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Local energy decay of solutions to the free Schriodinger

equation in exterior domains
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{Communicated by H. Fujita)

§1. Introduction and a theorem.

We shall investigate the local energy decay for solutions of the
following free Schrodinger equation:

(L.1) z‘aa_@t‘:du in (0, 0) X2,
(1.2) (0, ) =uo(x),
(1.8) ul(ﬂ,oo}xaQ:O’

where 2 is the exterior domain of a compact set in R*, n=8, and the
boundary 02 is smooth. We shall make the assumption that £ is “non-
trapping”, which will be more precisely described later.

For hyperbolic equations in exterior domains the local energy decay
of solutions has been extensively studied by many mathematicians (e.g.
Vainberg [11], Rauch [6], Shibata [7] and Melrose [2]). For the
Schrodinger equation in exterior domains, however, the local energy
decay have not been studied well enough. It follows immediately from
the results of Vainberg [9, 10, 11] that the local energy of solutions for
Problem (1.1)-(1.3) decays like t=** ag t—oo if n (=8) is odd and decays
like ¢t as t—oo if m (=3) is even. In the present paper we shall
evaluate the decay rate more precisely. Namely, we shall prove that if
n=>3 the decay rate as t—oo is O(*). Such precise information about
the decay rate will play an important role in establishing the existence
of global solutions of the nonlinear Schrédinger equation in exterior
domains (see [&]).

We first give some notations which will be used below. Let D be
an open subset in R*. We denote by L*(D) the Banach space consisting
of complex-valued measurable funetions on D that are square-integrable.
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For a positive integer m we put

(15)  H"(D) ={u ¢ LA(D); (%)u cLXD) for all mgm}

EOTME

ox JAT0)

Let POI”‘(D) be the elosure in H™(D) of the set of functions in H™(D) with

compact support in D. Let H™(D) be the Banach space {u; e '""u(x) €
|

H™(D)} with the norm
2 Yy, )"
‘( ax> (6 u) LZ(D) :

Let R be a positive constant such that oQc{zxc R |x|<R}. For r>R
we denote by HF (), IOIT(Q) and LZ%Q) the closed subspaces of H"(Q),
IOI"‘(Q) and L*f), respectively, consisting of functions that vanish for
|z{>r. For r>R we write ,={x € ; |z|<r}]. For two Banach spaces
X and Y we denote the Banach space consisting of all bounded linear
operators from X to Y and its norm by Hom (X, Y) and |-|xy, re-
spectively. For any subset ECR" we denote by E the closure of E.
Let G=G(t, x, 2,) be the Green function for the following problem:

with the norm

(L.6) fullgmpy={ X

jel<m

1

(R lelzo=( T

lajs=m

(aa_;—AJG:O in (0,00) X,

. 0, 3=0,
lim —G(t, x, )= .
t->+0 of? ( * xo) { 6(“?—370), = 1’

Gl(o,oo)xﬁQ:()’

where 2, is an arbitrary point in £ and 4, is the Laplace operator with
respect to the variable x. For any »¢ L*£) we put

(F)(t, ) = L G(t, z, 7)o (@) dae.

Now we formulate the non-trapping condition on the domain £.

Assumption [A] Let a and b be arbitrary positive constants such
that a,b>R. Then there exists a positive constant 7', depending only
on a,b,n and £ such that
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(Fv)(t, x) € C=([T, 00) X £2;)
for any ve L(Q).

REMARK 1.1. Assumption [A] implies that singularities of the Green
function of the wave equation in the exterior domain Q go to infinity
as t—oo. Assumption [A] is satisfled, for example, if the complement
of Q is convex (see Melrose [2] and Rauch [6]). Assumption [A] is
almost the same as assumptions that Vainberg and Rauch supposed in
their works (see Vainberg [11, the hypothesis I, p.11] and Rauch [6,
the hypothesis (9.3), p. 476]). A condition needed in their proof is, in
fact, such a condition as Assumption [A]

Our main theorem is the following:

THEOREM 1.1. Let n=3 and let Assumption [A] be satisfied for 0.
Let U(t) be the evolution operator associated with the equation (1.1)-(1.3).
For two positive constants a and b with a,b>R there exists a positive
constant C such that

(1.8) LU 220,120, <Ct™™7,  t>1,

=
where C depends only on n,a,b and 0.

We may assume that b>a>R-+1. We fix @ and b as above from
now on.

§2. Lemmas.

As is well known, we have

—d—1:

T et ic M) de,  d>0.

—d4tco

2.1) Ult) = (2xi) —1§

Therefore, we have only to investigate the resolvent (ir+4)~' in order
to estimate U(t). Such resolvents as (k*+4)~* were intensively inves-
tigated by Vainberg [9, 10].

Here we shall summarize his results needed for the proof of
Theorem 1.1. Let D(P) be the entire complex plane if n is odd and the
Riemann surface on which the function In% is single-valued if » is even.
Let D* be the region {k€ D(P); 0<arg k<=, k+#0}. Since the resolvent
(k*+4)7" is a Hom (L*R), H*(Q))-valued analytic function with respect to
k¢ D*, we can regard (kK°+4)"" as a Hom (L3(Q), H%(£,))-valued analytic
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function with respeet to k€ D*. Then we have the following two
lemmas (see Vainberg [9, 117).

LEMMA 2.1. Let n=8. Then the resolvent (K*+4)"' admits a mero-
morphic extension to D(P) as ¢ Hom (Li(Q), HX2))-valued function, and
the set of all poles of the meromorphic extension has no limit point in
D(P).

We also denote the extension by (K*+4)%.

LEMMA 2.2. Let n=3 and let Assumption [A] be satisfied for the
domain 8. Then there exist positive constants «, 8, C and T such that

(2.2) IE +4) 220,20,y =ClE[ exp (T [Im k1)

in the region V={k€ D(P); |Imk|<aln|Rek|—p} if n is odd and in the
region V’:{keD(P); |Im k| < In|Re k|—B, ——72r—<argk<—§—7r} if m s

even.

In order to prove Theorem 1.1 by using (2.1) we have to know the
behaviour of (k*+4)~! near k=0. In addition to Lemmas 2.1 and 2.2 we
need the following lemma, which makes Vainberg’s results [10, Theorems
2 and 3] more precise for (K*+4)7.

LeMMA 2.3. Let n=8. Then there exists a posttive constant ¢, such

that:
1) If n s odd,

2.3) (e+a)7= 5 Bkt 5 Bk
in the region W={k¢c D(P); |k|<e,}, where the operators B; (7=0,1,2, ---)
are bounded linear operators from ILA(Q) to H:Q) and the expansion
(2.8) comverges uniformly and absolutely in the operator norm;

2) If n is even,

8

Bk~ In k)™

i=0

Ms

(2.4) (P 4) " =

i
®

m

i

in the region W’ :{keD(P); lki<e, ——72t—<arg k<g7r}, where the opera-

tors Bn; (m,7=0,1,2,---) are bounded linear operators from LZ(R2) to
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HYQ) and the expansion (2.4) comverges uniformly and absolutely in
the operator norm.

REMARK 2.1. As a consequence of Lemma 2.3, the meromorphic
extension (k’+4)~' has no pole and is bounded in a neighbourhood of
k=0.

Proor oF LEMMA 2.3. From [9, § 3], [10, Lemma 3] and [4, Theorems
7.2 and 7.3] we know that the main problem is to prove that a right
regularizer G, is one to one at k=0. The right regularizer G, is a
Hom (LZ(2), H%))-valued function defined by

(2.5) Gy = Bi(%) Ly (e:(%)9) + Ba(w) Aslez()g)

for all gc Li(2). Here L, is the operator which maps a function f{x) €
L) into the solution u(z) € H*(2,) of the problem

(2.6) (4+Eyu=f (x€R.),
@7) Ulpo, =0,

where k, is a pure imaginary number and the absolute value |k,| of %,
is sufficiently large (see [9, §3]). A, is the analytic extension of (K*4+4)~"
for the case 2=R" and A, maps a function f(x) € L%(R") into the solution
u(x) € H(R") of the problem
2.8) (4+Eyu=f in R%
(see [9, Theorem 1]). a(x) and a,(z) are step functions such that
0, i |e|>R+L,
() = 2

1, otherwise,

and a,(x)=1—ay(z). Bi(x) and B.(x) are real-valued C*-functions such that

1, it |e|<R+2,
:31(90):{ 3

0, if |z|>R-+1,

0, if |z|<R,

1, if lx!>R+§.
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Note that Vainberg defined G, with a;(r) and a.,(x) being C=-functions
(see Vainberg [9, (8.82)]), but that since we consider the operator G, as
a bounded operator from LZ(Q2) to H*f) we can define a,(x) and a,(®)
as above. Put

(2.9) Sy=(4+K)G,—1,

where I is the identity operator. From [9, §3] we already know that
S, is a compact operator of L*(Q) to L%(Q) for all k, (I+S,) has the
meromorphice inverse and

(2.10) (K44 =G I+ Sy

Furthermore, the expansions of the types (2.3) and (2.4) hold also for
A, (see, e.g., [9], [10] and [4]). Therefore, we obtain the expansions of
the types (2.3) and (2.4) for G, and S,. Since I+S,=4G,, Gog—0 (|z]—>0),
and #=0 if u satisfies

(2.11) Au=0 in £,
(2.12) %50 =0,
(2.13) u(x) — 0 as |z|—»>oo,

it follows from the Fredholm theorem that the operator (I+S,) has the
bounded inverse operator if and only if G, is one to one. We assume
for the moment that (I+S,)~! exists. Then we see by the Neumann
series expansion that

(2.14) (I+S)= j_20 (=T +S) " (Se—S) (I +Sy)

near k=0. Combining (2.10), (2.14) and the expansions of G, and S,
we obtain (2.3) and (2.4). Consequently it remains only to show that
G, is one to one.

Let ¢ be a real-valued function in L2Z(Q2) satisfying G,g=0. We
easily see by the relation G,g=0 and the definitions of Ai(x) and B:(x)
that L, (eg)=0 for |2|<RE and A,(a,g)=0 for |z|>R+1. Hence, we
have by the definitions of «;(x) and a.(x) that

g(@)=ay(x)g(w)=(4-+k) Ly (a:g)=0  for [x|<R,
9{x) =a(®)g (%) = 4 Ao{er9) =0 for |x|>R-+1.
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From the definitions of L, A, a:(x) and a,(x) and the relation L, (ea,9)=

— Ayfeng) in R+%<lx{<R+§ it follows that

(2.15) (d+7.1@)) Ly fong) =0 ae. in {wER”; R+-§—<le<a},
{(2.16) Ly (ang)=0 at |zl=a,

and

(2.17) (U+7:@) Aolasg) =0  ace. in {xem; lx]<R+%},
where

kP if R+%<lx1§a,
7@ = 1 1
0, if R+=<|z|<R+-=,
3 2
. 1
0, if |xl<R+§—,

) 1 2
—| ko, f R+~ R+Z.
[ Kol i +2<|xi< +3

From (2.15), (2.17) and [1, Theorem 8.24] we see that L, (ag) is Holder

continuous for R+—é—<lx[§a and that A,(a.g) is Holder continuous for

lxl<R+%. Therefore, it follows by the relation AL, (g) = — fzAs(a:g)

that Ly (ag) and A lag) are Holder continuous in 2,. Applying the
strong maximum principle for a weak solution (see [1, Theorems 8.1 and

8.19]) to Ly (ag) in R+-§—<\x[§a and to Ao(ayg) in lx\<R+§, we have

max {| L fag) 1x1zR+-§-}gmax (L)l ix\:R-}-_g.},

max {le(azg)l; [xl:R—l—%}gmax {]Ao(azg)l; [xl:R-{-%}.

Since L, (g)=—Aolag) in R+_é_g1x;g1%+§, it follows that
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max {| Lfesg)l; |o|=B+—}=max | Lyfwo): lo/=R+Z}.  Applying

the strong maximum principle to L, (a9) in R +%<lx[<a again, we
have by (2.16)
(2.18) L, (a,g) =constant=0  in R+_§-glx1§a.

Therefore, we have by the relation G,g=0 and (2.17)
(2.19) A()(azg) :O in Rn,

and consequently

(2.20) Ly (a:9)=0 in 2,
We conclude by (2.19) and (2.20) that ¢ vanishes identically, that is, G,
is one to one. This completes the proof of Lemma 2.3, (Q.E.D.)

REMARK 2.1. Recently Shibata [7] investigated the behaviour of the
resolvent (k*—ik-+4)~" near k=0, but he did not give its expansion near
k=0.

We shall next translate the results on (k*+ 4)~* into those on (iz+4)~*
because (iz-}—d)‘l actually appears in the integral representation (2.1).

For 0<e< «/—el

hatched in Figure 1. From Lemmas 2.1, 2.2 and 2.3 we can choose ¢, S0

we consider the region D, on the k-plane, which is

Imk
Im k= aln —Rek)— Imk=aln(Rek)—3
/ g0+ 1, /
Rek
_‘/2 o '\/250 ¢
/ e u&"
~Imk=aln{—Rek) —§ —Imk=aln (Rek)—p

Fig. 1. The region D; on the k-plane.
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Imz

_ (Re T)z .2

// / e
Rer

////\ —Im T:‘@E)j__sz

4e, ’

Fig. 2. The region D, on the z-plane.

small that (k*-+4)~! has no pole in the region D,. Under the mapping
ir=K? the region D, is taken one to one onto the region D, on the z-
plane, which is hatched in Figure 2.

We intend to shift the contour of the integral in (2.1) into the half
plane Rez>0. But only the estimate (2.2) dose not suffice for this
purpose. It is well known that the Laplace operator 4 with the domain

I;P(Q) NHXQ) is a generator of holomorphic semi-group and that there
exist three positive constants & » and M such that

M

221 A— L%, LZ(Q)_
(2.21) A=)z 7]

for all 2¢ {2; larg (A—§&) [<—72r—+77}. Combining (2.21) and (2.2), we obtain
(2.22) | (iz"}'d)_l”Lﬁm),Lz(Qb)—Cl o]

for all TG{TED(P); umf;;%”)i—sg, ]r|>K}, where C and K are
€

positive constants independent of <.

§3. Proof of Theorem 1.1.

Now we shall give a proof of Theorem 1.1. The line of our proof
is the same as that of [11], [56] and [6].
We shall first verify that the following integral converges:
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—d—ico

(3.1) U(t)+iI:(2m')“S e—ft{<z‘z+4)-l+iz}dz, d>0.
T

—d+4ico

Since we have

3.2) lie+ 4+ 2T =2 (et 414,
T T

we obtain from (2.22)

lie+ ) +21

T

(3.3) 1

2EoynBl@), L@y

é‘_i—l“ e+ 4) 7 1200y, 1%0p | 4] 22 0y 5000, 12 00)

C 1 r 1—3/2

A

for all tE{z‘ED(P); \Im ¢ |z (R: 2

)

—él, ]r{>K}. Therefore, the inte-

gral in (3.1) converges absolutely in Hom (HZ(%2) ng YW&), LA (2)).

By (8.3) and the Cauchy theorem we can shift the contour of the
integral in (3.1) into the right half plane as in Figure 2. By I’ we
denote the whole contour in Figure 2. By It and I't we denote the
parabolic parts of I' which are situated on the upper half plane and on
the lower half plane, respectively. By I'§ and I'; we denote the straight
line parts of [I' which are situated on the upper half plane and on the
lower half plane, respectively. By [I'; we denote the ecircular part of I'.

All constants which will appear in the course of calculations below
will be simply denoted by C.

Since
y\— ~zt 7: s
(3.4) (@ri) ljre <—T—I>dr_zl,
we have
(3.5) U(t) = (2i)~ jr iz +4)de.

For the integral on I'; we can shrink the circular part I', to the
origin by the Cauchy theorem and Lemma 2.3.

Since [(it+4)7'l[120),1%0, is bounded on I'f or I'tT and Rer<
Cl+i{Im e on I't or I'T, we obtain

88 lew |, _elicrdde) <Ce, t=1.

riurg hifa e
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It remains only to evaluate the integral on /5 and I';. If » is odd,
we have by Lemma 2.3

8.7) (it+4)7 = Bi{r) + (it) “"2By(7)

for all = € {r € D(P); |7|<2¢%}, where B,(r) and Bs(c) are Hom (L3(2), H*($2:))-
valued holomorphic functions on {r€ D(P); |7|<2¢%. If » is even, we
have by Lemma 23

(3.8) (ir4+4)"'=By(z) + Bz ™" In v/ +c*22B;(z)

for all z€{z€ D(P); |v|<2¢}, —n<arg <3z}, where B;(c) is a Hom (Li(02),
H?*(2,))-valued holomorphic function on {r; |¢|<2¢}, B, is a bounded
operator from L2(2) to H?*(2,), and Bi(c) is a Hom (L2(2), H*(,))-valued
bounded continuous function on {r€ D(P); |r|<2¢, —r<argr<3=w}.
Therefore, the routine calculation (see, e.g., Rauch [5]) gives

(3.9)

g _e””(ir—l—A)“ld‘cH <Ct2 =1

rfur; 12,120y

Combining (3.6) and (3.9), we obtain (1.8). This completes the proof
of Theorem 1.1.
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