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A 2.local geometry for the Fischer group Fay
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(Communicated by N. Iwahori)

0. Introduction

The notion of a 2-local geometry and its diagram for a sporadic simple
group is introduced by Ronan-Smith [12]. A 2-local geometry is a group
geometry defined by maximal 2-constrained, 2-local subgroups of the
group (for the meaning of a group geometry, see the beginning of section
5). This was inspired by a building and a Dynkin diagram for a group
of Lie type.

The purpose of this paper is to give a description of a 2-local geom-
etry for the Fischer group F,, which is associated with the 2-local
diagram for F.. This is obtained as a natural extention of the geometry
for the Mathieu group M.

In Ronan-Smith [12], the following diagram is given for F,.

1 2 3 4
Fy ot [ o L 3
M, I, X L,(2) Spl4, 2) X L,(2) 0-(6,8).2
212 2X26+8 23—0»12 2!+12‘3

In this diagram, we find those for M,, and O~(6,3) as subdiagrams
(91, [12).

1 2 3
M2| : = ° 45
L(2) ZaX Ly(2) Sp{4, 2)
2 2 283
1 2 3
07(6,8) : « > =
Spi4, 2 PO Sp(4, 2)
28 2 Qi+ ot

In these diagrams, each node e denotes a maximal 2-constrained, 2-
local subgroup of the group, and we write é under the node to mean
that the corresponding 2-local subgroup is an extension of the group B
by the group A. If we remove the node above %, we get the diagram
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for the group A. (A square O vanishes if the removed node is a neighbor
to the square; otherwise it is treated as a node e, except when we remove
the first node in the diagram for Fl,; the remainder diagram is for M,.)

Now a geometry associated with the diagram for M,, is described by
using the Steiner system S(24, 8, 5), whose automorphism group is M,
([12]). The set of vertices is the union of the sets of octads, trios, and
sextets, which are denoted by the three nodes of the diagram (the first
node for octads, the second for trios, and the third for sextets). Those
are natural objects in the study of S(24, 8, 5), and their stabilizers coin-
cide with the corresponding 2-local subgroups (section 1). The subdiagram
obtained by removing a node indicates the subgeometry given as the
residue of a vertex belonging to the node (that is, the subgeometry
consisting of vertices incident with the vertex). In the case of the first
node, we get the geometry of points and lines of a projective 3-space

which is indicated by e——e—1. In the case of the third node, the
Sp(4, 2)-generalized quadrangle is indicated by e——m.

Now we will sketch roughly the geometry for F,. The group Fy, is
generated by a unique class D of 3-transpositions (i.e. #*=1+2 and |xy]|
=2 or 3, for any =,y (r+y) in D). Let L be a maximal set of mutually
commuting elements of D. Then we have | L|=24, and we can define the
structure of the Steiner system S(24,8,5) on L. Hence we can define
octads, trios, and sextets on L, and, furthermore, some subgroups of
{L) are naturally associated with them (section 4). Thus we have four
classes of elementary abelian 2-subgroups of F, (L) and its subgroups
defined by octads, trios, and sextets). Our geometry for F,, is obtained
by defining the set of vertices and the incidence as the union of those
classes of elementary abelian 2-subgroups and the inclusion relation,
respectively. Then the stabilizer of each vertex is a maximal 2-con-
strained, 2-local subgroup which appears in the diagram (Theorem 4-10,
11). Moreover, as expressed by the diagram, we get the geometry for
M, and O~(6, 3) as residues in this geometry (Theorem 5-3).

The 2-local geometry for O~(6, 8) also appears in Kantor [9], from the
point of view that 0-(6,3) is a subgroup of PSU(6,2). But for our
convenience, we will represent this geometry in a slightly different form,
although Kantor’s description is more natural than ours.

For structures of groups, we will use the following notation. We
write X=B. A to mean that the group X is an extension of the group
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B by the group A. For a prime number p, and integers n and m, p"
denotes an elementary abelian p-group of order p*, and p"*™ denotes a
special p-group P such that P'=Z(P)=@(P)~=p", and P/P'=p" (where P/,
Z(P), and @(P) denote the commutator subgroup, the center, and the
Frattini subgroup of P, respectively). Sp(@4,2), L;(2), ete, denote the
groups of Lie type as usual, except for O~ (6, 3) which is defined in section
3. 2, and A, denote the symmetric and the alternating group respec-
tively.

In addition, for subsets X, Y of a group, we set X'={z"z€ X, y€ Y}.
In the case of X={z}, we write z* instead of {x}".

Acknowledgment; The author would like to express his sincere
gratitude to Professor T. Kondo for his hearty encouragements and
valuable advices.

1. The Steiner system S (24, 8,5) and the Mathieu group M,,

The Steiner system S (24,8, 5) is the pair (2, P) of a 24-element set
2 and a family P of 8-element subsets of £ such that any 5-element
subset of £ is contained in just one member of B.

Witt proved that such a system is unique up to isomorphism.

Members of & are called (special) octads. The following lemma is
easily proved (see Conway [5], Curtis [6]).

LEMMA 1-1. Let (2, B) be the Steiner system S (24,8,5), and O be
an octad. Then we have

(1) There exist 759 octads.

(2) For any two elements a,b of O, there exists an octad & with
the property ONC'={a, b}. Moreover there exist exactly 77 octads con-
taining a and b,

{(8) For any three clements of 2—C0, there exists an octad ¥ con-
tarning them with the property |ONC |=4.

Let (2, $) be the Steiner system S(24,8,5). We regard the set
P(R) of all subsets of 2 as a 24-dimensional vector space over F, by
defining the sum X+Y of two subsets X,Y of 2 as their symmetric
difference (XUY)—(XNY). A subspace C of P(Q) is the space spanned
by all members of 4.



62 Masaaki KITAZUME

THEOREM 1-2. (1) The space C is 12-dimensional.
(2) For Xc(,|X|=0,8,12,16, or 24. Moreover | X|=8, if and only
if XEB.

Proor. See Conway [5].

DEFINITION. (1) A trio is a triplet of mutually disjoint octads.

(2) A sextet is a system of mutually disjoint six tetrads (i.e. 4-
element subsets of 2) such that the union of any two of them is an
octad.

(3) A sextet S is called a refinement of a trio I, if each octad of
9 is the union of two tetrads of S.

LEMMA 1-8. (1) Each tetrad is contained in exactly one sextet. If
{T,, +++, Ts} is a sextet, then the octads containing T, are just T\UT, «--,
T.UTs.

(2) Each trio has exactly seven refinements,

(8) Let I be a trio, and {S,, -+, Si} be the set of all refinements
of . If an octad O has the property that O is the unton of two tetrads
of S; for each 1€{1, .+, T}, then O is one of the three octads of I.

(4) There exist 3795 trios.

Proor. See Curtis [6].

The Mathieu group M, is defined as the full automorphism group of
(2, B) (i.e. the group of all permutations on 2 that stabilize & globally).

THEOREM 1-4. (1) M,y acts 5-transitively on £, and transitively
on the set of octads, trios, and sextets, respectively.

(2) Let N, be the stabilizer of an octad, and K, be the kernel of
the action of N, on the eight elements of that octad. Then N YK, is
isomorphic to the alternating group As.

(8) Let N, be the stabilizer of a trio, and K, be the kernel of the
action of N, on the seven refinements of that trio. Then N,/K, is isomor-
phic to the projective linear group Ls(2).

PrOOF. See Curtis [6].

REMARK. Let N, be the stabilizer of a sextet. The structures of
the N, {t=1, 2, 3) are as follows (see Curtis [6]).

N;=2% A,
N,=28 (23X Ly (2)).
N,=2° 3. %,
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2. 3-transpositions

DEFINITION. Let G be a finite group, and D be a set of involutions
of G. If D satisfies the conditions

(i) G=<D), and D°=D,

(ii) if x,y€ D, then the order of zy is 1,2, or 3,
then D is a set of 3-transpositions of G.

We set D,={x€ Dide=xd+1} for d€ D, and [ =_,={maximal sets
of mutually commuting elements of D}. Then members of _[° are given
as the intersections of D with Sylow 2-subgroups of G. In particular, G
acts transitively on /. For L€ [, we set w(@)=|L|, and it is called
the (D-) width of G. Subgroups generated by elements of D are called
D-subgroups of G.

The following three lemmas are in Fischer [7].

LEMMA 2-1. Let D be a set of 3-tramspositions of G.

(1) If N is a proper normal subgroup of G, then DN|N is a set of
38-transpositions of G/N.

(2) Leta,b, and c be distinct commuting elements of D. Then we
have Cp (ab)=Cp (a,b) and Cp(abe)=C) (a, b, c).

LEMMA 2-2. Let D be a conjugacy class of 3-tramspositions of G,
and d€D. Then we have,

(1) d%9=d0,(G) N D={e€ D|Cp(d)=Cp(e)}.

(2) d%9=dO,G)ND={ec D|D,=D,}.

(8) Set V=<ed|Cp(d)=Corle), d,e€Dy. Then V<0,G), and
O.(GIV)<Z(G]V).

The number |d%®| is called the 2-depth of G. In the remainder of
this section, we assume D and G are as in Lemma 2-2.

LEMMA 2-3. Suppose G’ is simple. Let a,b,c, and d be elements of
D with the properties a+b, c#d, and ab=cd. Then {a,b}={c, d}.

LEMMA 2-4. Let N be a proper normal 2-subgroup of G. Set D=
DN/N and d to be the image of d € Din D. Then the following conditions
are equivalent for d, ec D,

(1) Cp(d)=Cple),

(il) Cpd)=Csfe).

Proor. Easy.
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LEMMA 2-5. Suppose G#Z(G). Set D=DZ(G)|Z(&), and d to be the
image of d€ D in D. Then |D|=|D|. Moreover, for d, ec D, d commutes
with e if and only if d commutes with e.

Proor. Suppose de € Z(G) for d, ec D. Since d=d*=d’, d commutes
with e. Hence if d+#e¢, we have D<C,(de)=Cy(d,e) by Lemma 2-1(2).
Since D is a conjugacy class of G, we have D<C,(D), a contradiction.
Hence d=e¢, and so |D|=|D|.

Suppose d commutes with ¢ but that d does not commute with e.
Then (de)*=1 and (de)’c Z(G). Hence ed=(de)’€ Z(G), and this contra-
diets | D|=|D|. Thus the lemma is proved.

LEMMA 2-6. Suppose G/Z(G) is isomorphic to the symmetric group
.. Then G=2,.

Proor. We can choose distinet elements d,, ---,d,_,€ D such that
(dd;)*=1 if [i—j|=1, and (d.d;)?=1 if |i—j|>1. Then K=<d, +++, duv
=Y, By Lemma 2-5, we have |D|=|DZ(G}/Z(G)|=n(n-1)=|KND|
Hence we have G=K as required.

LEMMA 2-7. Suppose the 2-depth of G equals 4. Let a € D, and set
a9 ={a,b,c,d}. Then we have abed € Z(G). Moreover for any x€ D, the
product of the elements of %% equals abcd.

Proor. If x¢ Cpla), then z€ Cp(a, b, ¢, d) by Lemma 2-2, and so z¢€
Cplabed). Let x¢ Cp(a). Then x¢ Cpla)UCh(d) UChlc) UCh(d). Since ab,
ac, ad belong to 0,(G) by Lemma 2-2, we have z*, x*, z*€a%@. If
z®=g then x*=x, and so z€ Cp(b,¢), a contradiction. Thus we have
2029 ={g, 2, 2%, 2}, since the 2-depth of G equals 4.

Now z*? € £%9, too. If x* € {x, z°, 2**}, we have a contradiction in the
similar way. Thus =2 and so z€ Cplabed). Thus abed € Z((D))=
Z(G). Since D is a conjugacy class of G, the rest of this lemma is
immediate.

3. The orthogonal group O~ (6, 3)

Let V be a 6-dimensional vector space over F,;, and (,) be a non-
degenerate symmetric bilinear form on V with Witt index 2. Set V.=
{ve Vi, v)=1}, and E* be the set of reflections

r—> 2+ (z, a)a (zecV)
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for all acV,. We define G=07(6,3)=(E*)/Z(KE*))=(E>, where
E=E*Z(KE*))|Z(KE*)). Then E is a conjugacy class of 3-transpositions
of G, with |E|=126 and w(G)=6. Moreover we have |G:G'|=2, and '
is simple. These facts and the following lemma are in Fischer [8].

LemMA 3-1. (1) Let e and f be distinet commuting elements of E.
Then |E,|=45, |E,NE;|=12, {E [<{e)=PSU4, 2), and <{E,NE,)>=W(D,),
where W(D,) is the Weyl group of type D,

(2) Let L€ L¢ Then Ng(L)|Co(L)=As, and Ce(L)=<{L>=2°. More-
over N¢(L) acts 4-transitively on the six elements of L.

LEMMA 3-2. (1) G has a unique class of KE-subgroups isomorphic
to W*(De) =W (De)|Z(W(Ds)).

(2) Let Le L, and L={a, a’}Ula, a)} U{as a'} be a partition of
L into 2-element subsets of L. Then there exists just one FE-subgroup W
as in (1) such that W>L and o™ ={a;, a;} for each i€ (1,2, 3}.

(3) Let a and b be distinct commuting elements of E, and W be
an E-subgroup as in (1) such that W contains o and b, and a%% =
{a,b}. Then exactly three members of L contain a and b, and they are
all contained in W.

ProOF. The existence of an E-subgroup W asin (1) is proved in [8].
Let L={a,, &/} U{as, '} U{as, a} € L, and W, W, be E-subgroups isomor-
phic to W*(D,) with the property in (2). By Lemma 3-1(1), and the
structure of W(Dy), we have W=<{E, NE,, E,NE.;=W, By Lemma
3-1(2) and the fact that G acts transitively on ¢, we obtain (1) and (2).
Suppose L’ € L contains a,, a/. Then L’'—{a, a/} is contained in E, N
E., and so we obtain (3).

PROPOSITION 3-3. Let W be an E-subgroup isomorphic to W*(Dy).
And let L€ [, and a,b be distinct commuting elements of K.

(1) NelKa, b))=(2X2) - (Z3X 2.

(2) W, N;(KL)), and Ng{<a, b)) are maximal subgroups of G.

Proor. These are derived from calculations similar to those in section
4. So we omit the proof.
4. The Fischer group F},

Let G=F, (or M(24) in Fischer [8]). There is a unique conjugacy
class D of 3-transpositions of G. The following facts are in [8].
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THEOREM 4-1. (1) |G|=2".3%.5°.7°.11.13.17-23-29, |D|=306936,
and w(G)=24.

(2) |G:G|=2, and G is stmple.

(8) For Le L=_L¢ Ng(L)|Ce(L)=M,, and Cg(L)={(L>=2" More-
over Ng(L) acts b5-transttively on the elements of L.

(4) Let a,b, and ¢ be distinet commuting elements of D. Then we
have |D,|=31671, |D,ND;|=3510, and |D.ND,ND,|=693. Moreover
{Dy[{ay=Fy, {D.,NDyy/{a, by=Fyp, and {D,ND,ND,>/Ka, b, ¢>=PSU(6, 2).

The unitary group PSU(6, 2) is generated by a unique conjugacy
class E of 3-transpositions, which is the class of unitary transveections.
The following facts are found in [8], or derived from direct calculations
for unitary transvections (See the remark after the lemma).

LEMMA 4-2. Let x,y be distinct commuting elements of E.

(1) |E.|=180, and <{E.>/O,(KE.>)=PSU (4, 2).

(2) The 2-depth of {E.y equals 4.

(8) Set [z:y]l={x}Uy%“E>, Then the product of the clements of
[x:y] equals 1.

(4) Let L€ Lz, and x€ E—L. Then we have |LNE,|=5. More-
over LNE,=[a:b] for all a,b€ LNE, a+b.

(5) Set X=Cg([x:y])—[z:y]. Then we have {(X>/0,(X))=2,, and
the 2-depth of (X equals 16. In particular, | X|=48.

REMARK. <E.) is a maximal parabolic subgroup of (E)>=PSU(6,2).
A member of [ is the set of transvections with respect to vectors
in a maximal totally isotropic plane of the related unitary space.
Similarly [z:¥] corresponds to a totally isotropie line.

Now we return to G=F,=<{D). We can define (special) octads which
are subsets of Le_L=_,.

LEMMA 4-3. Let Le [, and a,, ---, a, be distinct elements of L with
the property a.,a.---a,=1. Then r>8.

Proor. Clearly r+#1,2. If r is odd, we have a,=a,---a,€G’. This
contradicts Theorem 4-1(2). Lemma 2-3 implies r+4. Suppose r=8.
By Theorem 4-1(4), there exists an element g of Ng(L) with the prop-
erties a,°=a; if 1€{1,2,3,4}, and a; ¢ {a,, ---,a;}. Hence we have a,---
a;=1=a,aa0,00° and so a,a;—a;%a’. This contradicts Lemma 2-3.
Thus r>8 as required.
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Let a,, - -+, a; be distinet commuting elements of D. By Theorem
4-1(4) and Lemma 4-2(2), we can set

{ah “ee, a4} Ua502(<Dalﬁ-..ﬂDa4>) :{aly oo, a/g}.

By Lemma 4-2(8), we have a,a,a41.0:€ {a,, a5, @;>. Hence a,-+-as=1 by
Lemma 4-3.

DEeFINITION. Let a,, ---,a; be distinet commuting elements of D.
The set {a, - -+, as is a (special) octad if a.a,---a,=1.

LeEMMA 4-4. Let a,, ---,a; be distinct commuting elements of D.
Then {a,, - - -, as} is contained in just one octad.

Proor. We have shown {a,, ---, a}Ua;2%Pa0 009 i an octad.
Let {ay, -+, a5 2,9, 20 and {a, ---, a5 %, v, w} be octads. Then we have

Q- -apyz=1=a,- - -asuvw, and so xyz=uvw. Since
x, Y, z € Cplzyz) = Cpluvw) =Chu, v, w),

there exists L€ [ containing z,v, z, u, v, w. By Lemma 4-3, we have
{x, v, zt={u, v, w} as required.

Let @ be an octad. There exists L€ _ containing (). Thus by
Theorem 4-1(8) and Lemma 4-4, for any five elements of L, the octad
containing them is a subset of L. Let B(L) be the set of all octads
contained in L. Lemma 4-4 implies that (L, B(L)) is the Steiner system
S(24,8,5). So we can define a trio of L, a sextet of L, and refinements
of a trio of L in the same manner as in section 1. We regard the
set P(L) as a 24-dimensional vector space over F, as in section 1.
Moreover a subspace C(L) is the space spanned by all members of B(L).
The facts |C(L)|=2% and |{L)>|=2" imply the following lemma.

LEMMA 4-5. Let Le [, and {a, ---,a<L. Then the following
conditions are equivalent.

(i} ay---a,=1,

(ii) {al»"',ar}GC(L>.

LEMMA 4-6. Let Le [, and € D—L. Then one of the following
holds.
(1) D.nL is an octad (for T59X2° elements of D—L).
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(2) |D.NL|=2 (fm' (224)><2m clements of D—L).

Proor. Let (@ be an octad of L. By Lemma 4-2(5), 2°(=48-(24-8))
elements of D—L commute with all elements of (). Let z be such an
element. By Lemma 4-2(4), LND,=O. By Lemma 1-1, there exist 759
octads in L. Thus 759X 2° elements have the property in (1). Let a,b
be distinet elements of L. If D,NL>{a,b} for y€ D—L, then D,NL is
an octad by Lemma 4-2(4). Since there exist 77 octads in L containing
a,b by Lemma 1-1, the number of elements x of D— L with the property
D.nL={a, b} equals | D,N D;|— (T7x2°+22)=2". Since | D|=306936=24+

759><25+<224>><21°, the proof of this lemma is complete.

Let Le f, and a,b,¢, and d Dbe distinet elements of L. By
Aschbacher-Seitz [1], any involution in <L) is fused to a, ab, abe, or abed
in Ng(L), and, furthermore, they are representatives for the conjugacy
classes of involutions in G.

The involution abed is related to a sextet of L. Set Ti={a,b, ¢, d},
and let {T,, ---, T} be a sextet of L. Sinee T,UT;(t#1) is an octad,
the product of the elements of T'; equals abed. Let z,y,2, u€ L, and
suppose xyzu—=abed. Then either {z, v,z u}={a,b, ¢, d}, or {a,b,¢,d,z, vy,
2, w} is an octad. By Lemma 1-3(1), we conclude {z, y, z, u}=T; for some
1€1{1, ---,6}. Hence the product of four elements of I is in one-to-one
correspondence to a sextet of L. The product of the elements of T, is
called the involution defined by the sextet {T,, ---, T4}.

Now we define four classes &P; (i=1,2, 3,4) of elementary abelian 2-
subgroups of G as follows.

Pi=(L)ILe L},

,={{O>|O is an octad},
Py=1{0> N <) N<OD{Os, O, O} is a trio of some L€ [},
P=KTyN -+ NTHUT,, « -+, T} is a sextet of some L€ [}.

LEMMA 4-7. Let V,€ P(1=1,2,8,4). Then we have,

(1) |V,]|=2% |V,|=2", |V,|=2, and |V,|=2.

(2) Vi (=Vs—{1}) consists of the seven inwvolutions defined by the
refinements of the trio defining V..

(8) V.t consists of the tnvolution defined by the sextet defining V,.

ProoF. |V,|isin Theorem 4-1. Set V,=<{®> where () is an octad.
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For a subset {a,, ---,a,} of O, the product a,---a, equals 1 if and only
if {ay, ---,a,=0 by Theorem 1-2(2) and Lemma 4-5. Hence |V,|=2"

Set V=<0 N<O»N<{Osy where {0, Op, O} is a trio of L€ L. Fix
a €6 By Lemma 1-1(2), for any element b of (J;—{a}, there exist
Ly, + o+, 3€ O, UG, such that {x, ---,x,a,b} is an octad. Thus we have
b=2x,- - w2 €O, O, ), and so (O, O, a>=(L>. Hence [0, O.)|>2", and
[ V510D N O < (2N?%24 =28 On the other hand, the seven involutions
defined by the refinements of the trio (), &, ;) are contained in Vi
Hence | V;|=2% and (3) is obtained.

Set V,=(TH>n---N{Tsy where {T, ---,Ts is a sextet of Le_[.
Since (T, T:>|=2" and [<T.>|=2!, we have [{T)>N<{T.y|=(29%2"=2.
Hence | V,|=2, and (3) is obtained.

LEMMA 4-8. Let V € Py, and set X=Cp(V), and X=X0,{X>)|0,KX>).
Then we have

(1) <X)/Z(KX})=07(6,3).

(2) The 2-depth of <X equals 4.

(8) Let a,b, ¢, and d be distinct commuting elements of X. Then
V=<abed> if and only if a®“*”={a,b, ¢, d}.

Proor. See Aschbacher-Seitz [1].

LEMMA 4-9. Let V€ Py, and set Y=Cyp(V), and ¥=YO0,(Y>) /0, TD).
For ye'Y, we set Oy)=y%“"’. Then we have

(1) <Y)=2.

(2) For yeY, Ol is an octad.

(8) Let L€ Ly Thereexist a,b,c€L such that L=0(a)UODb)U
Ole). In particular, {O), OW), O)} s a trio of L. Moreover V=
O(@)y N<O®)> N<0e)>-

PrOOF. Set V= <@1> N <@2> N <@3>, @1 U @2 U @3:L € .,f, and @1:
{ag, ---, as,. We may assume V=<a,0,0:0,, @,0:0505, 1,030,y (see Curtis [6]).
Let €Y, and z€ D,. Since z=x4*"i=gx%"%, we have z¢€ Cp (@, as a,).
By the same arguments, we have x€Cylay, ---,as. Thus YNCyla,)=
YN Colay, -, a) =Cpiay, - - -, as).

Set Y,=YnCyla)—{a, ---,as. By Lemma 4-2(5), <(Y,/0.(Y,))
=2, and |p%¥?| =16 for b€ Y, In particular, Y, is a conjugacy class
of (Y.

We prove that Y is a conjugacy class of (Y ). It is sufficient to
show that each a; is conjugate to an element of O,in (Y. Let bc (),
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and set Y, =Y NCp(b)—: Then Y; is a conjugacy class of <Y,>. Since
Y:>0, O, we have the required statement.

Hence by Lemma 2-2, we have Oa,)>0,. If bcOa)—0,, then b€
YNCola)=YNCs(0), and so be Z(KY,)). This contradicts the fact that
Y, is a cojugaey class of (Y,). Hence Oa,)=a,%*"=(,. In particular,
the 2-depth of <Y) is 8, and so the 2-depth of (Y DO0,{({(¥D)/0.{KYD) is 2.
Thus we have (Y pO,[(Y>)/0,KY>)=2, and so (Y O,KYD)/O,YD)=2,
by Fischer’s main theorem in [7].

Now Ola,) is the octad (). Since Y is a conjugacy class of (Y,
Oy) is an octad for any y€Y. Furthermore L=0,UO,UO:€ L.
Since any member of [y, is conjugate to L in {Y), we obtain (3).

THEOREM 4-10. Let V,€P; (1=1,2,8,4). Then we have
(1) Ng(Vy) =22 M,.

(2) Ne(Vy)=(2x2%7%), (X, X 4y).

(8) Ny(Viy) =22 (3,x Ly(2)).

(4) N(V)=2"%30-(6,3). 2.

Proor. Statement (1) is in [8], and (4) is in [1].

{2) Set V,=<(O> where O=la,, ---,as} is an octad. Moreover we set
X=Cph{®), X,=X—-0, Q@=0,KX>), and @Q,=0,KX,)). Let z€ X,. Then
(Xpp)Qo=2s and |x%|=16 by Lemma 4-2(5). Thus we can choose
T=x, %, and z; in X, such that X;=z2Ux%Ux%. Set X;=x%, and
L=0UX, for 1¢{1,2,8}. Then we have L;c _[ for each 1.

Now (X>=<(X,, O>. But for each j€{2, ---, 8}, there exist ¥, -+, ¥s
¢ X such that {a,, a; v, ---, %} is an octad by Lemma 1-1(2). Thus
;=Y Ys € <X, @1y, and so we have (X)>=(X, a,). Since <X>>Q,,
and a,€Q, we have @={Q,, ¢,>, and {X>/Q=2,.

Set Q=< |b, e L;—0(1=1,2,3)>. By Lemma 2-2, we have
O:(Xop/Q)<Z(KX»/Q). Since ((Xop/Q1)/Z(Xop/@) =25 we have
(XD =2; by Lemma 2-4, Thus Q,=@,. Since G'>Q,, and a,¢ G’, we
have @=<a;>XQ,.

Sinee X, is a conjugacy class of <(X;>, X, is a conjugacy class of
(X). Since |X;|=8x16, we have |[(X):Cyx(x)][=28. On the other
hand, Cyx (@) ><L,>=2% Henee {{X)|>2"-3.

Set M=N;(L,). By Lemma 1-4(2), N,(O)/Cy(©®)=4, In particular
No(V2)[Ce(Vi) 2 As. Sinee Co(V,)=><X), we have |Ny(Vy)|=>|As|X2"-3=
22.3%.5.7.

Now |G: N;(V3) | equals the number of octads. Hence by Theorem
4-1(4) and Lemma 4-3, we have
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1G: No(Va) |= 306936 < 31671 X 3510 X 693 X4 X 45 _ _ 1(51 .
8 X 7 X 6 Xb X 4 22.3.5-7

Thus we have Ny(V3,)/Ce(Va) =4, Co(Vy)=<(X), and |0,KX))|=2".

Let K be the kernel of the action of Ng(V,) on the set {X, X;, Xi}.
Then K>@, and Ny(V,)/K=2%;. Thus we have K/Q=A4,, and so Ng(V,)/Q
=23 X As.

We determine the structure of Q. Set @Q.=<{a,a;]1<L7, <8,
Let b, b € X;, ¢, ¢/ € X;(b#V, c#¢’) for some 4, j€{1,2,8}. If ¢=j, then
by and ¢¢’ commute. Suppose i#j. Then each element of X; commutes
with no elements of X,. Thus we have X;={c**|d¢€ X,} by the same
argument as in the proof of Lemma 2-6, and the fact X;=c%.

Hence there exists an element 5”7 of X, with the property ¢/ =¢"".
If b=0", then cc/=1. If ¥/=5b", then (cc)® =(cc® )" =c"*¢=c¢’. Suppose
b”¢ {b-b}. By Lemma 1-1(2), there exist b’ € X;, and {2, %5, %5, 2} <{L, - - -,
8} such that {b,¥,0",b", a;,a;, a;,0:;} is an octad. Then bH'b"b"=
@; @:,0:,0;, and

(bbec’)2=bbcc™ b cc™ =" ™ ec™”
— (Cb’cb”’cbcb") b blb/l/bb/l

=0; 0;,0;,0;, € Qe

Hence Q,/Q.. is an elementary abelian 2-group. Moreover it is easily
seen that any 4-element subset of {1, ---,8} appears as {i,1, 1,1} in the
above argument. Thus we conclude Q.=Q,/ =0 Q).

Finally we show Q.=Z(Q,). For each i€ {1,2, 8}, the product of four
elements of X, equals either 1 or the product of two elements of X
modulo Q. by Lemma 1-1(2). Thus if 2€ Q,—Q., there exist b, b€ X,
¢,c’€X;, and d,d’'€ X, where {i,7, k}={1, 2,3}, such that z equals bV,
bbec’, or bbec/dd’ modulo Q.. But since X=X, there exist b”,b" € X;
such that d=»b"°, and d’=b"". Then we have

dd,: (b,/b/,/)c:cbucbn:: (cbllcblll)blrb/II: (b//b”/)cbnb/n
:bllblllcbl/blllcbllblll — b/lb/l/ccb”b”’.

Hence the case that z equals to bb'ec’dd’ modulo Q. may be omitted.
Now it is easily seen that there exists an element of @, which does not
commute with 2. In fact, b0’ does not commute with ¢¢/ when ¢'#
e, . Moreover if ¢/=c* (resp. ¢/#¢*), then bb'cc’ does not commute with
¢'¢” where ¢”’+#c¢/, ¢ (resp. ¢”=c*). Hence we have Q.=Z(Q,).
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The order of <a,, Q.>=<0)> equals 2" by Lemma 4-7(1). Thus

1Q.]=2% and so @,=2°*%.
(8) SetY=Cy(Vy), and BR=0,KY)). Let y€Y. By Lemma 4-6, we
have (Y)/R=2%, and y® is an octad. Since |Y|=15x8, and Y is a
conjugacy class of (Y), we have |[(Y):Cy(y)|=2°-3-5. Moreover
yF>=V, implies Cu(y)><Ch(y®)>. Now that we already know
[<Cp(y®)>|=2"-8, we have |[<Y»|>2".8%.5=(6!) x2",

Let L€ L, and M=N;(L). By Theorem 1-4(3), Ny(V3)/Cy(V,) =
L;(2). In particular, N¢(Vsy)/Ce(Vs) > Ls(2).

We calculate | Ng(V,)|. By Lemma 1-3(4), each member of &, contains
3795 members of P, (see the proof of Theorem 5-3(1)). On the other
hand, V; is contained in 15 members of &P, since (Y)/R=2, Hence
|G: Ne(Vy) |=(G|x8795)/(| My | X2 x15). Thus |Ng(V,)|=2%.8%.5.7=(2%)
- (61)- (168), and we have N (V,)/Ce(Vs) =L,(2), Co(Vy) =<YD, and |{Y)|=2%.

Let K be the kernel of the action of Ng(V, on YR/R. Then we
have N¢(Vi)/K=2%, and K/R=L,(2), since L;(2) is simple and Aut(Z)/2,
is solvable. Hence N¢(V,)/R=3,X L;(2).

The structure of R is determined by an argument similar to the one
used for the case of @. So we omit the proof.

THEOREM 4-11. Let V,€ P; (1=1,2,8,4). Then Ng(V)) is a maximal
subgroup of G for each 1.

Proor. It is easily seen that there are no inclusion relations among
the N;(V)(¢=1,2,3,4).

Set X;=C,(V,). Then we have N (V,)=Ns(X,). Suppose a subgroup
M of G contains Ng(V,;} for some ¢, and M+#=N(V;). Set X=X, V=V,
and E=MND. Then we have E>X.

We first show that F is a conjugacy class of (E). Let E, be a
cojugacy class of (E)> with the property E,NX+@. Then we have
E—E,<Cp{E,), since two non-commuting elements «, b of D are conjugate
in {a,b). Moreover E, is a set of imprimitivity for the action of M
on K.

Suppose 7=3,4. Then X is a conjugacy class of {(X). Hence
E,>X. Since {X)>>V, we have Cp(E,)<Cp(X)<Cp(V)=X. Hence we
have E=EK,.

Suppose ¢=1. Then X¢ [, and so X=Cp,(X). Since M>N;(X) and
N;{X) acts b-transitively on X, we have either E;>X or |E,NX|=1.
If F,>X, we have F=E, since E—E,<Cp(X)=X. If |E,NX|=1, all
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elements of E, commute with the 23 elements of X—FE, By Lemma
4-6, we have |E,|=1. Thus X*®=X, and so E—X<(Cp(X)=X. This
contradicts the assumption E+ X.

Finally suppose 7=2. Then X=0OUX, where O is an octad and
X,=Cpr(©@) —0. Then X, is a conjugacy class of {(X;)». Considering the
action of N;(V)=N;(®) on O, we have E=E, in a manner similar to the
case of t=1. Thus we have shown that E is a conjugacy class of (E).

Now the width of (E) is 24, for so is that of (X). Let L€ L,
and z€ L. Then 2%“® N L={z}, and elements of x%“®> commute with
the 23 elements of L—{x} by Lemma 2-2(2). Thus Lemma 4-6 implies
w0 ={a}, and so Oy(CED) <Z(KED).

Let n and m be the 2-depth of {E) and the width of {E)O,(E>)}/
0,((E>) respectively. Then n is a power of 2, and wm=24. Thus
(n, m)=(1, 24), (2,12), (4, 6), or (8, 3).

The condition (n, m)=(1,24) means O,KE))<Z{E)). The list of
groups H generated by 3-transpositions which satisfy O,(H)<Z(H)>0,(H)
is found in [7]. By that list we conclude {E>=G.

Suppose (n, m)=(2,12). Let ec E and e®2“*={¢, d}. Then {e,d} is a
set of imprimitivity for the action of M on E. Let L€ L, and set
K=Ny(L)/Cy(L). Then K is a subgroup of Ng(L)/Cs(L)=M,. If i=1,
we have K=M,. In the other cases, K contains an octad stabilizer if
+=2, a trio stabilizer if 1=38, or a sextet stabilizer if 1=4. Thus there
are no 2-element sets of imprimitivity for the action of K on L (see
Curtis [6]). Hence the case (n, m)=(2, 12) is impossible.

The condition (n, m)=(4, 6) implies that M is contained in a conjugate
of Ng(V,) by Lemma 2-7. This contradicts the assumption for M.

Finaly suppose (n,m)=(8,8). Let L€ L. Then L=a%® |
pO2€EN | J ¢%2¥EY for some elements a,b, and ¢ in L. Let € E—L. Then
by Lemma 4-6, we may assume z commutes with a. Then by Lemma
2-2, xz commutes with the elements of a%“®, Thus a%“*” is an octad
by Lemma 4-6. Hence {a%“®», p%%) %<1 iy a trio of L, and
E<Co(W) where W=<{a%@ NN % E e Py, Thus we con-
clude M<Ng(W), a contradiction.

Now the proof of Theorem 4-11 is complete.

REMARK. It is easily seen that the N; (1=1, 2, 3, 4) are 2-constrained.
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5. 2-local geometries

In this section, we will describe some geometries for M., O-(6, 3),
and F,, associated with their 2-local diagrams given in the introduection.

A geometry which we consider here is the pair (4, I} of a set 4=4,
U---U4, (disjoint union) and a symmetric, reflective relation I on 4
such that for each t1€{l, ---,r} and =z, y € 4;, Iy implies z=y.

A trivial geometry is the geometry (4,1) such that if 4%j then
xIy for any z¢€ 4, and y € 4,

A flag of (4,1) is a subset F' of 4 such that each pair of elements
of F' is incident.

Let G be a group, and {G;|i=1, ---,r} be a family of subgroups of
G. Then the group geometry I'(G,{G}) is the geometry (I', *), where
r=r,y---url, I; is the coset space G,\\G for each ¢€{l,---,7}, and
the incidence * is defined by

Ga*xGy = GxNGy+J.
(1) M.
We consider the Steiner system S(24,8,5). Let 4, 4,, and 4, be the
sets of all octads, trios, and sextets respectively.
We set 4=4,U4,U4d;. Let X;€4; (¢t=1,2,3). We define I by the
following conditions.

X, IX, & the octad X, is one of the octads in the trio X,
X.IX, & the octad X, is the union of two tetrads in the sextet X,
X,I X, & the sextet X, is a refinement of the trio X..

Let ©€{1,2,8}, and A;€ 4,. Set {j, k}={1,2,8}—{i}. Then we set
Z,,ZZ,(A,) —_«{‘X.7 e Aj, Xk e Ak! X]'IA,;, XkIA,,,}.

By Theorem 1-4(1), the structure of 4; depends on only 7. The next
theorem is well-known ([12]).

THEOREM 5-1. (1) (4, I) is isomorphic to the geometry of points and
lines of a 3-dimensional projective space over F, with the relation defined
by the inclusion relation.

(2) (4, I) is a trivial geometry.

(8) (4s, I) is isomorphic to the Sp(4, 2)-generalized quadrangle; that
is, the geometry of isotropic points and lines of a 3-dimensional pro-
jective symplectic space over F, with the relation defined by the inclusion
relation.
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REMARK. Theorem 5-1 means that the geometry (4, I) belongs to the
diagram e——»——e—1 in the sense of Buekenhout [2]. (See [11])

(II) 07(6,3)
We use the notations in section 3. So (E>=07(6,8). We define
47(t=1, 2, 8) as follows, and set 4'=4/U4U 4.

Al’ = aE(E)!
4/ ={{a,b}la ¢ E, bEE,},
4 ={E-subgroups which are isomorphic to W*(Dy}.

We define I’ by the following conditions. Let X;¢ 4/ (i=1,2,8), and
set X;=L, X,={a, b}, and X,=W.

XI'X, &= L>{a, b},
XI'X,; = W>L,
X I' X, &= W>{a, b}, and %" ={a, b}.

Moreover we define 4! as in (I).

Theorem 5-2. (1) (4/,I') is isomorphic to the Sp(4, 2)-generalized
quadrangle.

(2) 4/, 1) is a trivial geometry.

(8) (4y,T) 1s isomorphic to the Sp(4, 2)-generalized quadrangle.

ProoF. Sinece W/0,(W)=2,, {3) is easy. Lemma 3-2(3) implies (2),
and Lemma 3-1(2) implies (1).

REMARK. Theorem 5-2 means that the geometry (4, I’) belongs to
the diagram e—ax—=.

() F,

We use the notations in section 4. So Fn=<D), and the P, (i=
1,2, 3, 4) denote the conjugacy classes of elementary abelian 2-subgroups
of F,, defined in section 4.

We set P=P,UP,UP,UP,, and define the relation J by the in-
clusion relation, that is, for V,€ &,,

Vi JV, == V=V, or V,<V,.

Moreover we define &, as before.

THEOREM 5-3. (1) (P, J) is isomorphic to the geometry (4,I) in
(1).
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(2) (P, J) is isomorphic to the geometry (4, 1) in (II).

Proor. Set P,=P,KL)>) where Le L. Let V,e P,.nNP; (i=2,3, 4).
Then {L)>>V,. Since {L>ND=L, ®=V.,ND is a unique octad such
that V,=<0). Moreover we had shown in section 4 that there is just
one sextet {Ty,---,Ty of L such that ToN---NT>=V,. Set
V=0 N<{O:p N<Osy where {O, Op, Os} is a trio of some L' € L. Set
K=Cy(V,). Then K>L, L' and so L,L'€ L. Hence there exists an
element k¥ in K such that L*=L. Thus V,=V&=ONOMHN
O, and {0, O, Os* is a trio of L. Moreover by Lemma 1-3(3) and
Lemma 4-72), {0 OF, O} is a unique trio of L with the property

Hence we can identify the members of P, with those of 4. We will
show that this identification preserves the relation.

Let V.e P.NP: (i=2,3,4), and O, T={0,, O, Os}, and S={(T,, - - -, T4}
be an octad, a trio, and a sextet of L such that V,=<{O), V.=pN
O N{Osp, and V,=<(T> N -+ N{Ts, respectively.

(i) V>V 0IS.

Set O={x,, -- -,z and T,={a, b, ¢, d}. Suppose V,>V,. Then we may
assume abed =X,Ly2%, = Xelelils. Hence {2y, s, %3, ) and {ws, 2, T, x5} are
tetrads of the sextet § as we have shown in section 4. The converse is
easy.

(ii) Vo>V, e JIS.
This is easily obtained by Lemma 4-7(2).
(iii) Vo>V, OI4.

Suppose V.>V,, and let &'={T/, ---, T/} be a sextet of L such that
S’ is a refinement of Y. By (ii), we have V,><(T/>N---N<{T¢> and
so OIS’ by (i). Thus we conclude OI9 by Lemma 1-3(3). The converse
is easy.

Now the proof of (1) is complete.
(2) Set P,=P,(V,), and V,=<abed)c P, where a,b,¢, and d are
distinet commuting elements of D. Moreover set F=C(V,), Q=0,(F>),
K=(F>/Q, and F=FQ/Q. Since K/Z(K)=0~(6,38) by Lemma 4-8(1),
K has the same properties as stated in Lemma 3-2. In fact, by Lemma
2-5, there is a one-fo-one correspondence between the set of E-subgroups
of O~(6,8) isomorphic to W*(D,) and the set of F-subgroups U of K such
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that U/Z(U)=W*(D,). Hence we assume (£, I) is defined in K.

Let V,e PinP; (1=1,2.8). And set V,=(L), V,=(O), and V,=
O N0 N <G5y, where Le L,O is an octad, and {O, D, Oy} is a trio
of some member of . For any subset A of F, A denotes the image
of Ain F.

V>V, implies that F>L, and so L€ _[x. Set O=f{x;, ---, 2. Then
since V,>V,, we may assume abed =200, =222.2,. Hence by Lemma
4-8(3), #.2={®., 5. 25, Bu}, BL2= (X5, Te, Tr0 ¥}, and so O={Z, T} which is a pair
of mutually commuting elements of F. These correspondences, Vy«—L
and V,«—(), are one-to-one, respectively. Moreover it is trivial that
Vi>V,e== L>0 i.e. LID.

Set X=Cp(Vy). V,>V,implies F>X. By Lemma 4-9(1)(2), we have
(X3/0,({X)) =2, and 2% is an octad for any z€ X. Set O)=
x%“*  Then (O)>>V, by Lemma 4-9(3). In particular, {O)>>V,,
and so O@)={% & for some 2’ €Ox) as already shown. Hence the
2-depth of <(X) is 2, and so (X>=W*(D,).

Let Vye€P.NPs and Vy+#V, Then by Lemma 4-9(3), we have
Co(V)#=X, and so <{Cpr(V)>#<(XD. Hence the correspondence,
Vie—>(Cp(V3)), is one-to-one.

We will show that these correspondences preserve the relation.

(iv) Vi>V.,e= LIo.

We have already shown.
(V) V> V,e= OI'{XH(X=Cp(Vy).

Suppose V,>V,, and set O={%, 7). Clearly O<<X). By (iii) in this
proof, we may assume O=(),. Thus we have O=z%“_  Hence Cylx)=
Cx(y) by Lemma 2-2(1), and so C;@®&) =C(%) by Lemma 2-4. Thus we
have z%%% ={z, y}.

Conversely suppose z%“*’={z, y}. Then we have Cz® =Cs(7), and
s0 Cx(®)=Cx(y). Thus we have z%® =0, and so V,=<{O> by Lemma
4-9,

(vi) V>V, LI{X).

If V>V, then L<Cy(Vy)=X, and so L<(X). If L<<(X), then L<X.
Thus we have (L)>>V, by Lemma 4-9(3).
Now the proof of Theorem 5-3 is complete.
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REMARK. 1t is easily seen from Theorems 5-1, 2, 3, that the geometry
(P, J) belongs to the diagram e—e—»—e—1].

Finally we rewrite this geometry into the form of the group geom-
etry defined by the 2-local subgroups Ng(V)) (V€ &P,).

THEOREM 5-4. Let V,€ P, and N,=Nq(V,) (i=1, ---,4) such that
N, -+ NN, contains a Sylow 2-subgroup of G. Then the group geometry
(G, {N.)) is isomorphic to the geometry (P, J).

We need some lemmas. The facts in the following lemma follow
from the same properties of M,,.

LEMMA 5-5. (1) G acts transitively on the set of all maximal flags
of (P, J).
(2) The stabilizer of a maximal flag in G contains a Sylow
2-subgroup of G.
(8) Let S be a Sylow 2-subgroup of G. Then S=N¢(S).

LEMMA 5-6. Let {V, ---, Vi (V€ P)} be a maximal flag, and set
N, =N (V). Then the following conditions are equivalent for any 1,j€
1, ---,4} and any g,hEQG.

(1) VIV 7
(2) NgNNh+2,
(8) NSNN; contains a Sylow 2-subgroup of G.

Proor. We may assume h=1.

(1)==12); Since V,JV,, there exists some element x of N, such that
V#=V, by Lemma 5-5(1). Thus zg7'€ N;, and so x€ N,gN N,.

(2)=—=(3); Let € N;,gN N,;. Then by Lemma 5-5(2), NN N,=N; N
N;={(N;N N,;)® contains a Sylow 2-subgroup of G.

(8)—=(1); Let S be a Sylow 2-subgroup of G contained in NN N,,
and 2 be an element of N, such that N, N;>S8°. Then we have N> S, S,
and so S*=8* for some element y of N. Thus yg 27 € Ng(S)=S< N/,

-1.-1

and N/=(N5w"*'=N;. Thus we have Vo=V, JV =V, as required.

Now Theorem 5-4 is derived from Lemma 5-6 immediately.
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