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0. Introduction

Let G be a finite group and p be a fixed prime number. Let B be
a p-block of G with a defect group D. It is a major problem in modular
representation theory to determine the structure of B when the defect
group D is given. Here by the strueture of B, we mean certain numerical
invariants associated with B such as k(B), the number of the irreducible
ordinary characters in B, [(B), the number of the irreducible Brauer
characters in B, the decomposition numbers of B and the Cartan matrix
of B. In case D is eyclic or a 2-group of special type, the above problem
is answered successfully. For more detailed arguments, we refer the
reader to Feit [10] p. 465.

In this paper, we deal with the case p=3 and D is elementary
abelian of order 9. Let p—=3 and D be elementary abelian of order 9.
Let b be a 3-block of Ci(D) with *=B and T(b) be the group of all z
in Ng(D) with b°=b. In order to determine the numbers k(B) and I(B),
we have to distinguish nine cases aceording to the action of T(b) on D.
In each case the numbers k(B) and [(B) are conjectured as in the follow-
ing table and the last column of this table shows the main results in
this paper.

In Table 1, ¢(B) denotes the order of the quotient group T'(b)/Cq(D).
The symbols ?, A and O have the following meanings. ? means that
it is proved only when the structure of G is restricted such as G is
3-solvable. A means that it is proved when the structure of G is
arbitrary but B is assumed to be principal, while O means that it is
proved for any G and any B.

The lines of the proofs are as follows. First we determine the dif-
ference k(B)—I1(B) by using a method of Brauer [6]. Next we investigate
the generalized decomposition numbers associated with B and get the
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Table 1
¢(B) struecture of T(b)/C(D) k(B) (B) result
1 1 9 1 )
fixed point free action 6 2 o
2 R
not fixed point free action 9 2 @]
cyelie 6 4 O
4 subcase {a) 9 4 0]
four-group
subcase (b) 6 1 O
cyclic 9 8 ?
subecase {a) 9 5 O
8 dihedral
subease {b) 6 2 O
quaternion 6 5 A
16 | semi-dihedral 9 7 N

number k(B). In case e¢(B)=8 and T(b)/Ce(D) is cyclic or quaternion,
however, the above methods are not sufficient to determine 4(B) and {(B)
uniquely. When T(b)/C;(D) is quaternion of order 8 and B is prineipal,
we construct a covering group of G to get the result by using an idea
of Higman [12]. But when T(b)/C¢(D) is cyclic of order 8, this method
does not work even in case B is principal.

In the section 1, we will prepare some lemmas which are needed
later.

In the section 2, we will prove the results listed in the table 1. In
the end of this section, we will prove a general result which has a
corollary that the values of k{B) and I{B) in the table 1 are true in all
cases if G is 3-solvable,

In the section 3, we will consider the decomposition numbers and
the Cartan matrix with respect to a suitable basic set, assuming that B
is prineipal.

In the section 4, using the results of the sections 2 and 3, we will
investigate the structure of finite groups with an elementary abelian
Sylow 8-subgroup of order 9. In particular we will give a characteriza-

1) After this paper was written, A. Watanabe proved that in case ¢{B}=16 the values of
k(B) and I{B) in the table 1 are true for any B.
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tion of the simple groups A, and A, in terms of their Sylow 8-normalizers.
In the section 5, we will state without proofs some partial results
for general abelian defect groups.

1. Preliminaries

Let B be a p-block of a finite group G with a defeet group D. A
p-block b of DCy(D) with b°=B is called a root of B in DC¢(D). From
now on we fix B,D and b and always use them in the above meaning.
We define the inertial group T(b) and the inertial index ¢(B) as follows;

T(b)={w € Ne(D) |b*=b},
e(B)=|T(b) : DCe(D) |.

[l

It is well-known that ¢(B) is prime to p.

A pair s=(r, b, is called a subsection, if = is a p-element of G and
b, is a p-block of Cy(z). When b§=B, s is called a subseetion associated
with B. G acts by conjugation on the set of all subsections associated
with B (i.e. s'= (=% bf) for g @).

The following lemmas will be needed in the next section.

LEMMA (1A) (Brauer [6] (4G), (6C)). Assume that D is abelian. Let
{x:]2=1, - - -, n} be a set of representatives for the T(b)-conjugacy classes of
D. Then {{x;,b)]|t=1, ---,n} is a set of representatives for the classes
of conjugate subsections assoctated with B, where b,=b"?,

We denote by Irr(B), IBr(B) the set of all irreducible ordinary or
Brauer characters in B, respectively. And set k(B)=|Irr(B)|, I(B)=
{1IBr(B) |.

LemMMA (1B) (Brauer [6] (6D)). Let {{z;,b;)|t=1,---,n} be a set of
representatives for the classes of conjugate subsections associated with B.
Then we have

k(B) = iéub,-).
LeMMA (1C) (Brauer [3] (4C)). Let (z, b) be a subsection associated

with B. Suppose that the defect of b, is equal to that of B. Then for
any y € Irr(B) there exists ¢ € IBr(b,) such that d*(x, ¢)#0. Here d*(y, ¢) is
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the generalized decomposition number of y with respect to ¢.

LemMMA (1D) (Brauer-Feit [7], Landrock [16] Corollary 1.6). Suppose
that D 1is elementary abelian of order 9. Then we have k(B)=3, 6 or 9.

LEMMA (1E) (Brandt [1] p. 518). If k(B)=3 and [(B)=1, then D is
of order 3.

According to Brauer, we consider a column a of complex numbers
whose length is k(B) and which is indexed by y€Irr(B). Thus, for each
y €Irr(B), we have a coefficient a, of 4. The column is an integral
columm, if all a, are integers. The inner product (a, b) of two columns
is defined as follows;

(a,b)= > a,b,
1elrr(B)
where - denotes the complex conjugation.

Typical example of a column is a column d7(p) of generalized de-
composition numbers for ¢ whose y-th coefficient is d*{y, ¢), where ¢ is

an irreducible Brauer character of Cg{x).
These columns play an essential role in the next section.

2. Determination of k(B) and [(B)

In this section, we assume that p=3 and D is elementary abelian
of order 9. We will try to determine the numbers %(B) and I(B) in this

case.

First we distinguish nine cases according to the action of T(b) on
D. Since T({)/Cs(D) is isomorphic to a 8'-subgroup of Aut(D)=GL(2, 3},
we have

T(b)/Ce(D) =1, Z,, Z, Z (cyclic of order 2,4 and 8),
E, (four group), D; (dihedral of order 8),
Qs (quaternion of order 8) or SD, (semi-dihedral of order 186).

In each case except for the Z,-case, the action of 7T'(b) on D is unique.
If T(b)/Ce(D)=Z,, there are two non-equivalent actions on D; one is
fixed point free action and the other is not.
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DEFINITION. If T()/Cs(D)=X, we say that B is of type X.
PROPOSITION (2A). If e(B)=1, then we have k(B)=9 and [(B)=1.
Proor. This is a special case of Brauer [5] (6G).

Let z and y be generators of D.

PROPOSITION (2B). Suppose that ¢(B)=2 and T(b) acts fived point
freely on D. Then we have k(B)=6 and [(B)=2.

Proor. In this case, we have the following T'(b)-orbits on D;
(1), {z, 27, {w, ¥~} {oy, 277, {oy™, 27y}

By (1A), a set of representatives for the classes of conjugate subsections
associated with B is as follows;

{L, B), (@, b), (0, by), @y, bay)s @Y™ bey-1)}
where b,=b" and so on. Using (1B), we get
k(B)=1U(B) +1(b.) +1(b,) +1(b.y) + 1 (bay1).
Since T(b) NCqlx)=C4(D), elb,)=1. So, I(b,)=1 by (2A). Then we have
k(B)=l(B) +4.

Thus, k(B)=6 or 9 by (1D).

Let 4° be the column of generalized decomposition numbers for ¢,
where {¢"}=IBr(b,). As (x,b,) is conjugate to (x7%b, in T(b), d° is
integral. Let 4* be the corresponding column of generalized decomposi-
tion numbers for b, It follows from [10] p. 178 Lemma 6.2 that

(d*, d*)=(d", d")=9 (1)
(d*, d")=0 (2)
Suppose that k(B)=9, then by (1) and (1C) we get

d”:t(il, B
du__—_‘(i]_’ cee, il).

But this contradicts (2). Hence k£(B}=6 and [(B)=2.

ProrosiTION (2C). Suppose that e(B)=2 and T(b) fixes a non-trivial
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element of D. Then we have k(B)=9 and [(B)=2.
PrROOF. We may assume that the T'(b)-orbits are the following;

{1} =} o7 {y. v oy, oy~ 27y 27y L
By (1A) and (1B), we have

k(B) =1(B) +2L{b.) +1(b,) +1(bsy) +1{b.).

Note that b,-:1=b, by definition. As before we see that 1{b,)=I1(b,,)=
L(b,-1,)=1.

Next we will show that I(b,)=2. Note that ¢(b,)=2. It is well-
known that b, corresponds to the unique block b, of C;(x)/{x> with respect
to the relation Irr(h,)SIrr(b,) ([10] p. 204 Lemma 4.5). D/{x) is a defect
group of b, since D is a defect group of b,.. By Olsson [18] Theorem
1.5, e(b,) =e(b,)=2. Using Dade’s theorem ([10] p. 275), we get

L. =1(b.) =2
Then, k(B)=Il(B)+7. By (1D), k(B)=9 and I(B)=2.
ProrositioN (2D). If B s of type Z,, then k(B)=6 and l(B)=4.
Proor. We may assume that the T'(b)-orbits of D are the following;
{1}, {@, o7, y, y 7' {oy, oy~ @7y, 27y .
By (1A) and (1B), we have
E(B)=1(B)+1(b.,) +1(b.,).

As before we see that I(b,)=1(,,)=1. So, k(B)=I(B)+2. By (1D) and
(1E), k(B)=6 or 9. If k(B)=9, then we have a contradiction using the
same arguments as in the proof of (2B). Hence %(B)=6 and [(B)=4.

When B is of type E, we have to divide into three subcases to
determine the values k(B) and [(B). Suppose that B is of type E.. We
may assume that the T'(b)-orbits of D are as follows;

{1 {x, 2Ly, v oy, oy o7y, a7y

As usual we set b,=b°® and b,=b“. Since ¢(h,)=2, it follows that
I{b,)=2 by (2C). Let C¥(x) be the extended centralizer of z ie. C}¥(x)=
{g€Glz*=x or z7'}. For any g€ T(b) NC¥(x),
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(b= ()7 = (b7)“° =5 =b..
So C#(@)=C(x)(T(h) NC%x)) fixes b,. Therefore C¥(x) acts on IBr(b.,)=
{0%, 0} by conjugation.
Now we can divide into three subcases.
Subcase (a): C#(x) fixes ¢ and ¢Z, and the same occurs for y.
Subease (b): C#(x) interchanges ¢? and ¢, and the same occur for y.
Subecase (¢): Otherwise.

Then we have the following ;

ProrosiTiON (2E).

(i) In the subcase (a), we have k(B)=9 and l(B)=4.
(ii) In the subcase (b), we have k(B)=6 and l(B)=1.
(iii) The subcase (c) does not occur.

Proor. We have

k(B)=1(B) +1(b.) +1(b,) +1{b.)
=l(B)+2+2+1.
Then k(B)=6 or 9.

As in the proof of (2C), we let b, be the block of Cg(@)/<x> which
corresponds to b,. Again by Dade’s Theorem, the Cartan matrix of b, is

2 1 6 3
<1 2). Then the Cartan matrix of b, is (3 6>' Let d?, d: be the

column of generalized decomposition numbers for ¢i or ¢, respectively.
It follows from [10] p. 173 Lemma 6.2 that

(di, di) =

(d3, d3) =6
(di, d5) =3.

(%)

Assume that the subcase (a) occurs. Then df and dj are integral.
We can easily show that

df:t(slv €2y €3y €4y sy Egy 09 0’ O)’
5="(0,0, 0, &, &, & &1, &5, &) (ei==x1)
is the essentially unique solution for (x). Hence (i) holds.

Next assume that the subcase (b) occurs. Then di=d:. Set di=a+bo
where o is a cubic root of unity and a, b are integral columns. From
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(*} we get
(a, a)=b, (a, b)=1, (b, b)=2. (%)

In this case,

a :t(O’ 52’ 53) 54’ 55, 56)9

b :“-(61, &2, 0, 0, 0, O) (6i: il)

is the essentially unique solution for (*x). Hence (ii) holds.

Next suppose that the subcase (e¢) occurs, then we may assume that
Cé(x) fixes ¢f and ¢35, and C¥(y) interchanges ¢! and ¢i. Considering d?
and di, we get k(B)=9 by the same argument as in the subcase (a).
On the other hand, we apply the same argument as in the subecase (b)
for b, and get %£(B)=6. This is a contradiction, so (iii) holds.

REMARKS.

(1) If B is principal, then the subease (a) occurs.

(2) The subcase (b) actually occurs. We have the following
example.

We let @Q; act on D in such a way that Z(Q,) acts trivially and Q./Z(Qs)
acts faithfully. Let G=DQ; be the semidirect product. Then the non-
principal 3-block of G is an example of the subcase (b).

When B is of type D, the situation is very similar to the E,-case.
Suppose that B is of type D,, We may assume that the T'(b)-orbits of
D are the following;

1L {e 2™y, vy oy, 2oy 27y, 27y

As before we set 5,=b” and b,,=b“¥. Since [(b,)=I(b.,) =2, we can
divide into three subcases (a), (b) and (¢) in the similar way. We have
the following ;

ProprosiTiON (2F).

(i) In the subcase (a), we have k(B)=9 and [(B)=5.
(ii) In the subcase (b), we have k(B)=6 and [(B)=2.
(iii) The subcase (c) does mot occur.

ProoF. Omitted.

The remarks after (2E) hold also in this case if we replace @, by
SD;.
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PRrROPOSITION (2G). Suppose that B is of type SDy. If B is princt-
pal, then k(B)=9 and l(B)=".

Proor. The T(b)-orbits of D are {1} and D% By (1A) and (1B),
k(B)=1(B)+1(b,)
=I(B)+2.
Since b, is the principal block of Cq(x), the remaining proof is quite
similar to that of (2E) (i). So we stop the proof here.
THEOREM (2H). Suppose that B is of type Q.. If B s principal,
then k(B)=6 and [(B)=5.

ProoF. By (1A), {(1,B), (%, b.)} is a set of representatives for the
conjugate subsections associated with B, where b, is the prinecipal block
of Ci(x). 1(b,)=1 because ¢(b.,)=1. So,

E(B)=1(B)+1(b.)
=l(B)+1.
Let d* be the column of generalized decomposition numbers for ¢°,

where {¢°}=IBr(b,). Since (x, b,) is cojugate to (x%b,) in T(b), d° is
integral. On the other hand, we have (d°,d")=9. Hence,

d*="(1, e 6, ++ 85, (L, €1 85, 85 €5 265)  OF (1, 2ey, 2ey) (e;=%1).

Suppose that d*=*(1, 2¢,, 2¢,). Let Irr{B)=1{y, %1, ¥}, where yx, denotes
- the principal character of G. It follows from the orthogonality relations
that

1200 (1) +2ex2(1) =0.

This is a contradiction.

Next suppose that d°=*%(1,¢, -+, ). We seek a contradiction. We
have k(B)=9 and [(B)=8. 8Set Irr(B)={y, % -, %xs}- It follows from
the orthogonality relations that

8
1+ > ex:=0 on p-regular elements of G.
=1

The decomposition matrix D and the Cartan matrix C with respect to
the basic set {3, et - - -, &¥s} are the following;
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{1 R
.
|

.1,

D

_ |
E &7 . -1 E
. 1----1 2

Now we consider a 3-fold covering group of G and derive a contra-
diction from the structure of the principal 8-block of the covering group.

Here a group H is called a covering group of G if there exists a sub-

group Z of H such that ZCH' NZ(H) and H/Z=G. When Z is of order

3, H is called a 3-fold covering group. First of all, we show the existence

of a 3-fold covering group of G.

(1) N=Ng(D) has a 3-fold covering group.

Set L=a 3-complement of N and K=0,(N). Note that K=LNC;(D),

L/K=Q, There exist x,y€ D and ¢,z < L with

D=Lz, y>, L=({K,0,7), 2=y, y'=x, =2y, Y=y .

Set P={xy, y.|wi=yi=[2, v.P=[2, vy, ®]=[2, ¥, ¥:]=1>. We define the
action of L on P by the following;

o=y Yi=ux, =xyr" Yi=x'y7’ and K is trivial on P.

It is easily checked that this action is well-defined and that [Z(P), L]=1.
Let M=PL be the semidirect product. Because M/Z(P)=N, M is the
desired covering group.

(2) Since D is abelian, it follows from a theorem of Swan [21] that
the 8-part of the Schur multiplier of G is isomorphic to that of N.

(8) By (1) and (2), G has a 3-fold covering group H.

There exists z€ H'NZ(H) of order 3 with H/{z)=G. Let @ be a
Sylow 3-subgroup of H. @ does not split over (). As Ny(@)/<{zd=N
and N;{Q)/QC(Q)=Qs @ is isomorphic to the above P.

Now we consider the principal 3-block B of H. A set of represent-
atives for the conjugate subsections associated with B is;

{1 B), (2, B), (7%, B), (w, b.)},

where w€Q—Z(Q) and b, is the principal block of Cy(w). Note that
the above representatives are essentially the ones for eonjugacy classes
of 3-elements in H. Since Cy(w) is 3-nilpotent, I(b,)=1. So,
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k(B)=81(B) +1(b.,) =31(B) +1=38I(B) +1=25.

43

We can view that Irr(B)CIrr(B). Irr(B)—Irr(B) divide into eight

pairs {7, 7} of 8-conjugate characters (=1, ---,8):

Irr(B)Z{Xm XI’ Tty Xs}U{%, Tty US}U{v{y ctty 774}-

The Cartan matrix ¢ of B with respect to the basic set {xs eis -

is 8 times of C;

The decomposition matrix D of B has the following form;

X{ 1
. € 0
0
&7
D= Xs| T8 1t TEs
/g "
. D,
Ns
7 .
: D!
7

Because 7; and 7] are 3-conjugate, we have D,=D/. Set D,=(a,, -

:p D=C implies that

(a;, a;)=2, (a;,a,)=1 for i#45 and 14,5=1,---

Hence we may assume that D, has the form;

(6, 8+ev- 8,

®

ccy 57X7}

“,as)-
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On the other hand D, is a (8, 8)-type matrix. This is a contradiction.
This completes the proof.

If B is principal and of type Z;, then we have k(B)=I(B)+1 and
k{(B)=9 or 6 as in the first part of the proof of (2H). It seems that
kE(B)=9. In fact we can prove it in case G is 3-solvable or D<]G (see
(2J)). But I have not proved it in general?

Next we will show that in case G is 8-solvable or D<@, the values
of k(B) and I(B) in the table 1 are true. At first we will prove a
general result.

THEOREM (2I). Let B be a p-block of G with an abelian defect group
Dand b be a root of B in Ce(D). Suppose that G is p-solvable or D<G.
Then we have an inequality

UB)=k(T()/Ce(D)),

where the right hand of the inequality means the number of conjugacy
classes of T(b)/Ce(D). Furthermore, if one of the following conditions
holds, then the equality holds in the above inequality ;

(i) B 1is principal,

(ii) the Schur multiplier of T(b)/Ce(D) is trivial.

Note that in the above theorem p is any prime number not neces-
sarily 8 and D is any abelian p-group. We introduce some notations and
conventions, We denote by Irr(G), IBr(G) the set of all irreducible
ordinary or Brauer characters of G, respectively. If N<]G, then we view
that Irr(G/N)CIrr(G). If #€Irr(N), we set

Irr(G16) ={y € Irr(G) | (1, 6% 550}

Proor or (2I}. By Okuyama [17] Theorem 4.1 and Knorr [15], we
may assume that D<]G. Using Reynolds [19] Theorem 1, we may assume
that T()=(G. By Theorem 6 in the same paper, we may assume that
D is a Sylow p-subgroup of G and Cy(D)=DxZ, where ZCZ(G).

For each 2;€Irr(Z), there is a p-block b; of C;(D) with

Irr(d) ={¢ X 2| ¢ € Irr (D)},

This correspondence defines a bijection from Irr(Z) onto the set of all

2) If we are allowed to use the classification theorem of finite simple groups, we can show
that k(B)=9 holds in case B is principal and of type Zs.
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p-blocks of Ci(D). So by, ---,b, are all the p-blocks of Ci(D), where
n=|Irr(Z)|. Set B,=b¢ (i=1,---,m). As T(b;)=G for any i, i+j implies
B;#B;. Then B,,---, B, are all the p-blocks of G.

Since G/D is a p’-group, we have

IBr(G)=Irr(G/D)= U Irr(G|1,X2A),
A;€1rr(Z)

where 1, denotes the principal character of D. By Brauer [2] (4F),
Irr(G |1, X 2;) SIrr(B;). Therefore IBr(B,)=Irr(G|1,X4;).

Using [14] p. 196 (11.10), we get

| Irr (G |15 X 2:) |SK(G/Co (D). ()

Hence I(B;)<Ek(G|Ce(D)).
If B is principal, then we may assume that O,.(G)=1. So Z=1 and
B is the only p-block of G. Hence,

I(B)=k(G/D)=k(G/Ce(D)).

If the Schur multiplier of G/C¢(D) is trivial, then the equality holds
in (%) by [14] p.195 (11.9). This completes the proof.

COROLLARY (2]). If G is 3-solvable or D<]G, then the values of k(B)
and [(B) in the table 1 are true in all cases.

ProOOF. We may assume that B is of type Z, Qs or SD,. By [13]
p. 643 Satz 25.3, the Schur multipliers of Z;, and @, are trivial.

We will show that the Schur multiplier of SD, is also trivial. Sup-
pose that it is non-trivial. Then we have a covering group 7 with
T/<{zy=S8SDy; and z€ T'NZ(T) where z is an involution of 7. By the
structure of SDy, Z(T)=<z) or |Z(T)|=4. If Z(T)=<z), T is a 2-group
of maximal class. So T=D,, @ or SD,, by [18] p. 339 Satz 11.9. Hence
T|{zy=D, a contradiction. If |Z(T)|=4, then Z(T)< T’ since Z(T)/{z><
(T/<z>)’. We have T/Z(T)=D, But this is a eontradiction because the
Schur multiplier of D, is Z, ([13] p. 646 Satz 25.6). Therefore the Schur
multiplier of SD, is trivial.

It follows from the equality condition (ii) of (2I) that I(B)=8,5 or
7 if B is of type Z, Q; or SD, respectively. Since the difference
k(B)—1(B) is easily determined in each case, the proof is complete.

ReMark. Theorem (21} holds also for any (not necessarily abelian)
defect group D if we replace [(B), C4(D) by l,(B), DCs(D) respectively,
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where [,(B) denotes the number of irreducible Brauer characters of
height 0 in B. The proof is similar to that of Theorem (2I).

3. Decomposition numbers and Cartan matrix

In this section, we suppose that B is the principal 3-block of G with
an elementary abelian defect group D of order 9. We consider the de-
composition numbers and the Cartan matrix of B with respect to a
suitable basic set. Since the case e¢(B)=1 is trivial, we treat the
remaining eight cases in the following propositions. Let y, be the princi-
pal character of G and G, be the set of all 3-regular elements of G.

ProPOSITION (3A). Suppose that e(B)=2 and T(b) acts fived point
Sreely on D. Let Irr(B)={y -+, s}, then we have

1—epite=0, Lo=2= -+ =% 0N Gy,

where ¢;==x1. The decomposition matrix and the Cartan matriz of B
with respect to the basic set (Y, &xs} are the following ;

‘10

)

|

| (2 1>

L C= .
& | 1 5
&g l
82J

If we have k(B)—I(B) relations for characters on G, and choose a

suitable basic set, then the deecomposition matrix and the Cartan matrix
with respect to this basic set is easily written down as is seen in (3A).
Therefore, in the following propositions we state only relations for

characters on G, without showing the decomposition matrix and the
Cartan matrix.

&

(]
[

o
()

[emJi I o B o

PROPOSITION (3B). Suppose that e(B)=2 and T(b) fixes a non-trivial
element of D. Let Irv(B)={)o, % - -+, %s}. Then we have

1+%=% L=%=1 L=%=X%, L=X=X on G,

We can choose {¥, X} as a basic set.
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ProposiTION (3C). Suppose that B is of type Z,. Let Irr(B)=
o X =+ A5} Then we have

I4teitedtets=ede L=x on G,
where e;==+1. We can choose {fo, &)1, &) €5)s} @S @ basic set.

ProrositioN (3D). Suppose that B s of type E, Let Irr(B)=
Dos A -5 Xs). Then we have

Tdeqitede=els+elatests=eels+ el +es)s=0,
1es)s+eexs =621+ elutEdln = o)+ €55 + sl

on Gy, where e;==x1. We can choose {3 ei)ts, es)s, €s} as a basic set.

ProrosiTiON (3E). Suppose that B is of type D, Let Irr(B)=
{os X1 =+ +» As}.  Then we have

1+eaitele=es+eutests=eals+ EXr+ &s)s,
It exsteas=ei e tegi=ets+ EsXs 1+ esX(s

on Gy, where e;==+1. We can choose {Y, e} elor €)Xr EXa} @S @ basic set.

PropoSITION (3F). Suppose that B is of type Q. Let Irr(B)=
o 2w -2 %5k, Then we have

4
1+ Z:leiXi+2esx5=0 on Gy,

where ¢;=x1. We can choose {)y, ets, &:Xer es)Xs &sXs} @8 @ basic set.

ProposITION (3G). Suppose that B is of type Z,. Assume further
that k(B)=9. Let Irr(B)={Xo, X1 -+, As}. Then we have

3
1+ X ei=0 on G,
i=1

where ¢;==x1. We can choose {Jo, &)1, - -+, &s} as a basic set.

ProrosiTioN (3H). Suppose that B is of type SDy,. Let Irr(B)=
Do X» + - > %s}.  Then we have

TteiFete=csfat et ess=eos+ et es)s

on G, where e;=+x1. We can choose {Yo, &Xs> €:X2s €5Xsr Ex)er E6)er €)X} AS @
basic set.
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The proofs of the above propositions are very similar, so we prove
(3C) only, which will be used in the next section.

ProoF oF (8C). We use the same notation as in the proof of (2D).
By (2D), k(B)=6 and [(B)=4. B has two proper subsections (z,b.) and
(xy, b,,) with 1(b,)=1(b,,)=1. Let d*,d* be the column of generalized
decomposition numbers with respect to b, or b,,, respectively. Then d°
and 4* are both integral. By [10] p.173, Lemma 6.2,

(d*, d°) = (d*, d) =9,
(@, d*) =0.

Since y(x)=x(1)=yx(@y) (mod3) for any y€lrr(B), we have d*=d*
(mod 3). Then we get the essentially unique solution;

dz:t(lv €14 €95 €3y €4y —285),
daﬂ/_—_t(ly €15 Egy €3y '—284, 85) (si: il)'

For g€ G, we let xz(g) be the column whose y-th coefficient is x(g).
As (xz(1), d*—d**)=0, e,=¢;. For any sc€ G, we get

(xs(s), &%) = (x&(s), d*) =0.
So we obtain
14&%4(8) +eaxa(8) +esxa(s) =esXa(s),
yAOESACR

The proof is complete.

4, Applications

In this section, we assume that G has an elementary abelian Sylow
3-subgroup Pof order 9. G is called of type X if Ny(P)/Ce(P)=X. Let
B, be the principal 3-block of G. So P is a defect group of B, and we
can apply the results of the sections 2 and 8 for B,. We will investi-
gate the structure of G by using informations on the structure of B,
Note that G is of type X if and only if B, is of type X.

If G is of type 1, then G is 3-nilpotent by Burnside’s Theorem.

If G is of type Z, or E,, we have the following results.

THEOREM (4A) (Smith-Tyrer [20]). If G is of type Z,, then O*(G) <G
or G is 8-solvable of 3-length 1.
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THEOREM (4B) (Higman [12] Theorem 3.1). Let G be of type E,.
If C;(P)=P, then G is not simple.

The following corollary will be needed in the proof of (4I).

COROLLARY (4C). Let G be of type E, and suppose that Cg(P)=P.
If G ts a direct product of isomorphic stmple groups, then G=A;X A
or PSL(2,7)x PSL{2, 7).

Proor. By assumption, G=S8,X --- XS, and S;=S is simple. Because
| P{=9, it follows from (4B) that r=2. There exists x€G of order 3
with PNS,=<x). Clearly C¢(x)=Cs (x) XS,. Since Cq(P)=P, Cs,(x)=<x).
By Feit-Thompson [11], S,=A; or PSL(2,7). This completes the proof.

In case G is of type Z, we will prove the following;

THEOREM (4D). Let G be of type Z,. Suppose that Cq(P)=P and
05, (G)=1. Then one of the following holds;

(i) G=A4, or A,

(ii) G[>P.

First we will prepare some lemmas.

LEMMA (4E). Assume the hypothesis of (4D). Then G is simple or
G[>P.

Proor. We omit the proof of (4E) since it is similar to that of (4H).
Next lemma is a key result for the proof of (4D).

LeMMA (4F). Assume the hypothesis of (4D). If G is simple, then
G has an ordinary irreducible character of degree 5 or 10.

PrROOF. G has two conjugacy classes of 3-elements. Let x and y be
representatives for these classes such that (z, y>=P. Let ¢ be an involu-
tion of N4(P). By the assumption, the principal 3-block B, of G has the
following form (see (2D), (3C));
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1 X Y t

%o 1 1 1 1

e d, & & @,

%z d, & & a,

A ds & & s

A d —e 2e

+s d 2 —c¢ a (e, e;=21).

Suppose z'y*=t¢ for some g,h€G. It follows from [13] p. 142 Auf-
gabe 75 that (2% y*>=A, so z* is conjugate to %" or (y")~*. Therefore
z is conjugate to y, a contradiction. Hence there exists no pair (u,v)
such that » is conjugate to x, v is conjugate to y and wv=¢. By [14]
p.45 (3.9), we have

xefg@ 2(1)

If x(x)+#0 and y(y)#0, then % is in a 3-block of full defect. So x¢ B,
sinece Cg(P)=P. Therefore we get

1+ 3 % 4%,
+i;1d,~ d 0 (%)

The character table of N=Ng(P) is as follows;

1 @ Y t
24 1 1 1 1
22 1 1 1 1
A3 1 1 1 -1
A4 1 1 1 -1
A 4 1 -2 0
A 4 —2 1 0

Here we omit the two columns corresponding to elements of order 4,
which are not needed.

Now we consider the decomposition of 3|y into the sum of irredueci-
ble characters of N for y€Irr(B,). If ¢,=1, then we have
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Xi iN:2j+ ];1(61‘*‘02""21‘,‘)-

Therefore y:(1)=9+1, |%{) |Sn+1. So,

% | o ntl =1,2, ---.
}dii_sm—i—l n=L s

Similarly we get that

if =—1, then | % |<_ ™ =0,1, -+
¢ d; 1~ In+8 "
if e=1, then e < n+1 n=0,1, :
d In+5
if e=—1, then | L (< ™ n=0,1, -
d In+4

Hence if d,>10, then l“i [gi (e;=1) or <% (i=—1) and if d>5,

el 2 1 -
thenldlZM €=1) or <5 (e=—1
Case 1. e=1.

Note that ¢,=—1 for some ¢ in this case. Assume that d,>10 for
all © and d>5. By (*) and the above inequalities, we have

3 3
1=4-2— 5 % <42 %
d ;d,‘ld}+i§ a.
2 1,3 3
4.2 414 8 48 09983
<t tetigtag

This is a contradiction.

Case 2. ¢e=—1.
Suppose that d,>10 for all 7. As in Case 1, we have

f— ._.a_-—-3 a1< i > ai

=43 Ed,=4]d!+§l a,
1.3 ,3 .3

413 8 03 _g0181
RS CRSTIIST

This is a contradiction.
Therefore d;=10 for some 7 or d=5 in any case. This completes
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the proof.

REMARKS. If we investigate the equality (x) more carefully, we can
obtain the following results;

(i} e=—1 does not oeccur.

(ii) If we assume that d>5, then the values of the character table
of B, at 1,2, ¥ and ¢ are uniquely determined as follows;

1 x Yy t
Yo 1 1 1 1
&1 10 1 1 -2
Le 10 1 1 -2
%s 35 -1 -1 -1
X 14 -1 2 2
xs 14 2 -1 2

LEMMA (4G). Let 0 be a faithful Z-valued character of G of degree
4
n. Set {8(9)|g€ @G, g#ll={a, ---,a}. Then |G| divides El(n—a,-).

A l A
Proor. Put 6=T](0—a;x). It is well-known that 6 is a generalized
i=1

character. So, we have

6)/1G1=10, x)c € Z.

Hence |G| divides 4(1)= ﬁ(n—ai), the desired result.

i=1

Now we are ready to prove (4D).

ProOF OF (4D). At first we introduce some notations and convention.
We denote by B,(p) the principal p-block of G and identify B,(p) and
Irr(B,(p)) in this proof. Let S, be a Sylow p-subgroup of G for p=+3.
We use the notations in the proof of (4F). We use the results on the
structure of p-blocks of defect one freely.

By (4E), we may assume that G is simple.
Case 1. d=5.

Since every algebraically conjugate of y, lies in B,(8), it follows from
the shape of B,(3)-table in the proof of (4F) that y, is Z-valued. Then
we have that the primes dividing |G| are 2,3 and 5 and that 5°}|G|. So,
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|G |=2°35.

Here we may quote a theorem of Brauer [4] to get the conclusion
G=A4, but we will prove it without using such classification theorems.
By (4G), |G1|9!, therefore 3<a<7. Since d;|25, d;=¢, (mod9) and

3
1+ Z}leidi-i—S:O, we have that d;s are 8, 8 and 10. If y;(1)=8, then
%:(t) =0 by considering yy. Then the values of B,(3)-table are uniquely
determined as the following:

1 x Y t
Xo 1 1 1 1
L 8 -1 -1 0
Az 8 -1 -1 0
Ls 10 1 1 -2
Xt 5 —1 2 1
e 5 2 —1 1

By Brauer [4] Proposition 1, C;(S;)=S;. We see that B,(8) N B,(5)<
%o X1 %2}. Using Brauer-Tuan [8] Lemma 3 (block separation), we have

1)x)=0  (mod 5).

1€ By(® N By(5)

So,
By(3) N Bo(5) ={Xo» s Az}

Because %, ¥: € B,(b) are exceptional, it follows that | Ng(Ss) : Ce(Ss) |=2.
The Brauer tree for B,(5) is

As 7}|G|, the former does not occur. Then

By(5) ={%o, Aw X2 ¢},

where ¢ is of degree 9. By [8] Lemma 2, y,, x2¢ By(2). Therefore B,(2) N
B,(5) S{z» ¢}. By block separation, we have

B,(2) N\ By(5) = {3, ¢} and 8=0 (mod 2°).
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So =3 and |G|=2%8". Hence G=A,.
Case 2. d>5.
By the remarks after (4F), we have the following B,(3)-table;

1 x Y t
Xo 1 1 1 1
4 10 1 1 -2
Xz 10 1 1 -2
Az 3% -1 -1 -1
Xs 14 -1 2 2
Ls 14 2 -1 2

If p is a prime divisor of |G|, then p<18 and 11*}|G|, 18°}{G|, be-
cause Y is Z-valued. Suppose that 13]|G|. By Feit [9] Theorem 1,
Ce(Si) =Sw. So, if y€Irr(@)—B,(13), then 13|x(1). Therefore i, 1€
B,(13), a contradiction. Hence 13}|G|. Similarly 11}{G|. Therefore

|G| =235,

By (4G) we have |G||27!, so b<6 and ¢<3. Because y, is Z-valued,
G has no element of order 7°. If S, is extraspecial of order 7° or ele-
mentary abelian of order 7% then S, does not have a faithful Z-valued
character of degree 14. Therefore S,=Z;xXZ, or Z, Hence every
character in B,(7) is of height 0. So, B,(3) N Bo(T) S {Xe X1 X2} Take z€ S,
z=#=1. Because 9}|Cs(2) |, [#% 2z]51 for all g€ G or [y’ z]#+1 for all g&@G.
It follows from [10] p.174 Lemma 6.4 that

1@)2(@)=0 or > xyx(z)=0.
1€ Bo® N By 2€ByB N By (M
Hence B,(3) N B,(T)#={x:} and so B,(7) has a character of degree 10. By
[8] Lemma 1, C4(S;)=S,;. By block separation,
(1) x(x) =0 {mod T7°).

1€ By NBy(N)
Therefore

c= 1 and Bo (3) ﬂ Bo (7) = {XOv XI! Xz}-

As %, %€ By(T) are exceptional, [N¢(S:): Ce(S;)|=8. Degree equation:
1+02+0,x,—10=0
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has the unique solution 1+15—6—10=0, because 3|x;, x;|2°8’5* and x;=d;
{mod 7), where 6,=+1. So,

By(7) :{Xm X Xz» D, ‘bz}

where ¢,{1)=6, ¢,(1)=15.
Because ¢, is Z-valued, G has no subgroup of order 5* and so b=1.
By (4G), |G]!11! and so 8<a<8. We have

B,(5) N By(T) S{%, 1}
By block separation,
B,(5) N Bo(T) ={xo, ¢1}-
We get C;(S;)=S; because of [8] Lemma 1. By block separation,

Bi(3) N By{5) = {20 2e» s}
So,
By(5) = {0 %as Ao P1s Pss
where ¢;{1)=21.
Then we have |N¢(S;): Ce(Ss) |=4. Hence | N(Sy) |=20 and | N¢(S,) [=21.
By Sylow’s Theorem for p=5 and 7, we have a=3. So,

|G|=2%31.
Hence G=A,. This completes the proof of (4D).

PROPOSITION (4H). Let G be of type Z,. Suppose that C¢(P)=P and
0.(G)=1. Then one of the following holds;

(1) G is simple,

(i) G=PGL(2,9),

(iii) G>P.

ProoF. Let M be a minimal normal subgroup of G. Then PNM=+1
and so PCM because G is of type Z, By the Frattini argument, G=
MN,(P). So |G:M|=1,2,4 or 8.

If |G: M|=1, then G=M is simple. (i) holds in this case.

If |G: M|=2, then M is of type Z. By (4D), M=A; or A,. So G
is a subgroup of Aut{4.)=PI'L(2,9) or Aut(d,)=S, Therefore G=
PGL{2,9), (ii) holds in this case.

If |G:M|=4, then M is of type Z,. By (4A), M'SM. This is a
contradiction.
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If |G:M|=8, then M is of type 1. Sinee 0,(G)=1, M=P by
Burnside’s Theorem. (iii) holds in this case.
The proof is complete.

REMARK. It seems that the case (i) of (4H) does not oecur. But I
have not proved it.

The proofs of the next three propositions are very similar to that
of (4H). So we omit their proofs. Note that (4C) is needed in the proof
of 4I).

PRrROPOSITION (4I). Let G be of type D,. Suppose that Ce(P)=P and
0:(G)=1. Then one of the following holds:

(i) G is stmple,

(i) G=S, S, Asz Z, or PSL(2,7) Z Z,
(iii) GpDP.

PROPOSITION (4J). Let G be of type Qs. Suppose that Cz(P)=P and
0. (G)=1. Then one of the following holds:
(i) G 1is stmple,
(ii) G=M, (one point stabilizer of the Mathieuw group M,),
(iiiy GDP.

ProposiTiON (4K). Let G be of type SD,. Suppose that Cg(P)=P
and Ou(G)=1. Then one of the following holds:
(1) G 1s simple,
(ii) G has a simple subgroup of index 2,
(ii)y G=Pr'L(2,9),
(iv) GDP.

v

ReEMARKS. In (4I), (4J) and (4K), each case actually occurs. G=A,,
PSL(8,4), My or Aut(M,,) is an example of (i) of (4I), (i) of (4J), (i) of
(4K} or (ii) of (4K), respectively.

5. Some results for abelian defect groups

In this section, we state some results on blocks with an abelian
defect group without proofs. Let B be a p-block of G with an abelian
defect D and b be a root of B in C4z{D). The following theorem treats
of the simplest case in ¢(B)=2.
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THEOREM (BA). Suppose that p is an odd prime and e(B)=2. If
[D, Tb)1=Z,, then we have

kB =23 D| and 1(B)=2.
2p

First the author proved this theorem under the additional hypothesis
p+#T, but A. Watanabe of Kumamoto University proved the theorem in
the present form. She showed [(B)=2 by using the theory of lower
defect groups, and this result together with column calculation methods
that we used in the section 2 yields the theorem.

In case ¢(B)=2 and T'(b) acts fixed point freely on D, we have the
following ;

PrOPOSITION (5B). Let p=>5 and D be elementary abelian of order
25. Suppose that e(B)=2 and T(b) acts fixed point freely on D. Then
we have

E(B)=14 and I(B)=2.

This proposition was also proved by A. Watanabe. Our first version
of the proposition contained the additional hypothesis that D is a Sylow
5-subgroup of G and z°N D={x, ™"} for all x€ D.
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