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§1. Introduction

M. Kac [2] discovered the propagation of chaos for Kac’s caricature
of the Boltzmann equation for Maxwellian gas. In an analogy of this,
H.P. McKean, Jr. [3] showed that a certain class of non-linear parabolic
equations are derived from a system of n-particle diffusion processes
through the propagation of chaos; if the initial distribution of the n-
particle diffusion is u§", then for any m € N and any ¢>>0, the m-marginal
distribution of the n-particle diffusion at time ¢ converges to m-fold
direct product of w(f), where u(t) is a weak solution of the non-linear
parabolic equation with the initial data wu,.

In this paper we consider a system of some class of nd-dimensional
diffusion processes X™ (n € N) treated in H. P. McKean, Jr.[3]. For fixed
ne€ N, X7 () =(X""{), ---, X" (t)) is described by the following stochas-
tie differential equation:

dX®9(t)=dB"™"(t) —grad @,( X" (t))dt
(L B 3 erad, 0X0 (1), X0 ()t (=1, - -, ),
the probability density of X™(0) =",

where B™(t)={(B™"(¢), ---, B™”(t)) (n€ N) are nd-dimensional Brownian
motions, B8 is a real constant and w, is a probability density on R:. We
impose the following assumptions on the potentials @, and @,:

ASSUMPTION. (i) ¢1=%1x12+¢1(x), where a>0 and ¢, € S(RY),

(i) @ulz, y) =@oly, @)

*) This is a development of the author’s Master’s thesis, Department of Mathematics,
University of Tokyo, 1982.
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and
(iil) @:(z, ¥) € S(R*¥) or @yx, y) =¢.x—y) With ¢, € S(RY).

We call the nd-dimensional diffusion process X™(t) an n-particle system.
The result of H.P. McKean, Jr. [3] implies the following law of large
numbers:

lim L > ducmiy =Ulh, ) in @(P(RY) for any t>0

m—oo n i=
where the probability distribution U(t,dx) on R‘ has a density u(t, )
and % is a solution of the following non-linear parabolic equation:

ot 2

-—divz<u(t, x) grad- ‘B_Ld .z, Y)ult, v) dy)

%(0, ) =uy(%).

d.u(t, z)+div,(u(t, ) grad @.(x))
(1.2)

The first purpose of this paper is to introduce a free energy F
following the idea of Donsker-Varadhan’s variational principle for in-
variant measures of diffusion processes X® (n€ N) (§3) and to give a
characterization of stationary probability solutions of equation (1.2) in
terms of F' (§4). The next purpose is to show that there is a bifurca-
tion point of a stationary probability solution of equation (1.2) for some
@, (§4), and to investigate the order of the convergence of a unique
solution of equation (1.2) to a stationary solution of equation (1.2) (§5).

The free energy F is a functional on P(R? defined by:

[ tog o) +20.(0)) o) ||, s, ) o) )y,

F(y)= ’ if p(dx) has a density p(xr) and
(log p{x) +2¢:(x)) € L'(R*; p(x)dz),

400, otherwise.
The main theorem in this paper is the following

THEOREM 5.1. Let v, be a stationary probability solution of equa-
tion (1.2) and let F be the free energy. Let X, be a Banach space

defined by va:{a, measurable function on R?; ess.sup —a%v)—)‘<oo,
2ER Vo X

Sda(x)dac——-O}. If D Flo.+ ) [ala]>0 for any nmon-zero #€X, , then
R
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there exist positive constants a, b and 2 such that the unigue L'-solution
u of equation (1.2) satisfies

% (t) = Veoll 120210y S 0ETH
Jor any wnitial probability density u, satisfying
60— Vool L2an 00y =D
We prove Theorem 5.1 by the following procedure: first we construct
the solution #(t) of a certain integral equation for u(t)—v., and then,
noting the uniqueness of the solution of equation (1.2), we check that
@ (t) +v, is a distribution solution of equation (1.2).

Let us illustrate the content of this paper with the following dia-
gram.

§2
PX™(¢t) € dxy- - - da.,) >(u(t, )dx)®  (u: a solution of equation (1.2))
n /oo
t/ |85 84
t oo (Vo () da)®Y (v: a stationary solution of
equation (1.2))
:

§3
v &y, + -, 2y - - day —— S . Qdp) ey
converge v<E?

along sub- (@ is a probability measure on
sequence P(R% and supp. QC K,),
of {n}

where v™ is a probability density on R given by

exp( —2 f;{ 01 (x:) + % iéle(wi’ 50:‘))

(1.3) ™ (xh e X)) = — 5z
S ‘ exp<—2 > Oulxs) +-L5 3 Dol xj)>d501' --dz,
R® i=1 N i,5=1
and

K,={pc P(RY; F attains the minimum at p}.
The above diagram is not necessarily commutative, but it is commuta-
tive if K, has only a single point.

Acknowledgment. The author would like to express his gratitude to
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Notation.

N*:{O, 1, 2, b '}.

Cz(R% : the set of all infinitely differentiable functions on R? with
compact support.

C2(RY)={(ps, + -+, 0a); ¢: € CR(RY), 1<3<d).
S(R% : the set of all rapidly decreasing functions on R®
Wi=C([0, o) — RY).

Let X be a complete separable metric space.

Cy(X) : the set of all bounded and continuous functions on X.

P(X): the space of all probability measures on X with the weak
topology.

Let X, X; and X, be Banach spaces and f a mapping from B into X,
where B is an open set of X, X X,.

D, f{x:, x,): the Fréchet derivative of f with respect to the first
variable at (x, x,).

§2. Non-linear parabolic equation (1.2)

DerFiNITION 2.1. (i) We say that a mapping » from [0, co) into
S*(R? is a distribution solution of non-linear equation (1.2) with an ini-
tial data u, if u satisfies that

(@) u:[0, o) — S*(RY) weak continuous
and
(b) for any ¢ ¢ S(R%,

s@h <P, () svwty = 5ty {P, Uo) s+ (gh

K 1
+S0 S(Rd)<'§A§0—gl‘ad @, - grad @, u(8)>6*(xd)ds

[, cerad olo) - grad. 0406, 9), () @u(s) s
0 S{R“™)

(ii) We say that » is an L'-solution of non-linear equation (1.2) if
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1 satisfies that

(a) w is a distribution solution of equation (1.2)
and

(b) for any t>0, u(t, -) € LNRY), and |u(t, -)llsiws I8 locally bounded
in .

(iii) We say that u is a smooth solution of non-linear equation (1.2)
if wu(t, x) € C=((0, o) X RY) and satisfies (1.2).

Though the coefficients of equation (1.2) are not bounded, we can
modify the results in H.P. McKean, Jr. [3] to get

THEOREM 2.1. (i) A distribution solution of equation (1.2) is a

smooth solution.
(ii) Let u,€ P(RY) with the second moment. Then there exists a

unique Li-solution of equation (1.2).

(iiiy For amy t>0, u(t, ) is equal to the probability density of the
solution X(t) of the following stochastic differential equation of the
McKean type:

dX(t)=dB(t) —grad ¢,(X(¢))dt + 8 grad, ng (X (t), y)ult, y)dydt,

2.1) ul(t, -) is the probability density of X(t),

the probability density of X(0)=1u,.

REMARK 2.1. We can prove the existence and uniqueness of solu-
tions for the stochastic differential equations of the McKean type whose
coefficients have Lipschitz continuity with the growth condition of linear
order with initial distributions having the second moment.

DerFINITION 2.2. Let X be a complete separable metric space. For
any neN, U c P(X") and 2€¢ P(X) we define a probability measure
U™ on XV by

=<

U(m (dxb dd}zy v '): U(n) (dxb M) dwn) H Z(dxl)'
—_— j=n+1
We call this U™ as an extension of U™ with A.
Next we quote the theorem on propagation of chaos from H. P.
MecKean, Jr. [3].

THEOREM 2.2 (H. P. McKean, Jr. [8]). Let U™ be a probability dis-
tribution on W of mn-particle system (1.1) with an initial distribution
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u$", where u, has the second moment. Let U™ be an extension of U™
with an arbitrary 1€ P(RY. Then

U» — U in P(WE) as n, /oo,

where U is the probability distribution of the solution X of the stochastic
differential equation (2.1) of the McKean type.

REMARK 2.2. By estimating the moments and by Theorem 2.1, we
can show the following law of large numbers (Y. Tamura; Master’s
thesis)

2.2 1 i Oixmy — U In law, as n /oo,
n i=

=1

where {X™";1<i<#n} is n-particle system (1.1) and U is the probability
distribution of the solution of the stochastic differential equation (2.1) of
the McKean type.

§ 3. Convergence of stationary solutions of m-particle system (1.1)

First we quote two results from S.R.S. Varadhan [5] and M.D.
Donsker and S.R.S.Varadhan [1]. Let X be a complete separable
metric space throughout this section.

ProposITION 3.1 (S.R.S. Varadhan [5]). Let {P,;ne NJCcP(X) and
H be a functional from X into [0, o] such that

(i) H is lower semi-continuous,
(ii) for any positive k, {x€ X; Hx)<k} is a compact set of X,
(iii) for any closed subset C of X,

Tim X log P,(C) < —inf H()

now Y, z€C

and
{iv) for any open subset G of X,

lim L 10g P,(G)= —inf H(G).

n— 1, TEG

Then for any ¢ € C(X),

lim ;1; log gx exp(ne () P, (d) =sup [ (x) — H(z)].
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ProrosiTioN 8.2. Let {P,;n€ N} and H be as in Proposition 3.1.
Furthermore we assume that Hzco. Let ¢€C(X) and K,,={x€ X;
H—¢ attains the minimum at x}. For any m € N, we define Q,€ P(X)

by
g exp(ng(x)) P, (dz)
Qu(4)=—=2 , (Ae PX).
|, expinglo)) P.(az)

Then (i) {Q. n€ N} is precompact in P(x)
and

(ii) for any accumulating point @ of {Q.; n &€ N}, supp. QCK,,,.

Proor. First we prove that for any open subset G of X which
contains K,, and any ¢>0, there exists n, such that for any n=n,,

(3.1) @ (G°) <e.
Put a and K,, (0>0) as follows:
—a=inf(H{x) —¢())
z€X

and
K,,={v€ X; Hz)~p(x) < —a-+3}.

Since H satisfies (i) and (ii) in Proposition 3.1, there exists 6>0 such
that GO K, ,; Furthermore, since H satisfies Proposition 3.1 (iii),

IA

(8.2) lim % log Ssc exp(ne(x))dP,(x) < — inf (H(x) —o¢(x)) <a—0.

zeG®
By Proposition 3.1 and (3.2), we can see that there exists n, such that
for any n=mn,,
L exp(ne(@))dP, (1) = explnia—5/3))
and
[ expino@)dP, s < exp(nla—a+2/3)),
which implies (3.1). (ii) follows immediately from (3.1). In order to

prove (i), it suffices to show that for any ¢>0 and 6>0, there exist balls
B, B, ---, B, in X with the same radius ¢ such that
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;&
3.3) Qn&L:JlBi >1—¢ for any n€ N.

We fix >0 and ¢>0. Then, since K,, is compact there exist balls B,
..., B, with radius ¢ such that U B, > K,,. Put G=UB. Then there
i=1 =1

exists n, such that for any m=mu, (8.1) holds. On the other hand, for

any % (1<1<mn,) there exists a compact set K, such that @,(K,)>1—e¢. So
k& x,

there exist balls B,,, -+, B, with radius ¢ such that U B; D U K.
i=1

i=m~1

These B, ---, B, satisfies (3.3). Q.E.D.
COROLLARY 3.1. If K,,={x} then Q,— 0., in P(X) as n oo,

Following M. D.Donsker and S.R.S. Varadhan [1], we define an
entropy functional H,.

DEFINITION 8.1. For fixed 2¢ P (X), we define the functional H, on
P(X) by

L log <%>dy, if ¢ is absolutely continuous with

Hy(p)= dp

respect to 2 and log<ﬁ>€ Li(dy),
40, otherwise.

ProprosITION 3.3 (M. D. Donsker and S.R.S. Varadhan [1]). Let
{Y,.;n€ N} be a family of independent X-valued random variables with
common probability distribution 2. Let P, be a probability distribution

of —1—§n36{y.} on P(X). Then the functional H; on P(X) satisfies (i),
n i=t *
(i), (iii) and (iv) in Proposition 8.1 replacing X by P(X).

Now we return to non-linear equation (1.2) and define a free energy
F for it.

DEFINITION 3.2. We define the functional F on P(RY) by

[ tog wte) + 20,10 i) 5] |, 02l0, 91t ) dndy,

FlB)=\" it u(da) bas a density z(@) and (log p{z) +20,() € L'(z(x)dw)

+oo, otherwise.
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Convention. For any probability density u(x) on R?, we denote by
the same symbol » the probability measure u(x)dx.

REMARK 38.1. By a simple calculation, we can see that for any prob-
ability density # on R? the following two conditions are equivalent:

(i) log u(x)+20,(x) € L' {u{x)dx)
and
i) log u(x) € L*(u(x)dx) and 2¢,(x) € L*(u(x)dx).

Let

(84)  ww) =% exp(—20:()), where 20:5 L exp(—20,(@))dz.

R

Then, using an entropy functional H, in Definition 8.1, we have

LEMMA 8.1.

Flp)=H, ()~ 8| ,, 00, v) (o) u(dy) + 1o 2,
Now we shall prove the next main theorem in this section.

THEOREM 8.1. Let v™ be the unique stationary probability distribu-
tion with density (1.3) of n-particle system (1.1) and let v™ be an exten-
sion of v™ with an arbitrary 1€ P(RY. Let

K,={pc P(RY; F attains its minimum at p}.
Then (i) {v™;n€ N} is precompact in P((R)")
and

(i) for any accumulating point v of {w™;n € N},

there exists Q@ € P(P(RY) such that

vide)=|_ , Q)= do)

and
supp. Qc K,.

PrOOF. We define L™ : (RY)* — P(R%) by L®((zy, -+, 2,)) =— 3 0.
i=1

Let P, and Q, be the induced probability measures on P(R% of »® and
»™ by L™, respectively, where v, is as in (3.4). We define ¢ ¢ C,(P(R?)
by

3=
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ole) =8| .. Ost0, 1) () ).
Then, for any Borel subset A of P(RY),
Q)= taL o, - )0 ey -, d)

jn’“’ Xa(L™ (@« -, @) eXDM@(L™ (@, « -+, 4))) V(@) - + - V(@) Aty - - d,y

j dexp(ngo(L"” (X, = = oy Ta) )} 00 (X4) - + - Vo(,) Ay~ - - dit,y
R?"«

[, expinotP.an)

Smd) exp(ng(p) P(dgs)

By Propositions 3.2, 83 and Lemma 3.1, we see that {@,;n € N} is pre-
compact in P(R% and for any accumulating point @ of {@,;n € N}, supp. @
is contained in K, Therefore, for the purpose of proving Theorem 3.1,
we have only to show the following Lemma 3.2. Q.E.D.

LEMMA 3.2. For n€ N we define L™ : X* — P(X) by L™ (x,, ---,x,)
1 f_‘, 0n,. Let u™ be a symmetric probability distribution on X", and
n i=1 ¢
Q. an induced probability measure on P(X) of u™ by L™. Let u™ be
an extension of u™ with an arbitrary i1¢ P(X). If there exists

Qe P(P(X)) such that Q, — Q in P(P X)) as n oo, then

w” —’L Ry e in P(X") as n oo,

I (X)
Proor. It suffices to prove that for any k€ N and k€ G(X"),
(3.5) anh(xl, o m)u (day, - - -, day)
— [, QA o e e, as 0

P(X) X

We fix k€ N and he C(X" and define f¢ C,(P(X)) by

36) Fl={  hlo - ) pld)- - pld).

Then it follows from definition that for any n=k
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Jon St =2 3§ bl el o d).

NF L Tig=1
Therefore since @, — @ in P(P (X)),

Lo [ b mus e da)

NF iy iy
— [, QEn| 1 - mpldn)- - pldm),  as n oo
On the other hand, since '™ is symmetric, for any n=k,
th(m;, o au™ (day, -, day)
— (=)l > hi@e, - -, @ )u™ (day, - -, da,).

n! L gt X"
distinct from each other

So we can obtain (3.5). Q.E.D.

§4. Stationary solutions of non-linear equation (1.2)

DEFINITION 4.1. (i) We say that v is a stationary distribution
solution of non-linear equation (1.2) if v€ S*(R?) and for any ¢ € S(RY,

= )
S<Rd)<—2— Ap—grad @, grad ¢, v e
+ Bsh <grad, Oq(x, y) - grad ¢(x), vQV) s g24 =0.

(i) We say that v is a stationary probability solution of equation
(1.2) if v is a probability density and v is a stationary distribution solu-
tion of equation (1.2).

REMARK 4.1. From Theorem 2.1, we see that stationary distribution
solutions of equation (1.2) belong to C*(R?).

By regarding the constant $ in equation (1.2) as a parameter in this
section, we denote it by (1.2),, We define an operator f:L'(R)XR —
L}R%) by

exp( ~20.(2) +2,BSRd 0.l y)u(y)dy )
. exp<—2q>1(x) +25§Rd@z(x, y)uy) dy>doc.

(4.1) flu, B) (@)= §

We note that f(u, ) is a probability density for any (u, 8) € L'(R%) XR.
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We define a differential operator G, for a probability density v by

42 Gapl)=— do)+div(ole) grad( @)~ £| ,0:lo, y)ow)dy )
¢ € C*R?).
Then the following Lemma is known.

LeMMA 4.1. For any probability dewmsity v, there exists a unique
solution of G,w=0 among probability densities and furthermore w is
expressed in the form

exp( — 20, (x) + ZﬁLd O(x, y)v(y)dy>

v :Ld exp<—2d>x(x) +26 Ld Py (x, y)v(y)dy>dx‘

THEOREM 4.1. (i) For a fixed BER, v is a stationary probability
solution of equation (1.2); if and only if v=f(v, B).

(ii) There exists a stationary probability solution of equation (1.2) B
for any BER.

(iii) If |l 1s sufficiently small, there exists a unique stationary
probability solution of equation (1.2),. '

PrOOF. By noting that v is a stationary probability solution of (1.2),
if and only if G,v=0, we obtain (i) by Lemma 4.1. Let B,={u¢c L}(R%;
lull gty <1}, We note that B, is a convex and bounded closed subset of
LYR%. We consider f in (4.1) as an operator from B, XR into B, We
can see from the boundedness of @, that there exists a positive constant
M such that

ws) | 8= st Blds

<|plM Ld deRd @, y)w: (y)dy — Ld O, y)u={y)dy |,

for u,, u, € B..

Since the mapping on LYRY: u(x)— S ,D:(2, y)u(y)dy is compact, we
R "

obtain (i) by (4.3) and Schauder’s fixed point theorem. Furthermore, since
for sufficiently small |8, f(-, ) becomes a contraction mapping by (4.3),
we obtain (iii). Q.E.D.
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Next we shall show that there may be more than one stationary
probability solution in general. Using v, in (8.4), we define a linear
operator T in L*(R% by

(4.4 Tu(e) =20(o)| ,Bule. v)u(v)dy.

We note that 7T is compact. Furthermore we define a mapping g from
LYR* X R into L*(R% by

THEOREM 4.2. Let (v, fo) be a point of LY(R*) X (R\{0})} such that
(i) v, is the same as in (3.4)
and
(ii) Bt 1s an eigenvalue of the operator T.
We assume that
(i) | o pulo)dy=0
and
iv) dim{v€ L'(RY;v=p3Tvi=L1L
Then (v, Bo) 18 @ bifurcation point of g=0,
n.e. (a) g(vs Bo) =0
and
(b) for any meighborhood B of (v, B) in L'Y{R*) XR, there exists a
point (vy, B) im B such that v,=£v, and g(v,, Bi)=0.

First we quote the next Lemma 4.2 which gives a sufficient condition
under which bifurcation occurs (L. Nirenberg [4]).

LeMMA 4.2, Let X and Y be Banach spaces and let B be a metgh-
borhood of some point (x,, fo) i XXR. Let g be a mapping of C? class
(p=2) from B into Y such that

(1) gl ,@0):0,

(i1)  Dug (@, Bo) =0,

(iii) dim(Ker D.g(xy, Bo)) =1,

(iv) Im D,g(x, Bo) s closed and codim(Im D.g(x, 5i))=1
and

(V) DpDsg (@, fo) € Im D.g(xo, Bo), D.Dsg (@, Bo)[2:1¢ Im D.g (o, fo),
where x, 1s a non-zero element in Ker D.g(x, B).

Then (%, Bo) 18 @ bifurcation point of g=0.

We can calculate the derivatives of f in (4.1) as follows.
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LEMMA 4.3.
(1) Dftu. lwlia) =267, £)@)| , oule vw(w)dy
267w, /@] 0tz V) flw. §)(a)dedy
(i) Dustu, 8@ =27, @) ,0ulo. v)utv)dy
—2f(u, §)@)(| .0l v)ut)fw. §)(e)dady
(i) DDy, Bilwlo) =27, §)@)| , 0ule, () dy
270, §@|[ ,, 0. vw)Sw. §)@dady
+2D.fu, w)e)| , oulo. yuty)dy
—2D. 7w, lw)) || ,,0le. vu s, §)(@)dsdy
—2fu )| ,,0:le. VYulw) Dol Bl dedy.

Proor oF THEOREM 4.2. By the condition (iii) and Lemma 4.8 we
note that

(4.6) g(ve, B)=0 for any BER
and
(4.7) D.g (vy, ‘30) =I— ﬂoT-

It suffices to check conditions (i), (ii), (iii), (iv) and (v) in Lemma 4.2.
(i) and (ii) follow from (4.6) and (iii) follows from (4.7) and conditions
(ii) and (i) in Theorem 4.2. By (4.7) and Riesz-Schauder’s theorem,
we see that ImD,g(v, B)=Ker(I—5T**, and dimKer(I—g&T)=
dim Ker(I—5,T*), which implies (iv). By (4.6) we see that D;Dg(v,, B)=0
and so it belongs to Im D,g(v, f). Let v, be a non-zero element in
Ker(I—-8,T). Then we can see that wv,/v,€Ker(I—p5T*). Since
D.Dyg (o, Bo)[ve]=p"w, by Lemma 4.3 (iii), we obtain that

2t {DuDpg (v, Bollvzl, Ve/V0) 1o gty Zﬂo_lSRd{vz(x) 12dx+0,

which implies D,D,g(v,, Bo)[v.]1¢ Ker(I—,T*)*. Therefore we obtain (v).
Q.E.D.
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Now we fix S€ R and investigate some properties of the free energy
F' introduced in Definition 3.2. Let w be an arbitrary probability density
on R* with w>0 (a.e.) and F(w)<+oco. We define X, by

4.8) Xw:{a, measurable function on R?; || u ||| =ess. sup;@@l <+ oo,
xeRd ’W(CU)
|, a@da=0}.
Then X, is a Banach space with the norm {if - §ii. Furthermore we define
B1/2 by
(4.9) B,={nec X,; %l <1/2},

and a functional F', from B,, into R by
(4.10) Fo(@)=Flw+7).

Then by a simple calculation we obtain

LEMMA 44. F, is twice differentiable on By, and
(i) DE.(0)[a]= § , log w(a)a ) dx+2Ld O, ()5 (@) d

~2{ 0.0 vawwwddy,  for any e x..

@) DromIz= |, SO doag[{ 0w vndady,

fO’r any ’17&1, 1126 Xw.
THEOREM 4.3. Let v be any probability density on R®. Then v isa
stationary probability solution of equation (1.2); if and only if (i) v>0
(@.e.) and (i) DF,(0)=0.

Proor. First we assume that v is a stationary probability solution.
Then by Theorem 4.1 and Lemma 4.4 (i), we have (i) and (ii). Converse-
ly we assume (i) and (ii). Let

a2 =p)ole)—via) | ollw)dy,  for any pe Cx(RY).

Then ¢,€ X,. By Lemma 4.4 (i)
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0=DF,(0)[¢.]
- Ld (@) <v (@) log viw) +204(x) —28 S 0.z, 90) dy> —ev (oc))dx,
for any ¢ € CZ(RY),
where c¢= L" v(x) <log v{x) + 20, (x) — 2 ﬁS . @z, y)v{y) dy)dx.

As v>0 (ae.),
v=exp(c—20,(0)+28] 0.z Yo(widy),

which gives by Theorem 4.1 that v is a stationary probability solution
of equation (1.2),. Q.E.D.

COROLLARY 4.1. If F attaims its mintmum at o probability density
v, then v is a stationary probability solution of equation (1.2),.

PrOOF. We claim that »>0 (a.e.). Let A={x€ R*;v(x)=0} and
o) = {—-1/21)(90) z€ A
av,(x) TEA,
where v, is as in (3.4) and a=(2v,(4))"". For small ¢>0, Fl{v+ew)<+oo
and by a direct calculation we have a constant ¢ such that for any
e€{0,1),

%—(F(v%—sw) —F(v))—alog ca-v,{4) Zec.

The first term is positive from our assumption. If v,(4)>0 then the
second term goes to +oco as e tends to 0, hence v,(4)=0. Q.E.D.

§5. Convergence of solutions of equation (1.2) to stationmary solutions

Throughout this section we fix 8 and a stationary probability solu-
tion v of non-linear equation (1.2). Let F be the free energy defined
in Definition 3.2, and let F,_ be as in (4.10). Let X, be as in (4.8).
Then by Lemma 4.4, F,_ is twice differentiable on By, given in (4.9).

Let
(5.1) H =L*R*; viidzx),
(5.2) ﬂoz{aeﬂ;f alz)do=0}

Rd
and
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(5.3) H ={ty, -+, ua); w:i € H, 1<i<d).
We shall prove the following Theorem 5.1.
THEOREM 5.1. If
(5.4) D'F, (O)[alal>0 for any non-zero i€ X,_,
then there exist positive comstants a, b and 2 such that the unique L'
solution u of differential equation (1.2) satisfies
lu(t) —ve)« Sae™”

Jor any wnitial probability demsity u, satisfying

40— Vel] « B

REMARK 5.1. (5.4) means that F takes the “local strict minimum?”
at v., and (5.4) is equivalent to (5.7) to be shown in Lemma 5.1.

REMARK 5.2. Since any probability density u, contained in % has
the second moment, we have a unige L'-solution of equation (1.2) by
Theorem 2.1.

Let T be a linear operator on 4, by

55)  Ta@) =20 0l )20)dy—20.0|[ 0.0 veat)dedy.

Then from the assumptions on @,, T is a compact symmetric operator on
H, Let v, and v, be the minimum and the maximum spectrum of T,
respectively. Let

(5.6) g=

{v;‘ if v, <0 __{vg‘l if v,>0
—oo if 1,207 7 {40 if 1,<0

LEMMA 5.1. The condition (5.4) in Theorem 5.1 is equivalent to
(5.7) B<B<p.

Proor. By Lemma 4.4 (ii), the condition (5.4) means that for any
non-zero %€ X, @)%~ 8(T%, @) ,,>0. As from (5.6)

BITH, 7), < {é“ﬁllaliifo B<0
TlEslaly, =0

Then (5.7) implies (5.4). Conversely, since for any % € 9, T# € X,., (6.4)

implies (5.7). Q.E.D.
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We introduce linear operators G and G, on 4 and K, respectively.
First we define a linear operator Gloe on C%(R%) by

68 Glegolo)=— div(ve(s) grad(p(s)/v.(a)

= % do(x)+ div(go () grad(@l(x) - BL 0202, ¥) V() dy>>,

which is equal to G,, in (4.2). Since G|y is a non positive symmetric
operator on 4, we obtain a Friedrichs’ extension G of Glcz with the
domain

(5.9) DG)=enD@GlEy),
where S ¥ be a completion of C(RY) by the norm

(lel%+ llv. grad(o/ve) %)
Let G, be a restriction of G on .

LEMMA 5.2. (i) G has discrete non-positive eigenvalues, 0> -—1i,>
— > in H with finite dimensional eigenspaces.

(i) G, s a megative self-adjoint operator on H, with eigenvalues,
— > — >

Proor. For any ¢ € C%(RY), let

Licgp(x) =% do(x) —%(l grad @i (x) "~ 401 (x)) o (@)

where d~>1(x)=q)1(x)——ﬁsk dd)z(x, Y)Vs(y)dy. Then Ll is a non-positive

symmetric operator on L*(R*). Let L be a Friedrichs’ extension of Lice
on L*(RY. We define a unitary operator U from 4 to L*(R%) by Uu(x)
=u(x)/VVo(x). Then UGU'=L. Since (—L-+cI)™"is a compact operator
for some constant ¢ from the assumptions on @, and @,, L has a discrete
spectrum in L*(R%. Therefore G has a discrete spectrum in H. Let
u€ I be a distribution solution of Gu=0. Since the transition proba-
bility density p,_(t, ¥, z) of the G*-diffusion satisfies p,_(¢, ¥, ) >0 for any
t>0 and almost all y and x€ R% and u is an element of L'(R%, u=0
(a.s.) or w<0 (a.s.). Hence by Lemma 4.1 there exists a constant ceR
such that u(x) =cv.(x), which implies that G, is a self-adjoint operator
on 4{, with a negative discrete spectrum. Q.E.D.
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Next we define linear operators D, and D, as follows;

(5.10) DD ={uec H;awe I such that (w, ¢)y=— (1, Ve grad(¢/v)w) «
vo € CR(RY)},
Du=w for uc DDy,
DD)y={ue I;awe I such that (w, ¢),=—(u, div @),
Vo € CR(RY},
Du=w for ue D(D,).

REMARK 5.3. From (5.9), we see that 9(G)cD(D,).
LEMMA 5.3. (i) For any uc D(G),
Gu:%DlDzu.

(ii) For any i€ DG,
I}Dzﬂ/jG&TﬁHﬂ=4/7!l?7/Hgf0-

Proor. Since for uc D(G) and ¢ CR(RY, — (Db, V. grad(@/ve))«
=2(u, Go) ,=2(Gu, p),, we obtain (i). As Vv —Gi'uec DG, for any
%€ 9(G,), by Lemma 5.2 (ii), (i) follows from (i). Q.E.D.

Noting that for ¢ € C¢(RY), Dgpc D(G,), from Lemma 53 imme-
diately we obtain

LEMMA 5.4, For any @€ CZ{(R%),
”'\/'—GO—ID1¢“JIO§'\/A§”$DHJ{'
Since C%(R% is dense in 4, we can extend v/ —G;'D, to a bounded

linear operator A from 4 to 9, which satisfies

(5.11) [Aul o <+ 2 lull, for ue K.
Using T in (5.4), we define a bounded linear operator L, and a bi-
linear form ( , )z, on 4, by

(5.12) Ly=I—§T,
(5.13) (@, D) a,= (%, Lgh), (@, D€ I)
LEMMA 5.5. (Y, (, )a) s a Hilbert space with the norm equivalent

o
to () ay
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Proor. It follows from Lemma 5.1 that (, )s is an inner product
in ¥, Furthermore, we see that

(5.14) 0<(1— BB ull% = lul%= 1—B8/8)ull’,
(resp. 0<(1— B8/B) |ull%, < ul%,< (1—B8/B) lull,)
if B is positive (resp. negative), which completes the proof. Q.E.D.

We denote by 4, this Hilbert space (Fo (5 )a,)
We define a linear operator G, on 4, by
(5.15) DGy =1n€ Hy; Lyn € D(Go)}
Gl =G,Lgt for %€ D(Go).
LEMMA 5.6. G, is a self-adjoint operator on ..

PROOF. By the definition of ( , )4 and G, G, is a symmetric operator
on ﬂ[ Since by Lemma 5.1, 57 belongs to the resolvent set of T, we
see that Go(D(Gy)) =4, which completes Lemma 5.6. Q.E.D.

Here we introduce a bilinear map f from 4, X4, to 4 and a linear
map B from ¥, to 4, as follows:

(516 £1a,9) ) =a(e) grad |, @ufo, 9)o(0)dy
and
(5.17) Bafa) = div(v.(a) grad |, 0x(o. v)at)dy ).

Let u# be a smooth L’-solution of equation (1.2). Then we see that
W(t, ©) =ult, ¥) —v.{x) satisfies the following non-linear differential equation:

(5.18) af: (t, x)_ld a(t, @)+ div. (@ (¢, %) grad @, ()

—pdiv.{a(t, =) grad. | ,0.(c. y)oaty)dy)
—ﬁdivx<fvm(x) grad. S 0o, y)ult, y)dy>

— ,Bdiva(ﬂ(t, x) grad, S @, W)U, v dy)

By modifying the integral equation corresponding to differential equation
(5.18), we obtain the following integral equation on 4/,:

(5.19) () =T (%, uo) (¢)
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where

(5.20)  W(@, wo)(t) =eCody— B S VG, e % A f(als), ails)ds
+ 5 S ds S o808y — Gy e A f(iu(s), B(s))do.

We define positive constants C; and 7 by

(5.21) Ci=((1—8/B/(1—B/B))"
(resp. (1—B/B)/(1—B/8)™")
and
(5.22) r=01-8/B)/(1-8/B)
(resp. (1—B/8)/(1—BIB))

if g is positive (resp. negative). Further we define positive constants
M., M, and C, by

=3 9 1z
ZM}—(@;1 ﬁ?ﬁd —"'axi @z(ﬂ’/‘, y) ])
12
M2:<2 max, [ 4.0 (x, )| +4Mf<§ ,lgrad 9,(2) lzvm(gc)da;-}-zlﬁzM%))
2,yER R
and
(5.23) Co=+""2 M| BlAT 2 (1]y 4717

) 4/ 2 MG B (1 (L—7)) +€77),
where 2, is the same constant as in Lemma 5.2.
LEMMA 57. (i) For any % and 9€ H,,
I£(@, D) || 4 = MoJ| %] 4,91
| Bt s, < M| %] 4
(ii) For any t>0 and %€ H,,

(2e) G if 0<t<(22)"

H’\/'—Goet °71H,«0§ {(21)1126—11t”al|3[0 if (24) T Zt<{+oo.

(iii)y For any t>0 and % ¢ I,
”eiéoa”s{0§019_721t“'a“5c0-

ProOF. By a simple calculation, we obtain (i). Let (E(2); 2 €[4, +oo))
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be the resolution of identity of the self-adjoint operator G, on #, Since
for any @€ LoV =Goeoraift, = S+°°e-mdnE(zmn;0, we obtain (ii). From
2

(5.13) and (5.14), we see for any @€ Ko (Gofl, f)a,= (GoLsll, Lgll) 4, <
—Ay|@l%, therefore by Lemma 5.6, [¢ |5 <e **|@]%, so we obtain
(ifd). Q.E.D.

For any t>0,% and o€ %, we define K,(#, 9)(t, -)=K.(u,v)(t, s) €
C(o, t) — 4, and

Ky(@, 0)(t, -, -) =K@, 1) (¢, s, 0) € C({(s, 0); 0<0<t, 08t —0} — )
by

(5.24) K (@, 9)(t, 8) =+ — Gy "% A f(@, ),
and
(5.25) K, (@, %) (¢, 8, 0) =e“*"2%By —G,e’ A f(#, ).

LEMMA 5.8, (i) For any t>0,% and 9¢ Y,

€Mt —8) 0| 4y | D]y E—(22) TS <E
VoM [0 g Bl gy 0<s<t—(22)7,
e M M,Cie™ ™67 2| G o (19,
0<os(t—s) A (24)7"
V2LMM,Cie P4 |G| . [|0]] 4,
t—s) A\ (24) ' <o<Zt—s.

(ii) For any % and 9 € C(0, o) — H,) such that for some positive
constants A and B,

@ K@ 9 s) n%g{

(b) | Ku(@, 0)(t, 8, 0) [, =

(6.26) |la(t)|4, <A and ||B(t)],,<Be"™*  for any t>0,
we obtain
lﬂlﬁ I Ku(@(s), 9(5)) (t, 8) || o ds+ 181 So ds go_ IKa((s), 3(3)) (¢, 5, 0) o
< C,ABe 7%,

Proor. We obtain (i) (a) from Lemma 5.7 (i), (ii) and (5.11), and
we obtain (i) (b) from Lemma 5.7 (i), (i), (iii} and (5.11). For #% and
9 € C([0, o) — H,) satisfying (5.26) and for ¢>0,

[} 1K@l 906 1 9] 05
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. (t—21p ~Hvoe
§1/221M1§ ¢~41-9 A Be~*rt s

1]
11

+e“"ZM15 (t—5)-1 A Be-*rv ds

(t—@ap ~Hvo
SV 2 M AT A ABe T
and similarly by (i) (b),

t
0

j: ds j K @s), 5(8)) (¢, 5, 0)[|do

(s~ A2ap T

i
ée—llelecl S ds S g Thlims—a) 5112 A Bo~2riis (] 5
0

g
t—s

+ '\/2721'214;]‘4'201‘{z ds S e—Tll(t——s-—me—lloABe—Zylla do.
0 YN
SV 2 MMCy (e V22752 4y~ (1 —7) "% ABe7ht,
which implies (ii). Q.E.D.

We choose positive constants ¢ and b satisfying

(5.27) 0<b<<1/{4C,Cy)
and
(5.28) '—26T——V iC, <la< 2C."

LEMMA 5.9. For any @,€ H, with ||, #,=b, there exists a solution
# € C(0, ) — o) of the integral equation (5.19) such that for any >0,

5 a ~rigt
() ng{oéme .

Proor. We choose %,€ .4, to satisfy [|,] #=b. C denotes a com-
plete separable metric space C([0, co) — . 9,) with usual metric. Then
¥(-, @) in (5.20) is a map from C to C. We define a sequence {#i™ ; n € Ny}
in C inductively by

?‘Z(O) (t) — etéoao, ,u(n—l—l) — g/‘(a(n), ?‘20) .

Let ¢=2aC;. Then 0<g<1. By induction, we shall prove the following
(6.29) and (5.30):

(5.29), a®™ )| o, Zae 7" (n € Ny)
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and
(5.30) 511 3+ () — 3™ (B) | o, Sag e ™ (B € Ny

We obtain (5.29), from Lemma 5.7 (iii), (5.27) and (5.28). We see that
(5.29),, implies (5.29),., from Lemma (5.7) (iii) and Lemma 5.8 (ii). Next
we prove (5.30). We obtain (5.30); by Lemma 5.8 (ii). As K, and K,
are bilinear, by Lemma 5.8, we see that under (5.29), and (5.30),, for

t>0
a0~ 0,
<18l 15 (@ @), 5% ) 2 @), ) s
18I 1K@ 6= @), 706 6 ) e
161 [ ds {7 K 9, 506~ 9) 6 5 )lLado
g0t [ ds [ IR ) =0 ), 20060 5 o) gl

which implies (5.30),.1
By virtue of (5.30), we can define @€ by

ay =2+ 5 @0~ ).

By (5.30), for any t>0 and n€ N,

a —72it 57 4 m qn+1 —7A1t
I == ¢ sl —a™ )]« = 1= %

Therefore from Lemma 5.8 (ii), for any t>0 and n€ N,

1 (@, ) () —F (@™, ) () 4y = —— o T,
1—q

and so % satisfies @(t) =¥ (%, %) (t), which completes Lemma 5.9. Q.E.D.

The following lemmas are used to prove that the solution of integral
equation (5.19) is a distribution solution of (5.18). First we introduce
the next notation: for any ¢ € S(R%, put

(5.31) Go() =<p(x>vw(x>—g oly)v-{y)dy.

re
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Then, by integration by parts we obtain

LEMMA 5.10. For any ¢ € S(RY and n € N,
G € D(GE).

LEMMA 511, For any ¢< S(RY, @< C(0, o) — H,) and >0,

L || Kl a(6) 1 95 ),

(6o || Kulls), 06 1 5 ) -+ (V =Gy AS@E), ROy

Sy

Proor. For any fixed ¢t>0 and ¢cS(RY), by Lemma 5.10,
(Poor B (ML(8), B(5))) wy= (V' —Go Gy € "D AS(W(5), U(s))) s, for s€[0,%), then
(§/ — Gy By €A f(T(s), T(s))) «, 15 bounded and continuous in s€[0,t].
Similarly, as

% (Penr KalBUls), B(8))) s, = (GoV — Gy €~ AL (A(5), U(5))) s,

gz (@ Ka(Th(8), %(s))) 4, is bounded and continuous in s€[0, t). Q.E.D.

LEMMA 5.12. For any ¢ € S(RY and uc 9,
('\/_Goﬂboo, Au)Jz(,: - (D2¢eo» )

Let T and G, be the bounded linear operator and the closed linear
operator on 4, as in (5.4) and (5.15), respectively. Noting Lemma 5.10,
we obtain

LEMMA 5.18. (i) For any %< %,
dy
valy)

) RITYcDGY), RB)CDGE) and R(B*)CD(Gy) for any nE N.
ili) v —G,B* is bounded linear operator on 9,
)

)

B¥a(z) =v.@)| ,div, (0.(0) grad, 0,(y, 2)) )

GQT—_—B, GOZGQ_IBB a/nd G(’)F:Go_ﬁB*.
For any o€ S(RY) and %€ H,,
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(G Py W) = Ld (%Afp (x) —grad @,(x) - grad ¢(x) )u (@) dax
+ 'B”de grad, @,(x, y) - grad ¢ (z) i (%) v.(y)dzdy
+ ﬁﬁku grad, @,(x, ¥) - grad ¢ (x) v (@)% (y)dxdy.

LEMMA 5.14. For any o€ S(RY, %€ C([0, ) = H,) and t>0

gt é., S ds S Ky(@ls), 4(s) ¢, s, o) d(;)%

_<G0 G S ds go' K,(a(s), %) & s, G)d(f)%
+<B*¢m, XO K ((s), 2(s)) ¢, 5) ds),,o.

PRrROOF. Let I,={(s,0);0<0<t,0<s<t—o} for t>0. It suffices to
show that for any fixed ¢>0 and ¢€S(RY), (Pur Ks(H(s), %(s)) (L, 8, 0)) s,

and %(gﬁm, K(@(s), #(s)) (t, s, 0)) «, are bounded and continuous in (s, o) €T ,.

It follows from (5.25) and Lemma 5.7 (ii) that (@., Ks(@(s), %(s))(t, s, 0)) «,
is continuous in (s,0)€<,. From Lemma 513, (@, Ks(@(s), %(s))(t, s, 0)) 4,
= (e°%+/ — @G, B* ("% %@, A f(i(s), %(s))) 4, 1s bounded in (s, o) € g. AS
%(95@ K (@(s), B(s)) (t, 8, 0)) 4, = (€% — GoB* (e~ *G¥ ¢.., A f(a(s), %(s ) ay
this is bounded and continuous in (s, ¢) € d,. Q.E.D.

Now we are in a position to prove Theorem 5.1. Let 5=3/{16C,C,),
a=1/(2C,), =72, and u, be the probability density satisfying [u,—v.|.=b.
We put #,=u,—7v. then we obtain the solution of integral equation (5.19)
% which satisfies [|#(t)ll,,<ae " for any £>0. Then %(t, -) € L'(R?) whose
L'-norm is bounded in >0,

By Lemmas 5.11, 5.12, 5.13 and 5.14, for any ¢ & S(R% and >0,
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+ ﬁ2< Y G SO ds g‘ Ku(a(s), 2(s)) . s, 0)d0>3,0

_{:AB(DZSaoo’ f(a (8)9 a(S»)J_l
= (Gg<¢w’ ﬂ(t))ﬂ0+48(DZ¢ooy f(a(S), a(s))){

= Ld (%Ago(x) —grad @,(x)-grad ¢(x) )a(t, x)dx
“ grad,@.(x, y) -grad ¢(x)v..(y) &, x)dxdy
SS grad,@,(x, y) - grad ¢(x) 4 (t, ¥)v.(z)dzdy
H grad.@.(x, y) - grad o(x) @ (L, y) 4L, z)dedy

=5(Rd)<—21—4§0—grad @, grad o, a(t)>s*md)

+sr2e, {grad ¢(z) grad.@,(x, ¥), v.Qu(t)+u4(t)QQve
U(E)QQU(E) ) 5229y

Therefore, sinece v. is a stationary distribution solution of differential
equation (1.2), we see that u(t)=4%(t)+v. is an L'-solution of equation
(1.2), which completes Theorem 5.1, Q.E.D.
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