free group, if the Green functions are all algebraic?

Is it a finite group if the Green functions are all rational or more
generally meromorphic in C?

2) The following is in some sense an inverse scattering problem:
Does the Creen function G{e, ¢lz) uniquely determine the group itself except
for obvious isomorphisms?

3) For free abelian groups the Green function can easily computed by
means’s of Fourier transforms. The resulting functions are known to be
Lauricella hypergeometric functions. It seems interesting to compute
exact expressions of the Green functions in case of other suitable groups,
for example nilpotent groups, Braid groups, etc.
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Added in proof.

Prof. Y. Kato and more recently Dr. T. Steger, Univ. of Washington,
St. Louis pointed out to the author that the author’s original proof of
Theorem 1 was false. Here a corrected proof is presented. Further, Dr.
T. Steger says that he has proved “almost irreducibility” of the unitary
representations of I' on the eigen-spaces (4.34) of self-adjoint operators P
{See his forthcoming thesis.).

Profs. W. Woess and P. Gerl have obtained the same formula as (2.3)
and computed the spectral radius +z, of P. They use for it the methods
of system analysis of Markov processes which can be found in the book
“Dynamic Probabilistic System” Vol. 1, 1971, by R.A. Howard.
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