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Introduction

Let F be a non-archimedean local field, F' its algebraic closure, and
D a division quaternion algebra over F. Then, up to local isomorphisms
over F, there are two algebraic groups over F' which are F-isomorphic
to GSp(n), the symplectic group of genus n with similitudes. They are
GSp(n) and GUq(n), the latter being the quaternionic unitary group of
size » with similitudes.

Jacquet and Langlands stated in [6] that there exists a ‘good’ cor-
respondence in terms of characters between the irreducible admissible
representations of GSp(1, F)=GL(2, F) and those of GUq(1, F)=D*. The
main purpose of this note is to find an analogous good correspondence
between the admissible representations of GSp(2, F) and those of GUq(2, F).
This is a representation-theoretic approach to a problem raised in Y.
Thara [5]: Are there any connections between Dirichlet series attached
to spherical functions of USp(2) and those attached to Siegel modular
forms of degree two? This problem was later posed under a more
general setting as the Langlands’ functoriality problem. We set

G=GSp(2, F)={ge GL{4 F); gJ'9=n(9)J, n(g) € F*},

1 1
G*:GUQ(ZF):{QGGL(ZD); -"<1 )tg:n(m(l > n(g)eFx},

I, .
where J :< 2) and ‘—° denotes the main involution of D.
4Lz

This paper is divided into three sections. In §1, we classify the F-
conjugacy classes of maximal F-tori of GSp(2) and GUgq(2). There are
five types of F-conjugacy classes in the case of GSp(2): (1) the class of
maximal F-split tori, (2), (8) classes which are parametrized by quadratic
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extensions of F, (4) classes which are parametrized by pairs of two
quadratic extensions of F, (5) classes which are parametrized by pairs
{M, E}, where M/E, E/F are quadratic extensions. In the case of GUg(2),
there are three types: (8)*, (4)¥%, (5)* parametrized in a similar way as
(3), (4), (6) respectively. The classification of F-conjugacy classes of
maximal F-tori is useful for describing the character formulae (§3).
It also gives some insight for the classification of irreducible representa-
tions of G and G*. The absolutely cuspidal representations are considered
as corresponding (by the Harish-Chandra principle) to the maximal tori
of types (4), (5), (4)%, (5)* which are F-compact type, and the induced
representations defined in §2, to the maximal tori of types (1), (2), (3),
(8)*. In §2, we define some induced representations of G and G*, and
study their properties. In § 3, we give character formulae for the induced
representations of & and of G*. As for absolutely cuspidal representa-
tions, we continue to study them.

The present article grew out of the authors’ Master Degree theses
at the University of Tokyo presented in 1979.

The authors would like to express their hearty thanks to Professors
Y. Ihara and T. Ibukiyama for their useful advices. They also thank to
Dr. K. Hashimoto to whom they owe much for classification of conjugacy
classes of maximal F-tori of G and G*.

The summary of this paper has been presented in [4].

§ 1. Classification of F-conjugacy classes of maximal tori of GSp(2) and
GUq(2)

Only in this § 1, we assume that F has odd residue characteristic.

Let T be any F-maximal torus of GSp(2). By the method used in
K. Hashimoto-T. Ibukiyama [3], we can classify the G-conjugacy classes
of semi-simple elements of G=GSp(2). Observing this classification, we
see eagily that each T(F'), the group of F-rational points of 7, contains
a regular semi-simple element. Here, an element of G is said to be
regular if its eigenvalues are distinect.

LEMMA 1-1. Let g be a regular semi-simple element of G, with the
characteristic polynomial f,(X) and the similitude nlg). Then, either one
of the following five cases occurs.

(1) folX)=(X—a)}(X—b)(X—sa™")(X—sb7"),
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3

(9)=s, a#b, a’+s, ab+s, b*+#s, a,b, s F™,
(2) filX)=(X—a)(X—sa™)(X?—0cX+s),
(9)=s, a, s€ F*, 6 € F, a*#s, X*—oX+s is F-irreducible.
X)=(X?—oX+c)(X*—0ar s X +77%s%),
(9)=s, 0,t€F, s€ F*, 00, t#s or 0=0, r +s,
X'—ogX+7 is F-irreducible.
(4) [ (X)=(X*—oX+8)(X*—cX+s),
n{g)=s, 0,7€ F, sC F*, o+,
X?—0X+s and X*—cX+s are F-irreducible.
(5) filX)=X*—0X?+7cX?—-s0X+5,
n(g)=s, 0,7€F, sc F*, f(X) is F-irreducible.

w
SN

Proor. This is a consequence of the reciprocal property of f,(X):
sTEX (s XY =1,(X). g.ed.

Let MDEDF be a tower of two separable quadratic extensions, 7z
be an F-isomorphism of E into M,(F), extended naturally to an injective
F-homomorphism of M,(E) into M,(F). Then there exists an element
h € GL(4, F') such that, for any g€ GL(2, E),

. N Tl n Ly* 1—1.—1
T R (S U B

=det(q) -h-ig(g) " b

LEMMA 1-2. In each cases of Lemma 1-1, g is G-conjugate to an
element of the following form;

¢ b
(1) sa™’
sb™!
a o ﬁ
(2) o C < a)eGL(z,F>,a+5=maﬁ—ﬁr=8-
7
7 b

(3) <A stA >’ A€GL(2, F), tr(d)=o, det(A)—_“s

{(4) We denote the splitting field of X*—oX+s, X?*—cX+s by E, E,,
respectively.
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(1) g ™ 4 ”2) if B#E,
Cz d.

¢ d, ¢ d,
s d, t7e, d,

(3 bi .
where (a d )EGL(Z, F), ad;—bc;=s, (1=1,2), a,+di=0, a,+d.,=r,
C; i

t € F*\Ng,r(EY).
(5) Denote the splitting fields of f,(X) and X*—6X+(c—2s), by M and
E, respectively.
. .[{a b . a b
(i) th<< ))-h“, if [E*: F*Ny,g(M*)1=1, where ( €
c d ¢ d
GL(2 E).

(if) th<<a b))-h—l or th(< “ tb>>-h—‘, if [E*: F*Nys(M®)]

ay b1 al bl
(ii) ( @ b | o @ ) i B=E,

c d t7¢ d
b
=2, where <a d)e GL(2, E), ad—bec=s, X?—0g X+ (t—2s) is the minimal
c

polynomial of a+d over F, and t € E*\F"*Nyz(M>).
The proof of this lemma is a slight modification of [3].

REMARK. The index [EX: F*Ny,z(M*)] which appears in (5) is 2 if
M is a (2, 2)-extension of F, and 1 otherwise.
By Lemma 1-2 we obtain

ProOPOSITION 1-3. Let T be a maxtmal F-torus of G, then it is F-
congugate to one and only one of the following five types of tori.

a
(1) T (F)= tl—.—( b sg-! ); a,b,s€ F*}: an F-maximal split
sb™?

torus.

(2) For each separable quadratic extension E of F, we fix an F-isomor-
phism 1z of E into M{F). We set

a o ‘8
Ty u(F)= t2=( R ﬂ);( >eiE(EX)

sa y 0
r 0/ a, sEF*, ad—Pr=s
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(8) For each separable quadratic extension E of F, set

A

T3,E(F>:{t3:< >; s€e F*, Acig(E>) }

8t A—l
(4) For each pair (E., E,) of separable quadratic extensions of F, we set
(i) of E,+E,

a, b, ; o b
T4,(E17E2)(F): t4: Cy dl F (Cz di GZEQ(E’T) (1/:1, 2)

Cy d.) ad,—biei=ad;—by,

(ii) If E\=E, and
(a) Npyr(E)p—1

a; bi . .
(c )em(m) (i=1,2)

a, b,
T4'E1(F) — t4: 429 b2 ),
a/ldl - blcl = azdz _ szg

) d,

s

e by a; b . .
T4,E1,t(F): t= Bz d1 tbz ; ( d >€zE1<E{<) (7’:1’ 2>

1

t_ICZ dz &1d1—6101=a2d2—b262

where t € F* [Ny »(EY).

(5) For each ordered pair (M, E) such that MDEDF is a tower of
two separable quadratic extensions, we fix an E-isomorphism 7 of M into
M,(E). We set

(i) if M is a (2, 2)-extension of F

. a th L (e b o
Ts,(M,E),z(F):{tszh-13<<t_lc d ))h ; <c d)GJ(M VCGL(2, E)}

ad—becc F'*

where t € E*|F >Ny, z(M*).
(ii) If M s mot a (2, 2)-extension of F

ffa b L (e b I
Ts,(M,m(F):{ts:h.zE((c d>>-h ,(C d)eg(M )CGL(2,E)}.
ad—bc € F*
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The above tori are not F-conjugate to each other.

Proor. The exhaustion of F-conjugacy classes of maximal F-tori
) be elements of GL(2, F) for

C; i

1=1, 2, 8 such that the splitting field of their characteristic polynomials
is E. Then regular semi-simple elements

a; i

is obvious from Lemma 1-2. Let (

oy b, ; @, b, ;

a. a 3
2 d, z and o 3 d,

Co d, Cs ds

are G-conjugate if and only if there exists an element g € GL(2, F) such

b . b L
that g-l-(““’ 2).g=<“ ) and det(g) € Ngr(E¥). In addition, if
¢ d c; dy

b d —b

k“‘-(az : )-k.—_( : ) holds for some k€ GL(2, F), then det(k) €
02 dz _Cz alz

(—1)Ng#(E>). These prove (4)-(ii). The other part of Proposition 1-3

is obvious. g.e.d.

G

The clagsification of F-conjugacy classes of maximal F-tori of G*=
GUq(2) is obtained by the same procedure as in the case of G. Let
M>DEDF be a tower of two separable quadratic extensions, i be an
F-isomorphism of E into D, extended naturally to an injective F-homo-
morphism of M,(E) into M,(D). Then there exists h*€GL(2, D) such
that for any geGL(2, E), h*-it(g)-h*™ belongs to G* if and only if
det{g) € F*. We obtain

PROPOSITION 1-4. Let T* be any mazximal F-torus of G*. Then it
is F-conjugate to one and only one of the following tori.

(3)* For each separable quadratic extension E of F, fix an F-isomorphism
it of E into D. We set

T{E(F)-_—{t?‘:(a __1>; seFx, aeiﬁ(EX)CDX}.
s@

1 1
(4)* Here in (4)*, we use the hermitian form ( 1 ) nstead of < 1 )

to express elements of G* easily (cf. [3] p.578). For each pair (E, E,)
of separable quadratic extensions of F, set

(i) if E\+E,
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TLEL,EZAF):{tf:(“ ﬁ>; @€ it (7). BEiE (), an=p5).

(ii) If E\=E, and
(a) Ngyr(E)2—1

TzElsl(F):{tZk:<a t—lﬂt >’ @, ﬁe 7/§1(E1X)’ a&:ﬁﬁ}’

where t€ D* is 1 or the one fived element such that t1¢ Ng ,»(EY).
(b) NEL/F(ED 3—1

TzE1<F>:{tf=<“ ﬁ); o, pE i, (), aa=ﬂﬁ}-

(5)* For each ordered pair (M, E) such that MDEDF is a tower of two
separable quadratic extensions, fiz an E-isomorphism 7% of M into My(E).
We set

(i) 2f M is o (2, 2)-extension of F

R Bk, 4% @ tﬁ pa—l. [24 ,8 . o
T;(M,E),t(F):{t5 =h ZE((t_lr J >> b5 <7. 5 ) €g*(M )CGL(Z, E)]
ad— By € F~

where t € E*[F "Ny s(M>).
(ii) If M is not a (2, 2)-extension of F

\

¥=h*.q% « ‘8 R @ ‘8 3 X
T ()= 7 = zE((r 5>> " ’(r 5>€J - )CGL(ZE)}.

ad— By € F*

The above tori are not F-conjugate to each other.

In view of Propositions 1-3 and 1-4, we notice the existence of a
correspondence between F-conjugacy classes of maximal F-tori of G and
those of G*. More precisely, let T, T* be maximal F-tori of type (v), (v)*,
respectively (v=38,4,5). Let g€ T(F) and g¢g*€ T*{F) be regular semi-
simple elements with the same characteristic polynomial over F. Then,
there is a unique F-isomorphism from T(F) to T*(F) which sends g € T(F')
to g*€ T*(F). Thus, we say that T and T* are corresponding maximal
F-tori. Of course, this F-isomorphism depends on the choice of g and
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g*. So the correspondence is one to one for types (8) and (3)% (4)-(i)
and (4)*-(i), (5)-(ii) and (5)*-(ii), one to two for types (4)-(ii}-(a) and
(4)*-(ii)-(a), two to one for types (4)-(ii)-(b) and (4)*-(ii)-(b), and two to
two for types (5)-(i) and (5)*-(i).

§2. Construction of induced representations

We define the following parabolic subgroups P;, P,, P, of G and P,
of G* in order to introduce some induced representations:

Pi={p,= €G; a,b,sc F~

IS

=
*
*
*

( G s ad-—bC”:-S, S, a/1< 1 XZ

x d

Py=+p,=

(=]
ISR RS

A *
P,= - G,A GLZ,F, Fx
{pa (02 s’A“1>€ € { ), S€ }
o *
P*:{p*:< __1>€G*; aEDX,SEFX}.
0 sa

These are the representatives of isomorphism classes over F of
parabolic subgroups of G and G*. We denote by M, N, a Levi sub-
group and the unipotent radical, respectively, of the parabolic subgroup
P, for v=1,2,8,%. Let W (V, U, etc.) be a vector space over C. Then
we denote by F(G, W) the set of all locally constant W-valued funections
on G. Let R(GL(2, F)) be the set of all equivalence classes of irreduci-
ble admissible representations of GL(2, F), etc. We define the following
representation spaces of G and G*:

Bi(pr, o, ) ={F € F(G, C); f(0.g9) =m(a)}(b)(s)dT™*(m:)f19), ?:€ Py, g €G}
By, 1) ={f€ F(G, V); f(pg)=pl(a)ds"*(p)7(A)fl9), p2€ Po, g €G}
By(m, n)={f€ F(G, V); f(pg)=7(s)ds "*(p:)x(A)f19), 0, € P, g€ G}
By (r, n)={fe F(G*, U); f(px9)=7(s)d5"*(px)7()f19), P+ € Py, g€ G*}
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where p, € P, is expressed as in the above form for v=1,2,3, % and g,
ts 1, ER(FX), (=, V)€ R(GL(2, F)), (r, U)€ R(D*). Let d,(p,) be a meas-
ure of P, defined by d,(p,)=d(p,'n,p,)/dn, where dn, is a Haar measure
of N, for v=1,2 3,%. More explicitly, d,(p.)=|s’a"b7?|, ds(ps)=|s"a™"},
ds(ps) =|s det(A)'F, and dy(ps)=|s(aa)*] where |-| is the normalised p-
adic absolute value of F.

The group G acts on the vector spaces B, B, and B; by right trans-
lations and G* acts on B, by right translations. We denote these repre-
sentations by o.(¢, s 7), 0:(1t, 7), ps(m, 1), and p.(r, p), respectively.

We shall discuss several fundamental properties of these induced
representations. First, some equivalences of these representations.

LEMMA 2-1. Let p, pto, 7€ R(F™), then oi(p, t, 7). o2t p(pt27, 7)), and
oo, 1), ) are equivalent. Here plp, po) and polun,n) are induced
representations of GL(2, F) defined in Jacquet- Langlands [6].

Proor. We define linear operators L, (resp. L;;) from Bi{w, tt, 1)
to Bi(o(t, ), 7) (resp. from Bj(o(es, pa), ) to Bilw, 1, 7)) as follows:

A
(Lonf) (@) (4) =f<< )g>ldet(A>l“3’2

(Ls1 f5) (9) =fslg) (12)

for f,€ By, ts, 1), J5 € Bs(o(tt, 1), 1), 9€G and A€ GL(2, F). We see that
L., and L;, are compatible with the action of G, and that L;;oL,sf1
=f, LiswoLs.fs=f, Hence, ot ton) is equivalent to ps(o(p, t22), 7).
In the same way, we see that o,(g, to, ) is equivalent to p.(u, (g, 7).

g.e.d.

tA—-l

COROLLARY 2-2. If py, tto, thatte, thptz*#!| - |7, then o(ts, o, 1), 0i(p17%, ta,
), pilpte 2y pan), oo (0, 257, papan), O:(ttes 21, 1), Ot 177 ), 1P 2 a0),
and o.(p5", pit, peptn) are equivalent.

ProoF. Obvious from Lemma 2-1 and Jacquet-Langlands [6] (Theorem
3-3). g.ed.

We denote by @i, 1, 7) the contragradient representation of
ou(tt 18, 1), ete. Then we get the following equivalences:

LeMmA 2-3.

Bslths ty ) 18 equivalent to o {p, pat, p7Y).
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B:(¢, 7) is equivalent to p,(p7, 7).
Gs(m, n) 1is equivalent to pa(%, p7Y).
Px(r, ) is equivalent to px(r,n7).

Proor. Applying the same argument as in [6] (p. 92-p. 94) to this
case, we can easily prove this lemma. g.e.d.

As for the decomposition of these induced representations into
irreducible components, we have partial results. For example, if
o:{th, ¢z, ) is irreducible, then none of gy, w, i, and pyp;' can be equal
to |-|**%. If r is one dimensional representation of D*, then py(r,7) is
irreducible if and only if r=|. |*¥.

§ 3. Character formulae

In this section, we calculate the distributive characters of induced
representations defined in §2. Let S(G) be the set of all functions on
G which are locally constant and compactly supported. For f¢ S(G) and
I, W) € R(G), put II(f)= L f19)(g)dg € End(W), where dg is a Haar

measure on G. Since [/ is admissible, the operator /7(f) has finite range.
Hence Trl/(f) is defined. If there exists a locally integrable function

xz(g) such that Tr I (f )=Lf (9)2z(9)dg holds for any fe S(G), then we

call this function the character of II.
LeMMA 8-1 (Weyl integral formula; [2] p.86). Let G be a connected
reductive linear algebraic group over F, and G be the group of all F-

rational points of G. We denote by T, the group of F-rational points
of a maximal torus T of G. Then we have

| r@dg= 12| D{| _ra-tardglar,

the summation being over the complete set of representatives of F-con-
Jugacy classes of the maximal F-tori, and Wy is the Weyl group of T,
and dg is the G-invariant quotient measure on T\G.

Let X*—AX*+ BX*—sAX+s ¢ F[X] be the characteristic polynomial
of g G=GSp(2, F), where s=n(g). Then in our case,

D(g) ={(A*—4(B—2s)%) ((B+2s)*—4sA%s7%|.
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In particular,

a

o b . —| (@—b)*(s—ab)*{a—sa~)*(b—sb~Y’a"*b "5~ .
sb!

The same formula holds for G*. Then we obtain the following
character formulae.

TUEOREM 3-2. Characters of induced representations defined in § 2
exist. The characters of o,(th, tte 1), 2, 7), ps(7, 1), and py(r, ) are given
respectively by Ya(th, e 1), Y(th 7), (7, ), and yx(r.7n) defined as follows:

<; ﬂl(a) ﬂz(b)p(s))D(g) 12
a

?/f g= b

( 1 ) XI(,uly #27 77) (g) = 1 e T{eg

sb™t
0 otherwise.

Here ‘=’ means ‘to be G-conjugate to’; Ti* is the set of all regular
elements of T. and W, is the Weyl group of T.. The summation runs
o
through all the conjugates of b sq- by the dction of Wi
sb™t
Ion(® go)e@a(® 4o |pwrxe
L sh=1 )# sb~!
a
if g~ O T
g~ Sa/—l 1
sb™!
(2) lnm0=) T 55 y()ua)d(4) |Dlg)x 12
2 E
@y
o ifgsl " PleTm
c d

0 otherwise

b
where y, is the character of n€ R(GL(2, F)), A 1s <a d)’ and W,z 1is
e
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the Weyl group of Tsz. Finally, let X*—eX+7 € F[X] be the characteris-
tic polynomial of A; then d{4A)=|{c*—4z)c7|.

[22(® 4)a( oo |Porxare

a

if g= b sa-t g T

sb™!
| = 241876 |Dig)x 172

Ws,E
'Lf gz(A stA—1>€T:£fi"

0 otherwise

where Wi is the Weyl group of Ts z.

| £ mi@dane |pirg) x 1z

W;,E
. o
if g=(% g )ETHF

0 otherwise

(%) Alr, 9)(g)=

where Wie is the Weyl group of T¥g, ¥ ts the character of r¢€ R(D*),
and dy s defined in the same way as d.

Proor. We prove only in the case of (8). The other parts are
proved in a same way. Set y=7x(r, 5). For f&S(G), we have

|, fonds=18] pey{[ x-taifio-todgld,

7, T\G

+us, v | pw{],  aetesetadalde.
E | F: quadratic T3,E T3,E\G

Set K=GSp(2, OF), where Oy is the ring of all the integers of F.
The above summation runs through all the gquadratic extensions of F.
a
Put ¢,= b sa-! ) and g=mnk, where me M, n¢N,, kc K.
sb™!
Using the product formula for invariant measures, the first term is
equal to



p-adic split and non-split symplectic groups 93

1 2LI Dt I 2 G )

<0 (s) (k= n = m=tymnk) dkdndm}dtl,

where dm is the M, invariant quotient measure on 7T\M, Put
nHmtm)n=(mtym)n’ (n’ € N;). Then dn/dn’ :D(tl)‘“zdm(a b >d; (AR
Thus the first term becomes

2y Jaenea(t )

x {5 f(lc“m“‘tlmn’k)dkdn’dm}dtl.
(T \M ) XNgx K
In the same way, the second term is equal to

125 L 1 (A)d2(t) 7 (s)d (A) {S f(k—lm-lt3mnfk)dkdn'dm}dt3

F (TA\ Mg X NgxK

where t3:< 4 o A“)' Using Weyl integral formula for GL(2, F), we
have

L Slg)rig)dg= S 1=(A)7(8)d5 % (m) f ke ‘mn'k)dkdn'dm,

MaXNgxK

where mz( A s‘A”’)'

Now, for ¢ € By(z, 1),

ek = k.)dg

G

klg

il

klg

ST mnk,)dsV* (m)y(s)n(A) e (k.) dmdndk,

il

|0
L
I/
|

M3><N3><K

where k. € K, p=p;(r, ) and m:< A s’A“)’ Put

K (e, k2)=jM Sl k) d (m) () (A) dmdon,
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Then
(o)) = | K (ks T (e
Hence,
Tr o(f) = S Tr K (k, k)dk
K
- s Fle mnk)ds i (m)p(s) 7. (A) dmdndk.

MgxNgxK

Hence ys(7, ) is the character of p(r, 7). q.ed.

COROLLARY 3-8. For g, s, 9, vy, vo, £ € R(F™), assume that o,(t, pta 1)
and pi(vi, vo, &) are irreducible. Then they are equivalent to each other
if and only if {vi, v} is equal to {m, e}, {p', o} {1t 7'}, o {p?, '},
and vw.E= 7"

Proor. This follows from Theorem 38-2 and linear independence of
characters of irreducible admissible representations of G which can be
proved as that of GL(2) [6]. q.e.d.

Now, let px(r,7) eorrespond to ps(x(r),n), where r € R(D*)+—x(r) €
R(GL(2, F)) is the correspondence defined in Jacquet and Langlands [6].
Then, we obtain the following character relation. That is our main
results.

THEOREM 3-4. Let T and T* be corresponding F-tori of G and G¥,
respectively. Then the following character relation holds independently
of the choice of an F-isomorphism o of T*(F) into T(F).

L7 G+ 2a(m(r), 9) (0(9)) =0 (g € T*(F)™).

Furthermore, the central character of p(r,n) and that of o(x{r),n) are
the same.

PrROOF. According to the character relation of the corresponding
representations of GL(2, F) and D* ([6] Proposition 15-5), we can prove
the above equality by comparing the character formulae (3) and (x) in
Theorem 3-2. g.ed.

The correspondences of representations of G and G* parametrized
by the duals of maximal F-tori of types (4) and (5) are yet unknown.
In order to find them, we are now concerned with the construction of
irreducible absolutely cuspidal representations which are considered as
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corresponding to the maximal tori of types (4) and (5), and with the
calculation of their characters. We expect that the correspondence
defined above can be extended to the whole of R(G*).
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