J. Fae. Sei. Univ. Tokyo
Sect. IA, Math.
31 (1984), 109-146.

Time.decay of the high energy part of the solution
for a Schrodinger equation

By Hitoshi KiTADA

{Communicated by H. Fujita)

§1. Introduction

In this paper, we shall consider the time-decay of the high energy
part of the solution e ##f of the Schrédinger equation in R¥

(L) %%@immm:o, w0)=f  (feLXRY),
p— ——l :—l. o 72
(1.2) H=H+V(), H=-34=-23% ot

Here V(z) is a potential decomposable as V(x)=V"(x)+V3) with V*(x)
and V5(x) satisfying the following assumptions.

AssumprioN (L). V¥(x) is a real-valued C®-function on RY (N=1)
and satisfies with some ¢€ (0, 1)

(1.3) |02V E (@) |< Colarp 1!~
for all multi-index « and z € R¥, where {x)=+'1+|zf

AssuMpTION (S). V®(x) is a real-valued measurable function on RY
and satisfies with some 0€[0, 1/2)

(1.4) | V3 (@) <x)e (Hy+1)~° <oo
for all ¢=>0, where | || stands for the operator norm in L*(RY).

Vi{x) is a long-range potential, and V*(x) is a short-range potential
which decreases rapidly as |x|-—co but may have local singularities like
x| (e>0) eg. at =0 when N=3.

Accordingly, H is a self-adjoint operator in L*RY) with domain
DH)=H*RY) (Sobolev space of order two).



110 Hitoshi KiTADA

Let y€ C*(RY satisfy x(1)=1 (A|=R,+1), =0 ((1|<R,) for some R,
large enough. The high energy part xe**# of ¢ ¥ is defined by

(1.5) xe"“’f:x(H)e‘”H:S LD dE(R).

Bl

Here E/(2) is the spectral resolution of the identity associated with the
self-adjoint operator H in L*(R").

For s€ R*, L}{(R")=L: denotes the weighted L’ space L*(R”, (1+|z)*dx),
and || |, and (,), stand for its norm and inner product:

{ (£.9).= | Fw)g@) L+ |z da,
1A= (S, )"
We also use the following notation:

L) I =0T )22, s, 7ER

(1.6)

for any bounded linear operator T from L? into L2
Our main result is the following theorem.

THEOREM 1.1. Let Assumptions (L) and (S) be satisfied, and let
s=0 and >0 be arbitrarily fized. Then there exist a C function
X(A)=%..(2) on R' as above with R,=R,., large enough and a constant
C,.>0 such that

(1.8) e o =C, 7", tER.

The analogous estimates were obtained by e.g. Rauch [11], Jensen
and Kato [3] and Murata [7~9] for some short-range potentials. Our
result is new in the following two points: i) We include the long-range
potentials and some singular potentials and ii) our estimate (1.8) is quite
close to the best possible estimate |[ye=**|,._.<C,{(t>~*, which holds for
the unperturbed Hamiltonian H=H,.

In proving Theorem 1.1, we shall construct the total approximate
propagator E(t) (t=0) which approximates the behavior of ye~**¥ when
t—co in some sense. The construetion of E(f) -consists of two steps.
We shall first construct the outgoing approximate propagator E.(f),
which describes the outgoing behavior of the quantum mechanical par-
ticles. We shall next construct the incoming approximate propagator
E_(t). E(t) will then be defined by E(t)=E,(t)-+E_(t), roughly speaking.
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The outgoing part E, (t) will be constructed in a form of the Fourier
integral operator in the sense of Kitada and Kumano-go [5]. The method
of construction and estimation of E_(¢) is similar to that of the “approxi-
mate propagator” in Kitada and Yajima [6]. The incoming part will need
some geometrical considerations regarding the location of the particles.
In this respect, we shall follow Murata’s idea [8] but some modifications
will be necessary. In our construction of E_(t), we shall use the genuine
propagator e~**“ for the long-range part H*=H,+ V" of the Hamiltonian
H. The estimation of E_(t) will be carried out by using the “ingoing
approximate propagator” E_(—t) (t=>0), which will be constructed and
estimated in a way quite similar to that of the outgoing part E,(t).
Theorem 1.1 will then be proved by Laplace transform methods analogous
to those in Vainberg [12], Rauch [11] and Murata [8].

The plan of the paper is as follows. In sections 2 and 3 we shall
construet the outgoing and ingoing approximate propagators and give
some basic estimates for them, leaving the proof of a key theorem to
the Appendix. In section 4, we shall first construct the incoming prop-
agator and give some crucial estimates for it by using the estimates
obtained for the outgoing and ingoing propagators in sections 2 and 3.
Then in the same section 4 we shall construct the total approximate
propagator and state some estimates for it. In the final section 5, using
those estimates, we shall prove our main theorem, Theorem 1.1. Appen-
dix will be devoted to proving a key theorem in section 2.

We shall use the following notations and conventions throughout the
paper. For multi-index a=(ay, ---, @y}, a;EN, lal=a;+ -+ +ay, x*=
zit - 2y and 95=07 -+ 9;8. We write 00, =0[0%5, 0,= {0y, = **, 0sp), D=
—10,, and D,=—19,. For any z€R™ (m=1), we write {&d=+/1+|z].
Hy=HRY) (m,s€R") is the weighted Sobolev space with the norm
I flan=<@>{D,y"f ;2. S denotes the Schwarz space of rapidly decreasing
functions on RY. $B~(Q) (2 is a domain in RY) is the set of all C~
functions on £ whose derivatives are uniformly bounded in 2. For f(x),
g(x) € C=(R"), f~g means that flx)—g@)=0(z)>"*) as |z|—>co for any

L=0. When we use the definition of the form f{z)~ f} g.(x), we mean
k=1
that g.(@)=0{(x>""), LiSL,< -+« <L, < -+ >0 (k—co) and that flx)
is defined by fl(z)= i 1x> e g, (x) with x € C2([0, o)) such that y(6) =1
k=1

(0=60<1), =0 (#=2) and with a suitable sequence {¢}i=, such thate, [ 0
(as k—co). For a,bc R', a>>b means that a>b and o is sufficiently away
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from b. For p(x, &) and q(&, vy) € B°(R™), the corresponding pseudo-dif-
ferential operators p{(X, D) and ¢(D, Y) are defined by

p(X, D)f{r)=0,- j j v sp(es, £) Fly) dyde,
(1.9) (fed),

(D, Y) /) =os-j j ¢v-iq (&, y) Fly)dyde,

where @&=(2z)"%d&¢ and Os-” ... dydé means the oscillatory integral

(see e.g. [p]). For any Banach spaces X, Y, B(X,Y) denotes the Banach
space of all bounded linear operators from X into Y with operator norm
ITlxoy. We write B(X)=B(X, X). When X=L! and Y=L (r,sc R},
we write |Tl...=[T| 2.z

Acknowledgement: The author expresses his sincere appreciation to
Professor M. Murata for his helpful discussions.

§2. Outgoing approximate propagators

In this and the next sections, we shall study the outgoing and
ingoing behavior of the particles which are subject to the long-range
potential V*(x). By “outgoing” or “ingoing” particle we mean the one
which is pointing outward from the scatterer and leaving it to infinity
as t—oo or t——oo. The method we adopt here is similar to that in
Kitada and Yajima [6]. Namely we shall first study some properties of
the classical orbits associated with the outgoing or ingoing particles.
Then, utilizing those properties, we shall construet the outgoing or
ingoing approximate propagators in the form of Fourier integral opera-
tors (cf. Kitada and Kumano-go [5]), whose phase function is a generating
function of the classical orbits.

Let () € C*(RY) and o¢(t) € C*(R') be real-valued (= functions
satisfying.

(2.1) %o(®) ={

and

1, || =2
0, lz]1<£1

=log <), |t|=22,
(2.2) ot) § =1, 2z[t|=1,
=1, |t]<1.
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For p€(0,1), we set
(2.3) Vo) =Vi@)=x(ox) V()

and

Vit =5( L)V, )

@.4) H,(t, v, 8) =%1 EP+V,(t, 2),
Hi(x, s>=%15\2+ V().

Then the following proposition is obvious.

PROPOSITION 21. Let Assumption (L) be satisfied, and let p€ (0, 1).
Then:
iy For |z|<o™,

(2.5) V,(t, x)=0, V() =0.
i) For |z|=2{)/p(t),
(2.6) Volt, 2)=V,(x).
ili) For T>0, let p‘lgozlllsg 2{t>[p(t). Then for any 0<t<T,
2.7) H,(t, x & =H;,§).
iv) For any «, we have
(2.8) 82V, (t, @) |S Copocty™117,  e=¢f8,
where the constant C, is independent of t,z and 0.

2.1. Classical orbits

The classical orbit (g, p)(¢, s)=(q, p)(t,s; y,&) is the solution (g, p)(¢)
of the Hamilton equation

g-j—m:vgm(t, a(t), p(t) =p(t),
(2.9) ‘j‘%’(w = —VLH,{t, q(t), pt) = — V.V, {t, q(t)),

q(s)=y, p(s)=¢.
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This is equivalent to the integral equation

q(t,s)=y+ Stp(r, s)dr,
(2.10) t
plt, s)=&— XszVp(z-, q(z, 8))dz.

The following two propositions are the special cases of Propositions
2.2, 2.8 and Corollary 2.4 of Kitada and Yajima [6].

PROPOSITION 2.2. Let Assumption (L) be satisfied, and let p€ (0, 1).
Then the solution (q,p)(t, s; ¥, &) of (2.10) exists uniquely and is of class
C* in (y,& €R™ for each fixed (t,s) € R?, and the derivative 9%05(q, p)
-(t, ;9,8 is of class C*in {t,s; y,&) for any a and B. Furthermore the
following estimates hold:

1) There exists a constant C, independent of p such that for y,& € RY
and t=s=0 or t<s<0:

(2.11) [p(s, £ 4, §) —&1= Coptols)~*s;

2.12) { [V,a(s t; 9, §) — I Copels)™=,
[V,p(s, t; ¥, &) [SCopedsy™ 7
{ [Veqlt, s; 9, &) — t—s) I |=Cooo| t—s[(s)™™,
(2.13) i
| Vep(t, 859, &) —I| £ Copo{s)™=0;

and for any «
(2.14) lodq(t, s 9, &) —y—(t—s)p(t, 5; ¥, § 1= Copomin {{E'7, [E—s ()70}
il) For |a+B|=2, we have

{ [0%02q(t, 3; 4, &) | Coppl t—s ()™,
10505p(¢, 59, §) | Capp™o(s)™™

where C,; is independent of p, t, s,y and & such that t=s=0.

(2.15)

PROPOSITION 2.3. Let Assumption (L) be satisfied. Let p€(0,1)
satisfy

(2.16) Cyo0<1/2,

where C, 1s the constant appeared in Proposition 2.2-i). Then for t=s=0
there exist the tnverse C= diffeomorphisms x——y*(s, t;x, &) and &——
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n*(t, s %, &) of the mappings y——a=q(s, t;v,§) and p—>E=p(t, s; x,7),
respectively. These mappings y* and »* are of class C~ in (x,&) for
each t=s=0, and their derivatives 9:0%y* and 00n* are of class C' in
{t,s;x, &), Furthermore y* and n* satisfy the following properties:
B {q(s,t;yi(s,t;x,s)f):x,
oit, s 2,9 (1, 8%, §)) =&,
i) { y=(s, t; m, &) =q(t, s; 3, 9™ (t, 5; 2, §)),
7t 83, &) =p(s, & y*=(s, ; 2, §), §).
iiify There exists a constant C,>0 independent of p such that the
Jollowing estimates hold:
[V.y*(s, t; x, &) — I = Cyp(s) ™,
) { [Vap*(t, s, §) [SCoodsy 7=,
b) For any «a
[0e[n* (L, 5; @, &) —E]IS Copods) ™,
[0dy*(s, t; @, §) —x— (t—35)§]|S C.p% min {{t)' ™%, |t —s|(s) 0}

iv) For |a+8|=2, we have
{ 10502 (t, s; %, §) | Copp®edsd ™,
10%0%y*(s, t; 2, &) |S CappoCt—s){s)™™,

where C,; is independent of p,t, s, and &.
v) Set for c,€(—1,1)

(2.19) I (o) ={(, &) e R™||2]|=1, [§|21, xz-E=afa||E]}

(2.17) {

(2.18)

Then for any o,€ (—1,1) there exist constants ¢>0 and T=T(s,)>1 such
that

(2.20) ly=(s, & x, &) |Ze( x|+ E~s|[E)) 22 —s)/p(t—s)
Jor (x, & €':(c,) and t=s=0 satisfying |t—s|=T.

Throughout the rest of the paper, p<€(0,1) will be taken so small
that (2.16) is satisfied.

2.2 Phase functions
We define the phase funection of the outgoing and ingoing approxi-
mate propagators as follows.

DEFINITION 24. Let p€(0,1) satisfy (2.16). For t=s=0, we define
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(2.21) ¢=(t, ¥, &) =ult, 0; ¥, 7*(t, 0, ¥, &),
where

(2.22) u(t, 0y, 9)=y-n+ SO {H,—x-V.H}(z, q(r, 0; 9, ), p(r, 0; ¥, ))dr.

Then we have the following proposition, whose proof is similar to
that of Proposition 2.6 in Kitada and Yajima [6], hence is omitted here.

PRrOPOSITION 2.5. Let Assumption (L) be satisfied, and let o€ {0,1)
satisfy (2.16). Then for t=0, ¢*(t, y, & satisfies:
B { V.85t ¥, §) =17 0; ¥, &),
Vo= (t, ¥, §)=y* 0,5 v, §).
i) { 0.0*(t, y, §) =H,(t, V:6=(t, ¥, &), &),
(0,9, &) =y-&.
In particular, when (y, &) € L(oy) (0,€(—1,1)) and [¢|=T{s,) with T=
T{o,)>1 large enough, one has

(2.23) 0.6%(t, ¥, §) =H; (V$*(t, v, §), §).

2.3. Outgoing approximate propagators

We now construet the outgoing approximate propagators, which
describe the behavior of the outgoing particles. For our purpose of
estimating ¢ *¥, we need to use a more precise approximation than in
Kitada and Yajima [6] to the outgoing behavior of the particles, and so
we solve the transport equation in defining the symbol function e, (t, &, v)
of the outgoing propagator E. (t).

Choose C> funetions y € C*(R") and ¢, € C~([—1,1]) such that

1, g2
2.2 <s>={ Do
and
1, 12020,
¢+(0)={ 0, oaz2oz=z—1,
2.25) 0=, (0) <1,

where 0>g,>0l>—1. Set

226) 0.6, 9) =7(E)7(W)g.(cos (£ 1)) € C°(B™), cos (&, 9)= 20
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We define the symbol e, (¢, &, y)~ i 1l (t, &, y) (¢=0) as the solution
=0
of the transport equation

221 =06+ X O v 0.60,8, 904 (1 )
F 15 0,0, )6 170,63.8, 80,068 . 9640 1)

+ Byt & y)=0 (1=0, By=0)
with the initial condition

{ 6.(0,&, v)=9.& ),
et (0,59 =0 (I=1).

Here B,(t, &, y) (I=1) is defined inductively by

(2.28)

1

(2.29) Bit,&v)= ¥ 00t Vet (:6,9.8).8)
X e e(t, &, y) e,

where _ :

(2.30 Vit &, v.6)= | Vit v 0l —£0)d0.

Then the solutions €.(t, &, y) ({=0) are given by the classiecal theory of
first order partial differential equations as follows:

(2.31) ¢4 (t, & y)=exp {—% 5 S"(axkamLH,,)(r, y*0, 7y, £(z)), 5())

LE=1Jt

X 0:,064") (e v, E(e))de g, " (8, 0: . ), v)

and
232)  engv=exn{—1 3 [[0.0,H) v 0.5y F6). £
X (0:,2: 6°) (5, v, 5 (c))de
x[exp{~% 2 [ 0.0, H) 0 v 0.5 v, 5e). ()
t = PR AR A ’
X (06,6 (6,0, E(2)de | B0, F160), y)do,  (1=1)
where

(2.33) Ee)=p(z, 0; 4, 7" (. 0; ¥, §)).
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REMARK. 1° From (2.28), (2.31) and the relations

234  &.6,20),y) =exp{—% 5 j (02,0 Ho) (e, (0,73 9, (), 5 ()

1L,k=1J)6
X (0,08 ) (2, 4, & (t))df}gh, n*t, 0,9, 8),y), ete,

we can easily see that for some 0 € (0, ¢§+1)

(2.35) Bi(t, & y)=0, é.(t & y)=0 for cos(§ y)<ot—d
and that
(2.36) CYYIKEHEH 0zel (8, &, y) € B=([0, o) X R X Ry).

2° (2.36) justifies the asymptotic definition: e, (¢, & y)~ 3 i'eL (t, &, ).
=0
Now we define E,(t) as follows.

DEFINITION 2.7. For a sufficiently large R>1, we define for fe S
and t=0

230 Base=u( B )os[[ener e o6 urwits

Furthermore we set
238) P, fl2)=E,(0)f&)=1Bx) o,,-ﬂew-m (& v)f ) dyde.

Then we have the following key estimate.

THEOREM 2.8. Let Assumption (L) be satisfied, and set Ki(t)=
(D, +HLE (t), Hi=H,+ V%L Then:
i) For any s=0 we have with some C,>0

(2.39) B @) onoe SCLEH

il) We can write K5(t) as
(2.40) K () flx) =O,-”e"“‘f“*"”"”vf”ki(t, x, &, y)f(y)dyds,

where kL(t, x, &, y) can be written as

Rz

S VLt 6 )+ 8.0, & )

(2.41) ki (t.x, & v) =xo(
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and K.(t, & y) satisfies
(2.42) [0:0205K%, (2, &, 1) 1= Cop, |y [+ <EXED™ a|=1, j=1,2

Sfor any a, B, n=0,t=0, &, y € RY provided that p € (0, 1) ts taken sufficiently
small. In particular, we have

(2.43) KL (@) los = Gy nlED>7"
Jor any s=0 and n=0.

The proof of this theorem is given in the appendix.
The following proposition will be used in section 4 when dealing
with the short-range part (V*(x)— Vi(z))+ V5(x).

PRroPOSITION 2.9. Let Assumptions (L) and (S) be satisfied, and let
0€[0,1/2) be the constant appeared in Assumption (S). Then:
iy For t>0 and any o¢=0

(2.44) <@y~ (Hy+1)° B (1) oo S Cot <83 .

i) Set K, (t)=(D,+H)E,(t)=D,+H;+V*—Vi+V5E_(t). Then we
have

(2.45) T () lone =0, nt <D™, t>0

Jor any s=0 and n=0.
iii) For 6=0 satisfying 0<60+86<1/2 and for any s=0 and n=0

(2.46) lirrhl sup h | K, (t+h) — K, (1) |02 <C,,, ;720> 0.
{0

Proor. The proof of i) is similar to that of Proposition 4.5 of [6],
hence is omitted here. Then ii) follows from i), Assumption (S) and
Theorem 2.8-ii). iii) is proved in a way similar to that in the proof of
1) by using Proposition 2.5-ii} and Theorem 2.8-(2.42) with |a|=1. |

REMARK. We can give another proof of the main theorems of Kitada
and Yajima [6] if we use our Theorem 2.8 instead of Theorem 4.4 of
[6]. In this new proof we need not use the parameter r=1, but we use
the compactness of the relevant operators. The details will be discussed
elsewhere.
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§ 3. Ingoing approximate propagators

In this section, we shall study the operator F'(t)=(I—P.) go(H’;)e‘”Hf;
(t=0) with ¢ € C*(R") satisfying ¢(2)=1 (for large |1]), =0 (for small |1},
and construct the ingoing propagator E_(—t) (t=0) in such a way that
E_(—t)* approximates F(f) in some sense (see Theorem 3.2 below). This
property of E_(~—t) will be used in the next section in estimating the
incoming propagators. Because of the existence of the factor I—P, in
F(t), the ingoing propagator E_(—t) (¢>0) can be constructed in a way
similar to that for E_(f) ({=0) in the previous section, hence it has the
properties appropriate for its name. In this section, we sometimes write
H;=H,+V; only as H, omitting the super- and sub- seripts L and p.
We begin with studying the properties of the operator ¢(H)=¢(HE).

Let .., € C*(R¥) satisfy

0=2(8), 0:(8), () =L;

(8.1) {0, |&]=3,
x‘@_{ L el
and
(8.2) %) + 18 =1.
Choose ¢;(2) € C3(RY) such that
0= =1,
(3:3) [0, 12]=6,
901(2)—{ 1, 121<5
and set
(3.4) o(A) =1—.(2).
Moreover set
[y 8, =0,
oo ol 5)_{ ¢t v, 8, =0,

and let u(t, & y)~ ii‘ul {t, & y) (t€ R") be defined by the solution u'(t, &, v)
1=

of the transport equation (2.27) (for <0, replace the superscript “*” by
“=») with the initial condition

(3.6) w(0,§y)=1, %(0,§y)=0 (=1).
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Then denoting the inverse Fourier transform of ¢(2) by @(t) =4d(t) — (1),
we define for fc S

87 D= atpw [[ewrerout g v @rwduds,
where j=1 or oco.

ProrositiON 8.1. Let Assumption (L) be satisfied, and let p€ (0,1)
be sufficiently small. Then for any integer m=0, we have

83) o (E) — %]t < o

Moreover, I'.,, 1is represented as a pseudo-differential operator with a
B=(R*™) symbol.

Proor. We deéompose ¢(H) as
PH)=2(D)p(H)+x1:(D)op(H).

Denoting the inner integral in the r.h.s. of (3.7) by F,{f)f(x), we have
89 oH)LelD)—Ta= (D) =M D) ~(Ful0) = | a1 F.tiat)
=|" a0 F.at—g.H)2.D)

Gi(t) (Foolt) —e™ "y (D))dt

—co

[

=v:j°° ¢1<t>e-””fte"’H<Dz+H>Fw<f>dfdt-

In a way similar to the proof of Theorem 2.8 (cf. Appendix), we can
show that the symbol function f.(r, & ¥) of (D.+H)F. (r) satisfies

10800 foolz, & y) 1S Cop LyD ™K EDD!
for any 1=>0. Since ¢ (t) €S, it follows from this and (3.9) that
(3.10) lo(H)to(D) = Loflam mg<oo,  m=0.

On the other hand, we can write

[" apanrae={[ewr |7 ewerermup, e vt |r@rwde

Applying the integration by parts to the integral in [ ] above by using
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the differential operator

_1-,(y-§—9t ¥, &) -0

- s

<at(y's—¢(t’ Y, S))>Z

we have

o | ewesen o CL it & WEE)dE || S CunnE>

—o0

if p in section 2 is taken small enough. Thus we have

I < co, m=0.

—2m 0
| HO —-rHo

lliﬂf’l(t)Fm(t)dt

Combining this with the obvious estimate |j¢:(H)Xe(D)|lu;2m m3<<co, we
get from (3.9)

(3.11) ()1 D) — Tulizom sy <o0,  m20.
An interpolation between (3.10) and (3.11) yields

(3.12) lo(H) Yoo (D) — Lol zmey <oo, M0,
Then we have now only to show

(3.13) lp(H)1:(D) = Iilla=p-ng<co

and

(3.14) 1Tl a=meg <o,

We first prove (8.13). Choosing C* functions #.(z), ¥.(t) € C*(RY
such that

(3.15)
z _ (C.>C,>6),

we define T.(r,t) by

(3.16) Ty(z, t) f() =03-§Se“x-f-w'”'é”u(r, g, y)zl( igg >x1 E)fly)dyas

for /=0, 0. Then we have
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817 (eELD) I =" dtgte

x geH (D4H) (Tole, f + Tl 8)f) (@)de.
We can write for some function ki(c, & )
3.18) (Dot H) T, 050)=0-| | s#erhfz, £,

5 (¥ —0 oo
><xz<~<—t>~>f(y)dyd§, 1=0, co.

For l=oo, since {y>=Ct>=Ci(c> and |&|<3 when zw<%>¢o and

1:(6)#0, we can prove in a way quite similar to that in the proof of
Theorem 2.8 (¢f. Appendix) that

(3.19) [0205k (7, & Y) |= Cop | Y|+ LDEXD™
for any m=>0. Thus we have
(3.20) DA H) Tl ) | a=mm=C, m20.

For [=0, because of the existence of the factor (&) in (3.16), the symbol
kolz, & y) of (D.+H)T,(z, t) belongs to B~(R:X RY X R)) and decays rapidly

with respect to & as |&l»oo. Since (t5'<Ci(y>~ when x( %@);&o, and

since ¢,(t) €S, we thus have
(3.21) &)1 (D H) Tole, B a=nut <Cs
for some C,>0. From (3.20)-(3.21) and (3.17) we obtain (3.13).
We next prove (3.14). We can write
822 I/ =“em—w-éS:w)Hleiw'é~¢<wré>+ﬂ>u(t, 3 y)dt]dz
X 7:(6)f (y)dyds.
On the support of ¢(4)y.(§), the differential operator

L= 0%
2_6t¢(t, y’ E)

is well-defined if pc (0,1) is sufficiently small (see Proposition 2.5-ii)).

(3.23)
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Thus the formula in the parenthesis [ ] of (3.22) is equal to

(3.24) Sle“"'f“ﬂ”“'”@”“’ (L) (ult, & y))dt.

From the expression of u(t, & y) (ef. (2.31)-(2.32)), we have

(3.25) | CL)Y'u(t, & y) IS CKE Ky + 187"~

SOy

on supp ¢(A) (&) for any 1=0. Thus we obtain (3.14). ]
Set

(3.26) =6 Y~ T DY)

and

3.27) v =] o[ eveseseroui & g

Define &_{z, &, y)~ f}ilé‘_(t, & y) (t<£0) as the solution of the transport
=0
equation (2.27) with “*” replaced by “~” and with the initial condition

(8.28) &L(0,& y)=x.(6) = %a‘:[p(f,@-D?;‘{(l—r(v))+r(n)(1—xo(Ry))

la| <o
+rm) A—7@)%Ry) +920, 2) %Ry} 1;3,
e (0,8 y)=0  (I=1).

We then define the ingoing approximate propagator E_(t) for ¢<0 by
3.29) E.0fa) =0 o=+ rve_tt, &, y)fly)dude.

Then we have the following estimate, which will be used in section 4.

THEOREM 8.2. Let Assumption (L) be satisfied, and set K_(t)=

(D,+HYHE_(t) for t<0. Then we can write K_(t) as
(3.30) B (00 =0 | o= er k.1, &,y flw)duas,

and the symbol k_(t, & y) satisfies
(3.31) 1050k _ (2, & ) |< Capn Y |+ EXEY™
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Jor any «a, B, n=0, t<0, & ye RY provided that p€ (0,1) is taken suf-
fictently small. In particular, we have

(3.32) sup | (I=P)TEUE) ~E_(—)*|ngonn<oo,  mZ0,

where U(t)=e"" =¢~i*7;, hence by Proposition 3.1

833 sup (I~ P)p(H)UW) —E_(—t)*|omm<co,  mZ0.

Proor. The estimate (3.31) is proved in a way quite similar to that
of Theorem 2.8 (ef. Appendix). We prove (3.32). We have for ¢=0

(3.34) HI=P)LEUM) ~E_(—8)* | a3mm
SNI—P)TE—E_(0)* | adonm+ | E_(0)*Ut) — E_(—t)*|| g .um-

By (3.28) and the definition of I, the first term on the r.h.s. of (3.34)
is finite for any m=0. The second term is estimated by using (3.31)
as follows:

=|E_(0)—U®E_(—1t)|a=m_ns

(3.35) <\ IDTB (~ ) [azpsyde
=[ 1B (=Dlazp-npde=C..

where C,, is independent of ¢>>0. ]

§4. Total approximate propagators

The main purpose of this seetion is to construect the total approxi-
mate propagator E(t) (t=0) such that E(0)=1I, and prove the weighted
Li-estimate for E(t) and K(t)=(D,+H)E{#), H=H,+V, V=V*4 V%, which
will be used in the next section in proving Theorem 1.1. In doing so,
we shall first construet the incoming approximate propagator E_(¢), which
describes the incoming behavior of the particles. By “incoming” particle
we mean the particle that is pointing inward to the scatterer and coming
into it. Therefore it must become an outgoing or bounded particle when
a certain finite time passed. Since we shall only consider the particle
with sufficiently high total energy, it all becomes the outgoing one after
a finite time. When constructing the incoming propagator, we must
therefore take into aceount the location of each particle (which we label
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by k=0), and in accordance with it we determine the ‘“incoming time”
(#) only after which the particle behaves like an outgoing one. We
denote the incoming propagator by E_ .(t) (t=0) corresponding to the
location k. Then the total approximate propagator E(t) is defined by
Et)y=E.({)+ go E_ () +E.(t) with some smoothing operator E(t).

4.1. Incoming approximate propagators

Let 0€(0,1) and let Z, be a finite set included in the sphere S¥*=
{x € R¥||x|=1} such that

(4.1) U By(0/2) 28",

BezZg

where B;(6) denotes the open ball with center 8 and radius d. We set
for 6¢ (0,1)

4.2) J,={a € R¥|a=(1+0)’8 for some integer 7=0 and some € Z,}.
Then
4.3) U B,({0lal)D{xre RY|jx|=1

aedy

Let fe Cy(RY) satisfy

4.4 f(x)-{ Loowl=l <
' 1o,  z|=2 ==
and set for o€ J;

5 o T—a
(4.5) Fo@=1( s )

Then
suppf.C{z € R ||z —a|<20{a)},
(4.6) folx)=1  for |zx—al|=déla),
|07 f () [SC x>,

Thus for a sufficiently small d¢€ (0,1)

.7) fio=fe|( £ fiw)  @edu loizl)

Bels

is well-defined and there is a constant RE,(>1) such that
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{ z fuw)=1,  |¢|=R.
(4.8) *els

101ful) |SCKa)™,  acd, |2zl

where C, is independent of acJ, and |z|=1.
In the following, we shall take and fix o, (in the previous sections)
and o, as

(4.9) — 1<, <0o,<0.
Set 7,=0 and
(4.10) =140  for k=1,

and for any >0
(4.11) I (o, 7)={(x, & € ['_(o) | cos (x+7& & Zail.
Let I,=¢ (=the empty set) and let for k=1

w12y  L={esesi@pe UL,

[(supp £) X (BN (00, ce N _ (04 z'k)];tgi}.
Then
(4.13) ;g Ii={(a, B € J}|cos (@, ) <o}

for some o] € (01, 0). Let ¢ € C~(R") satisfy

{1, 1&]=8,+1

(4.14) Pl = 0 |21<5.

for S;>2max (R, 3). We now define for k>1
(4.15) el &)= 3 fulx) 66 @)¢(6).

(@,p)ely

Then, for a sufficiently small € (0,1), we have

(4.16) kgl o, &) =P (@) (&) for cos (z, &) <o,
and
(4.17) supp ¢x(x, §) C{(x, §) € B*¥|eos (x, §) o1}

We put
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g7, 8~ T -1 03D%0.) €. ),
(4.18) < a!
g7(0, =732, A0 H(&),
and define
04l O =(1—g2x, Dgui & (b1,
419 { 9-le, ) =9(6)— T 9w §)—03(w, &).

Then we have the following proposition.

PrOPOSITION 4.1. Let 6€(0,1) be sufficiently small. Then we have

(4.20) { supp ¢+ C{(@, §) € B*™| ayri | §|=]2[Z | €], cos (%, §) <o}
Jor some a,>a,>0 and any k=1;

(4.21) g-o@, &) =€) (1 —¢(x));

and

(4.22) 105089 ,1(x, &) | Copy™ oK™, k=0.

Proof is clear by definition.

We remark here that &’s in the above specify the location of the
particles and that ¢, can be interpreted as a kind of “incoming time”
for the particles with the location “k”. Practically we shall adopt #,=
Az, (A>1) instead of 7, itself as our incoming time, because the behavior
of the particles near the scatterer is too complicated to be described by
the outgoing propagator K (7).

Let @ € Cy(RY) satisfy

4.23) @(2)_{ 1, 02 =2 2=ay,

’ 1o, 2,<i or 1Za,)2
for the constants a,>a,>0 in (4.20), and set for k=1
424 D&,y :@(ﬂL),

(4.24) (& ) S

For k=0, let @,(& v)=1. Taking a real number R, and a function 7€
C?(RY such that R.,»max{S, a.} and
1, [2|<R,,

425 m:{ 0, [2]=2R
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we set
(%6 v)=1 %} k=1,
(4.26)
(. v)=1( giﬁi )
and define

(427) Xk:Xk(D, Y)’ @k:@k(D, Y), g_,k:g_,k(X,D), kzo

Now we can define the incoming approximate propagator E_ .(t).
Let 6€(0,1) be sufficiently small. Let k=0 be an integer and A4 be a
constant such that A=2R,+3, and let ¢ € C(R") be the function defined
by (84). Set #,=Ar,; 7,=A; and

(4.28) Ut)=p(HE e e,
Furthermore let @ € C7([0, o)) be the function satisfying

1,  t<1/2,
(4.29) ot)= {

0, t=1,
and let P, be defined by (2.38).
DEFINITION 4.2. i) For t€[0, %),

(4.30) E_.0)=[U®)n+E, ) (1—¢(H))
+0@#)I—P,)1—o(H) 119, 1Ps-

ii) For t=7%,

(4.31) E_.t)=[E.t—7)UE)u+ot—%)I—P,) UE)
+E, () (L—¢(He) 1) 19—, 1D

ilij For {=0, set

(4.32) E_(t)= % E_.(t);

K* ,(t)=(D,+HYE_ ,(t),
(4.33) {

K ()= X K2 4(8);
and
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{ K_.(t)=(D+H)E_,{),
(4.34)

K (f)= % K_.(0.

Then we have the following theorem.

THEOREM 4.3. Let Assumption (L) be satisfied, and let k=0 be an
integer. Then:

i) E_.({) 1s strongly continuous in t=0 as an operator in B(L?),
hence as an operator in B(LZ L:,) for any s=0.

i) We have for s=0

(4.35) NE_ 2@ [o0=CE>70,  tE[0, 74,
(4.36) IE_ @)oo SCLE—7) 7T, t27,

where the constant C,>0 is independent of k=0.
iii) We have for s=0 and n=0

C,(Fe% €10, %),

. K .0,
s1) T N
where C, and C, , are independent of k=0.

ProOF. i) is clear from the definition of E_ ,(t).
il) Since we have from (4.23) and (4.24)

(4.38) 10595 (@1 (&, Y)<y> ™) IS Cap, LT 7KE)™
for k=1, we get by Calderdén-Vaillancourt theorem ([2])
(4.39) ”@k”s—)()écs<%k>—s’ SZO'

Thus we have (4.35) from (4.30) by sup NU@E) fooe<co and (2.39) with

s=0. For t=%, the first and third terms in the r.h.s. of (4.31) clearly
satisfy (4.36) by (2.39). For estimating the remainder term in (4.81),
we have only to prove

(4.40) sup | ([—P,)0 () - <co
for any m=0. But by Theorem 8.2-({3.33), this is reduced to the estimate

(4.41) Skg%) HE—(_%k)*Xk”Hg-»Hg < o, m=0.
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To prove this, we write T=%,. Then we have
442) (B (~T)f) ) =0 [evrro-vve (T, & ajpis, vif ) duds.

For (z, &, y) satisfying é_(—T, & )3.(&, ¥)#0, we obtain from A=2R,+3,
(3.28) and the expression of é_(—T, & z) (ef. (2.31)-(2.32)) that

(4.43) IVed™ (=T, &) —yl=c(z|+T)&)
for some ¢>0 independent of £=0. Setting
(4.44) L= 1—4(Vep~ (=T, 2,8 —y) -V,

<V5¢_(_ T’ X, E) _y>2 ’
we can write

(4.45) (E’_( *ka H. ilp~ (—T,I,§)~y.§)<tL)l
X {é_

The symbol funection a, (T, 2, & y)=(L){e_(—T, & z)%:(&, y)} satisfies by
(4.43)
(4.46) 10508070, 4(T', %, §, ¥)] <C x|+ TN H™

for some constant C,;>>0 independent of £=0. Thus we obtain (4.41) by
L*-boundedness theorem ([1], [5]) for Fourier integral operators. We have
proved ii).

iii) For t=7%, (4.37) follows from (4.39), (4.40) and Theorem 2.8-
(2.43). For t€l0,%,), we have

(4.47) K2 (8) =[K%(t) A —o(Hp) 1) — 10" (t) I — P.,) (1 — o (H}) )
+O) Hy(I—P,)(1—o(H:) 1) 19 -, 105

The first term on the r.h.s. of (4.47) clearly satisfies (4.37) for t€[0, %)
by (4.39) and Theorem 2.8-(2.43). The estimate for the remainder terms
follows from the estimate

(4.48) sup [(I—P,) (1 —¢(Hy) 29 - il ag-omy <oo

for any m=0. To prove this, we note by Proposition 3.1, (4.14), (4.15),
(4.19) and a direct calculation that

(4.49) Sup [@(He) 239, s— X9 -, sll mgonm <00, m =20,
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On the other hand, from the definition of g_ ,{x, & and y.(§ ¥), we have
(450) sup || ([—P.) (1= 1994/ ag-a <o

for any m=>0. Thus from (4.49) and (4.50), we obtain (4.48). We have
proved iii). ]

The following proposition will be used in the next subsection in
dealing with the short-range part (V*—V;)+ V5.

PROPOSITION 4.4. Let Assumptions (L) and (S) be satisfied, and let
0€[0,1/2) be the constant appeared in Assumption (S). Then:
i) For any s>1, 620 and k=0, one has

(4.51) l[<z> = (Ho+1)°E_, 4(8) [ls-0
<c, d{ BN D)<ED ™, te (0,7,
- (t_%k) -26<t—%k>2g_”<%k>_sy t> Thy

where the constant C, ,>0 is independent of k, and aV1=max {a, 1}.
ity For any s>1, n=0 and k=0, one has
PV )<ED, t€ (0,7,

(4.52) HK_ .(t) ”MgC,,,,,{ (E—%) "B — 7> ED T, t>%,,

where the constant C, ,>0 1s independent of k.
iiiy For any s>1, n=0, k=0, and 6=0 satisfying 0<6+0<1/2,
one has

453 limsup b K ule+h) —E_ (0]
éca ] 0{ (t—2(<7+0)\/1) <%k>—s, t€ (0’ %k)9
UL =T OO —T) TS, T,

where C, , , s independent of k.

Proor. i) Sinece Vi(x) is uniformly bounded, we can easily see that
for U(t)=¢(HE)e s

(4.54) sup [(Hy+1)T @) —U () (Hy+1) oo < 0.

Furthermore we have
(4.55) Skgop HH 1" 09— 09—, 1{Ho+ 1) gm0 < oo
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On the other hand, we have

456)  (Hy+1)0uf(@) :W £ 8N, €, y)<yd <y ) dyde

and

(4.57) 10205 (KEY* D&, ) YD ™) = Clap, LTap~KED* 2.
Hence for s>2
(4.58) [ (Ho+1) @0 SCLTD

Interpolating this and sup [|@./l,..<co, we obtain
k=0

(4.59) [ (Ho+1)°0] o0 SCLTD "

for s>>1. Thus, the first term on the r.h.s. of (4.80) satisfies (4.51) for
t€(0,%,). The other terms in (4.30) clearly satisfies (4.51) for t€ (0,%,)
by Proposition 2.9-i) and (4.48).

The estimate (4.51) for t>%#, easily follows from Proposition 2.9-i),
(4.40) and (4.39).

ii) now follows from 1), Theorem 4.3-iii), and Assumption (8) by
K_()=K-.()+ (VE=Vi+ VS E_ ().

iii) is proved in a way similar to i) by using Proposition 2.9-iii),

(4.40) and (4.48). 1
4.2. Total approximate propagators
Let
.. &) =He“'”’”g+ (€+7, 2+y)dydy
(4.60)

~ % - (0:D0.) (& ).
a !

Then §.(X, D)=g.(D,Y). Let ¥ be the operator defined by
(4.61) U=1-¢(D)+92(X, D) — %R X)§.(X, D)
+ ,;,g—.k(X, D)(l_@k(D’ Y))‘

Then it is easily seen by (4.19), (4.20), (4.23) and (4.24) that ¥ satisfies
for any s, m=0

(4.62) [T 0.nm <o,
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Let @{t) be the function in (4.29).
Now we can define the total approximate propagator E(t).

DErINITION 4.5. 1) For £=0, we set

(4.63) E.t)=0t)7.

i) For ¢=0, we define
(4.64) Et)=E.(t)+ %E’__k(t) +E.(t),
and )

(4.65) { K:(t)=(D,+HLE(t),

K(t)=(D.+H)E(t).
Let {p}i,={0}V{%\}i, satisfy
(4.66) O=p <t <pfa<l - ++ <ptp< +++ —00 (as k—co).
Then we have the following theorem.

THEOREM 4.6. Let Assumptions (L) and (S) be satisfied, and let
€0, 1/2) be the constant appeared in Assumption (S). Then:

) EO0=IL

i) [E@]-"W=C, L7 for s=20, e>0;

i) [KZ @ eme=C, L7 for s20, e>0;

V) K@) s =Co o (E— )" VL™ for L€ (e, trur) (20), s>1 and
e>0;
and _

v) 1irfbll§up R Kt +h) — K)o =G e, 6 ((E— ) 2OV DKED "
Jor t€ (t, thyr) (£=0), s>1, e>0 and =0 with 0<0+0<1/2.

Proor. i) is obvious from the definitions of £, (t), E_ .(t) and E_(t).
ii) follows from Theorem 2.8-i), Theorem 4.3-ii) and (4.62), since 7#,=
Ar,=AQ+0)*" for k=1. iii) follows from Theorem 2.8-ii), Theorem
4.3-iii) and (4.62). iv) is an immediate consequence of Proposition 2.9-ii)

and Proposition 4.4-ii). v) is a consequence of Proposition 2.9-iii} and
Proposition 4.4-iii). il

§5. Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1.
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VYe begin with the definition of the Fourier-Laplace transforms E(z)
and K(z) Imz>0) of E{t) and K(t): For fcS§,

(5.1) Be)f= S:’emE(t) fdt,  R@)f= S:oe“’K(t) fdt.

Then we have the following proposition.
PropPOSITION 5.1. Let Assumptions (L) and (S) be satisfied, and let
s>1. Then

{ sup |E(2)],-—<co,
(5.2) e

sup | K(2) .- <oo.
Im 2>0
Furthermore, the boundary values EQQ)f=E(2+10)f=s-lim E(i+ic)f and
A A elo
KA f=K(+10)f=slim K(A+ie)f (f€L? exist and are continuous with
e}l

respect to A, wn L%, and LZ respectively.

Proor. Sinee E(t)f and K(t)f belong to L*([0, oo); L2,) and L'([0, co); Li)
for f€ L? and s>1 by Theorem 4.8-i), Theorem 4.6-ii) and iv), the as-
sertions are obvious. O

Taking the Fourier-Laplace transforms of the both sides of the
relation (D, +H)E({)=K(t) (t=0), and using the continuity of E() in
t=0, we can easily get

(5.3) (H—=2)E(2) f=—iI+iK(@)f
for fe L? (s>1) and Im2>0. From the well-known inequality:

5.4) sup [y =C | 1K ®)Fl:2dt-+Clim sup b~

<[ NE e+ 1) - K@) flzdt,
and Theorem 4.6-iv) and v), we easily get the following proposition.

ProrositioN 5.2. Let Assumptions (L) and (S) be satisfied, and let
0>0 satisfy 0<6+0<1/2 for 6€[0,1/2) appeared in Assumption (S).
Let s>1. Then

55) S <YK (@) 1 <o,

Let s=0 and >0 be fixed, and take s,>2 so large that s,¢/2=>s holds.
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Then there exists some R,=R,,, .>1 large enough such that for |z|= R,
Im z>=0, one has

(5.6) 1K (2) ] agoasg <1/2.
From this and (5.8) we obtain
(6.7 R\ f=H—-2)"f=iE@) I+iK(2)f in L,

for |z|=R,, Im2=0 and f€ L. By Proposition 5.1, the r.h.s. of (5.7)
are continuous in |z|=R,, Imz=0. The similar thing can be shown to
hold for R(z)f with |2|=R,, Im 2<0 by using the approximate propagator
E(t) defined for ¢<0, which can be constructed in a way similar to that
in sections 2-4. Thus we have for y=y,,. in section 1 and for f¢ L2

(5.8) xe‘“Hfz—l_—r ety {R(A+i0)f— R(A—i0)f}d1,  t€ R
271 J-o

For estimating this, we consider

(5.9) xie—“ﬂf=§°_°we-mx(z)R(zim)fdz
=7lSo;e"’“x(2)E’(Zii0) (T+iK (A10))-fdA.

By (5.6) we can write

(5.10) Loo~if=i 3 i S ey NEX R (2 fdA
+i”+2§e‘”‘x(2)E'(2)K(1)”“(I—i—iK(,Z))“fdz

for any v=>0. We take and fix v and @ such that

(5.11) 0<0+8<1/2, (+1)o>1

for 0 €[0,1/2) appeared in Assumption (S).
It follows from (5.1), (6.4) and Theorem 4.6-ii), iv), v} that

(5.12) { [03E () layo-sp=Cip. m>

03K (2)[[iyoey < Copm, oAD"

for s,>m+1 (m=0). Thus we can easily obtain
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(5.13) Me"'“x(X)E(l)K(l)““(IJriff(l))“lfdl“Lz <C.p o812

-3y

For estimating the first summand on the r.h.s. of (5.10), we write
for 01y

(5.14) Se‘”*x(l)E‘(X)K(Z)Lfdl:ge"’“E(Z)K(Z)‘fdl
+ S e (@) —DE@ R () fda.
The first term on the r.h.s. of (5.14) is equal to

515 [ Be-a)| Kbt - [T K-t K - dn
[ [ 0
for ¢=0, and vanishes for t<0. By a straightforward calculation by

using Theorem 4.6-ii), iv), the L2, norm of this is bounded by

C.p KE S| 22 The second term on the r. h.s. of (5.14) can be estimated
similarly by using x(2)—1¢€ CP(RY), and is bounded by Cso.l<t>_80+1”f“14§0°
Summing up, we have proved

(5.16) (27" ayomsg S Ca 75

The same estimate can be shown to hold for y_e~**# by using the approxi-
mate propagator E(t) for t<0. Thus we get

517) e e S G800
On the other hand, we have

(5.18) e llo=Co

from (1.5). Thus, interpolating (5.17) and (5.18), we have proved
(5.19) lxe 2= G, L7

for s=0 and ¢>0 fixed just after Proposition 5.2. This completes the
proof of Theorem 1.1.

Appendix. Proof of Theorem 2.8

i) is obvious from the definition (2.37) of E_({) and (2.36).
il) By a straightforward calculation, we can easily prove the expres-
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sion (2.41), and we see that k% (¢, &, y) is derived from the sum of the terms

which include aga:[m( ft’; )] (1<l+|«|<2), and that K.(,&7) is the

symbol function of K.{t)=(D,+H")E.(t), where E.(t) is defined by (2.37)
with deleting the factor x0< zg ) Furthermore, we easily see that

{aza:[xo Z”; ]]gca, W&>=141-1 for I-+|a|=1, and by Proposition 2.5i), (2.17)
and (2.35) that agaa[x( L ] =0 for I+|a|=1 and (4, y, & with
: ) /T Ha=vgtey,o =

e.(t, & yy#0 if R is sufficiently large. The proof of (2.42) for j7=2 is,
therefore, quite similar to that for j=1. Hence we only prove (2.42)
for j=1. To prove this, we first give two different estimates for k. (¢, &, 9)
and then interpolate them to obtain (2.42). In the following we only
prove the estimate (2.42) with j=1 for |a|=]al=||=0, since the other
cases can be proved similarly:

(A.1) [ELE S ) ISCy+HKEDN ™ n=0.
We remark that (2.43) follows from (2.42) by the L*boundedness theorem
for Fourier integral operators (see Asada and Fujiwara [1], Kitada and
Kumano-go [5], Kitada [4]).
1st esttmate: Since H:=H}(X, D) is symmetric, we can write
(A.2) HEE: (Of @)= | |43y, 8 (BL0)7) W) dude,
Then we have
(A.3) Ki(t)f (@) =O,-s s g en O s (8 &, y) +5(t, & )} (W) dydé,
where

(A.4) { st &, ) =0, [efo-oov T =st 0w Lz, S, 1, 7, )y,
32(t, 5: y) = —"at¢+ (t! y’ E) '€+ (tv E’ y) —’l:at€+ (t’ 57 y)-

By Taylor’s formula and Fourier’s inversion formula, we get for any
L>n>2

(A.5) si(t, & )
(U™ peaers) (Vg (t:n+2, 9, 8), Se, (t.p+8, )]

=0 jai=t ol 7=0
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+ T CN Doy (V0 +60.8), en b 1+ W]
+B,,.+Cy,
where
(A. 6)
5. ¥ (-U*

o= B o P DEHR (Vedt (048, v, 8. e,y 6 )]

7=0

=L 5 V[ a—0) 6 v 0)dn,

7=k 7!

M&%m-&&&mwﬁmﬂm%+w¢ﬂm+&%Sf%ﬁw+awwﬁm

and V. ¢*(t;p, v, €) is defined by (2.30). On the other hand, using Proposi-
tion 2.5-ii) and the transport equation (2.27), we have
(A- 7) Sz(t, E) y)

=— S 5 =0 Dyt 6, Vigt -8 0. 9, e b 7+E )]

7=0

—i 3 ¢Bi(t, 4, 9).

Thus, taking p€ (0,1) so small that p"gosup 2{t>/p(t) for T=T(s}—0)
<t<p

(>1) appeared in Proposition 2.5-ii) (as for 0 see (2.35)), and noting
Proposition 2.1-iii), we obtain

By & y)=s(t & y)+s:(8 & )
A.
( 8) :An+Bn,L+CL9
where
(A.9) 1Bi(t, & v)

e s oQHE (Ve 06 v, 8§

2gialgmin (n—1, m+1) ¢!

X e+t p+§& )]

7=0
Also by Proposition 2.1-iii) and by (2.29), {2.35) and (2.36), A, satisfies
(A. 10) A, S Cy | +<EEN™,
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where for ¢>0 near 0 we used the inequalities:

{ Ay +EEN 05y (0, £ 3, §) [S Oy [+EED TS CLE T
Ay HKE)KEOTZCY [+H<EXEOI™

For B, ,, we easily see by using these inequalities, (2.35) and (2.36) that

(A.11) | B 1 |Gy, 1y [HEXED™
In order to estimate C;, we put
(A.12) 9@ 0,9, §)=H;(z+ VS 0, ¥, §), e, (t, 1, ).
Then
(=1 [ o.{( e
(A.13) C.= szb o So (1—g)'m ‘O,,-He*v'z(ma:m 6z, n+§, y, §)dzdndo.

For any multi-index «a, 8 such that |«al,|f|<M (M>0), we have from the
formula for the derivatives of composite functions (cf. e.g. Narita [10,
Lemma 1.6])

(A.14)  [(DFFor+Pq)(6z, n+£ v, §) |
D;*“[(@Z*ﬁV{,‘)(Hz—}—S y+0, v, &+ (1—0):7)d6)e+ {t, 7+, y)]]

1
0
=C

ltm=r+a {vploce<i €M)

x I |([;a-0r@s 0,69, &+ 1-01m)do)”

1
0<E=l 0

X|(Dre.)t. n+& y) |,

1
0

Dz vy 6+ [ 0, v, £+ (1-0))d0)|

where

M= {{”zs}ﬂo:gt

v, and ¢ are N-dimensional multi-indices

and Ellv,c[kzl}.

247

We easily see from (2.17) and (2.35) that
.15 ([0, v e+ a-0mds) Oy I+KEY

for (¢, ¥, & n) satisfying e, (t, »+&, y)#0. Thus for t=>1 we have from
(A.14), (2.17), (2.36) and |7|=L that
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(A.16) L (Dy*01+4g) (02, 1+-&, v, 8) |
=C % 2 @My |+ e E T

l; +"‘:,f; {oghe My 4

X Ity gD e, (t, p+E, ) |

0<KEL 417

=0 ™ | % 2 KT gy

‘tml =7 {vgl€Mpr g
rtm=a

S ey E,

For proving a similar estimate for 0<t<1, we need the following lemma,
whose proof will be given at the end of this Appendix.

LEMMA A.1. For (t,y,& ) satisfying 0<t<1 and e, (t,p+& y)=+0,
and for |a|=2 and 0L0<1, one has

(A.17) | @) 0, £ y, -+ (1=0)n) | < ClpdPalE)4at
Jor any p, such that 0<p,<la|.
From (A.14), (A.15), (A.17), (2.17) and (2.36), we have

(A.18) L(D7*01%7q) (62, 7+, ¥, §) |
=C % 2 LM Ky Iy [t EH

UVtm? =7 {pgteMypryqr
Vrim/ =a

X TL eyt e +8y .

0<EZl +177

Let p= X |v,| and ¢= Y |v,|. For the terms on the r.h.s. of (A.18)

|K[=1

which satisfy p<|l’|, we take p, such that ¥ |v.|pg.=|V|—p (=0), which

is possible since > |v,|z. can take any value in the interval

|0 = ivelixl]=l0. 1L1-a1=00, 1V 1~p}
Then such terms are bounded by

(A.19) G2 QEY Y™ P (P {6y e gy !
SO Y EEN Y I E) T
SEHHp™E™, 0<t=L

For the terms in (A.18) which satisfy p=|l'|, we take p,=0 for all «.
Then they are bounded by
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(A. 20) LRI OV IR
SCRYE ey T gy
SOy e~ 0=t=L

Therefore, combining (A. 18)-(A. 20), we get for 0<{<1

(A.21) | (Dy+01+4q) (02, 1+, ¢, &) |SCLYEny™<E)~".
Thus from (A.16) and (A.21) we get for any ¢{=0
(A.22) | (D307+q) (02, 7+, , §) [ CY ™ <ey™ &)™

where |7|=L and |a},|B|<M.
Taking an even integer M such that N+1+4+5L<M<N+245L, we
now obtain for |y|=L

(A.23) |[[e(Dmia) 0.+, v. £)daty
=|{Jercayrcoy <Dy Do 02, 1+ 6, v, ety
SOy ey,

Combining (A.8), (A.23) and (A.13), and writing A, ,=A4,+B, , we
thus have

(A. 24) L (8 & y) — A, 1 | SO YRE",
Moreover by (A.10)-(A.11), we have
(A. 25) LA, LIS Cy 4™

2nd estimate: We next prove the following estimate: For any
integer M>n (>2)

(A. 26) KL (8 & o) — A w [SCuly |+,

Let a real-valued C= funection y ¢ CP(RY) satisfy

1, <94,
. ):{ ly|=

(A&.20) 0, |yi=26,

for some 6,>0 small enough. Using this y and writing r={y|+t), we
divide s;(¢, & ) as '
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(A. 28) st &y =m0t &y +p.(t &y
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:[ S e S G B P PR y)(1—x(r‘lz—r“(y+tv)>)dzd77]

+[[Jerorema e, @, 67, wiatea—ey-+ m)daty

—Sigbet e 0|

Then p.(t, & y) is estimated in quite the same way as that for p, . in
the proof of Theorem 4.4 of Kitada and Yajima [6] as follows if 4, in

(A.27) and p€(0,1) are taken small enough: For any 1=0
(A.29) It & ) =0
Next, in order to estimate p,, we set

(A. 30) 927 9.8 =V,+V$*t; 7 v, )

Xe (t, n, YAz + VPt 9, ¥, &) —y—1tp}).

Then we have
A.31) & y) +lr EPe, (t, £, v)

” dlz, 94§, v, &)dzdy
=3

(= ) D2:00.8 3.9+ T (-j}’ (D350) (0, &, 9, &)

fal<n . jal

M2, = )mﬁ (1—g)r= f ¢*(D193) (02, £+7, y, £)dadnde.

7!

Noting by (2.17) and (A. 27) that

(A.32) @0 e+ Vg (946 Y, &) —y—tlp+8)}) =

for |8|=1, 2=7=0, and a sufficiently small p€ (0,1), we have

(A. 33) k};.(t, E, y) :31(t, E; y) +32(t’ 8! y)
:pl(t, Sr y) + <p2(tv Ev y) +82(t’ S’ y))
:pl(t! 59 y)+An,M+DM-

Here A, y=A,+B, y is defined by (A. 6) and (A.9), and Dy is defined by
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— Tyt .
(A. 34) DM:Mmzz;ML%LSO 1 —6)M“He’”"(D28;q) (02, &+, 9, &) dedndf.

D, is estimated in the same way as that for R. in the proof of Theorem
4.4 of Kitada and Yajima [6] as follows if p and d, are taken small
enough: For any integer M=0

(A. 35) | Dy IS Culy 14857

Thus combining (A.29), (A.33) and (A.35), we have (A.26).
Now we can prove (A.1). Interpolating (A.24) and (A.26) with
taking L and M as M=8L-+N+2, we obtain

(A. 36) Ve (2, &, 9) — A, L [PUEL(E & ) — Au w RS CCE)TE,
Since M=8L+N+2>L, we get from the definition of A, ,=A.,+B..

(A. 37) | Ay s— A, 1 |=| B u— B, 1 ISCuy | HXEN™
Thus
(A. 38) Vb (2, € y) — Au 1]

<IEL G & y)— A PPURLE & ) — Au a1 H A i — A )
< (KL & y) —Aa L1 EL(E & ) — Au x|

+1An,M_4zin,L [1EL(E & ) —fin,L 1)112
<(CLEY E 4+ Cy [+ XY P CE

Again interpolating (A.26) and (A.388) with M=L, we then get

(A. 39) [k (8, & y) — Au, o | SCo y [ H<EKE A
Therefore, using (A.25) and taking L>4n in (A.39), we obtain
(A. 40) VL (8, & ) S Gy [+<EKEND ™

for any n=0. This completes the proof of (A.1). There now remains
to prove Lemma A.1l.

ProoF OF LEMMA A.1. We give the proof only for the case |a|=2.
Then the case |@|=3 can be easily proved by induction on |a| By
Proposition 2.3-ii), we have

(A.41) ¥ (0,59, 0)=q(t, 0y, 7"t 0;%.0),  {=£+(1-0)p
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Thus

(A. 42) 0:y* (0, t; y, Q) =0%q(t, 0; v, n* (L, 0; 4, ) -0en* (¢, 0; 9, C)?
+0:9(t, 0; 4, 9% (t, 0; 9, ) - 0% (2, 0; v, Q).

Since we have from Proposition 2.3-i) that

(A. 43) o™, 0; 9, ) =—0:p(t, 0; y, {)*-0%p(t, 0; ¥, (£, 0; ¥, {))
XaE77+ (t9 O; ?/, C)Z)

we have only to consider the following equation

t
0%q(t, 0; ¥, 7*) =j0 i0(r, 0; 9, p)dx,

(A 44) %p(t’ 0’ Y, 72+) P —j: {VEV{! (T, q(T, 0)) 'VEQ(T’ 0)

+ViV.(e, q(c, 0)) - Veg(e, 0)*}de

and estimate (d%g, 9%p)(t, 0; v, 7*), where 7" =9%(¢, 0;%,{). But since we
have by using (2.11), (2.14), (2.17) and e, (t, p+&, y) 0 that

(A. 45) |1vevite ate, 0)-Vaate, 07lde
gcpsoﬁ@(f, 0; 9, 7*) > sortdr
=Cp% s: Jy+zL]—Cprord>>cor?dr

<Cpn [ Q@ iyeynctie
=Cp'oln)¥e(E) " g;’z_ﬂzdf§Cﬂ€°<v7>2"2<$>"‘2

if 0=<t<1 and 0<,<2, we can prove Lemma A.1 for [a|=2 by succes-
sive approximation. The case |a|=3 can now be proved by induction
on |al.

The proof of Theorem 2.8 is now complete.
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