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Gibbs measures for mean field potentials
By Shigeo KUsuokA® and Yozo TAMURA

1. Introduction.

Let M be a separable complete metric space, g be a probability
measure on M whose support is the whole space M and V:M X M—R be
a symmetric bounded continuous function. Lst v,, n=2, be a symmetric
probability measure on M™ given by
(L.1) v(de)=Zexp(— 5 View 2)) @ pidn),

n ii=1 i=1

where z=(x;, %, - -} € M~ and
(1.2) 2=, exp( L £ View)) & wid).
M M i.g=1 i=1

In the present paper, we shall study whether v, are convergent to a
certain probability measure on M™ as n—co and, if so, what is the limit
probability measure.

A partial answer is given by the variational principle for Z,. As
has been studied in Donsker-Varadhan [1], we have the equality:

(1.3) lim llog Z,=—inf {F(R); R is a probability measure on M},
o

where
FE)=={, ViR +{, log S5 @) R(da)

if R is absolutely continuous relative to g, and F(R)=co otherwise. If
R, is the unique probability measure on M minimizing the function F,
then we can conclude that v, are convergent to RBP~. In the present

*) This research was partially supported by the YUKAWA FOUNDATION and Grant-in-Aid
for Secientific Research (No. 57740108), Ministry of Education.
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paper, we shall study the case where finitely many or countably infinitely
many probability measures minimize the function F, and we will show
that the Hessian of F plays an important role in this case.

Now let us show our main results in the present paper. Throughout
this paper, we shall impose the following assumption (A) on the function
V:MxXM—R.

(A) There exist a compact metric space S, a signed measure ¢ on S
with bounded total variation, and a bounded continuous funetion g: M X S—

R such that Vi, y):S gz, s)g(y, s)o{ds).

S

For each probability measure R on M, let Li(R) denote the Hilbert
subspace {ueLz(M ;dR);j udR:O} of L*M;dR), and let us define a
M
symmetric bounded linear operator D*F(R) in Li(R) by

(1.4) (D*F(R)u, v).2®
=2, Ve yulvp)Ride) Rdy)+ | vl Rida),

u,v€ Ly(R). Note that the operator D*F(R) can be considered the second
order Fréchet differential of F at R.
Then the following are our main Theorems.

THEOREM 1. Suppose that the symmetric bounded operator D F(R)
in Lo(R) is strictly positive definite for every probability measure B on M
manimizing F. Then there exist only finitely many probability measures
on M minimizing F, say Ry, - - -, R,, and v, are convergent to the probability

m
measure Y, @, RE on M™ as n—oo, where
k=1

ti=2""det(D’F(R))™ and z= j’j;det(D?F(Rk))-W.
=1

Moreover lim Z,e" =z, where f 1s the minimum value of F.

THEOREM 2. Suppose that there exists a probability measure Ry on M
manimizing F for which the spectrum of the symmetric operator DFF(R,)
contains zero. Suppose moreover that the symmetric operator D*F(R) is
strictly positive definite for each probability measure R on M minimizing
F except R,. Then v, are convergent to RY> as n—oo, and lim Z,e" =co.

n—>co

We shall also show a certain kind of the central limit theorem, and
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we shall mention r-body potentials also, =3, in Section 5.

In the last section, Section 6, we will show the central limit theorem
for diffusion processes with mean field interaction as an application of
our results. This kind of central limit theorems have been shown under
much more general assumptions by Sznitman [3] and Tanaka [4]. But
we still think that our proof is worth being noted down, because the
central limit theorem follows immediately from the law of large numbers
proved by McKean [2] and our results for 3-body potentials.

The authors are grateful to Professor Y. Okabe for his useful advice.

2. Basic lemmas.
In this section, we shall prepare two lemmas for later use.

LEMMA 2.1. Let {X;;7=1,2, ---} be independently identically distrib-
uted R*-valued random variables, and A, A, and A; be positive constants.
Assume that

2.1) E[X.]=0,

(2.2) E[X,-'X|]1£4,-1,,

and

(2.3) Elexp(4.[| X]) 1< 4,

where we consider X, a column vector, I, denotes the umit dxXd matriz
and we mean by ‘X the transposed matriz of X,. Then for any a< 2}41,
there exist e>0 and A,>0 such that

(2.4) E[exp(a-n”%in 2), “—i—j‘i‘_lX, <e]§A4, n>1.

Here ¢ is independent of the distribution of X, and the dimension d, and
A, 1s independent of the distribution of X, i.e.

eze(Al, Az, Ag, a) and A4:A4(d, Aly Ag, Ag, a/).

Proor. Let C, b, and 0 be constants given by

_o4s A Y
(2.5) c=24s <A1+2 A2>,
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(2.6) by=min {1 A, 2+ (A1+2 AZ )’”2},
and
1) a ) 0<o<l.

Now let b, be a constant satisfying that 0<b,<b, and
_1 1-0 1 1-9, 1

9 1+36 A1 2 1+6 A +Ch,
Now let e=Ab.. Observe that

(2.8)

[per s )=n{{eer: o sy 5] ee R lel=1)

Therefore there exists a finite subset {&, ---, &y} of R* such that

(2.9) l&l=1, i=1,---,N,
and
(2.10) N {zer:@e) gT}r—a} C fwe R ol <1}.

Note here that the number N is determined only by ¢ and the dimension

d.
Now let Xi=(X,, &), i=1,---,N and n=1. Then we have for any

z2,t=0

2.11) P[”% :;Xj};z
cofom( (25 )

)),

where ¢;(t)=E[exp(tX}], =1, .-+, N. Observe that
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(2.12) vi:E[(X§)2]§A1!

and

(2.18) 6ilt) = 1+ L w22+ > it"E[(X i
2 =2

If 0<t< A,, then we have
1

(2.14) I¢i(t)—<1+§mt2> éni nl' ~E[AZIXi"]
<t 3 LBl
<p s,
Ay 35

Observing that EA1 bo+ 22 hy< ; from (2.6), we see from (2.5) and
(2.6) that for 0<t<b,<b<1,

2.15)  log é:(f) <log {1+<—v + §b1>-t2}
=25 HGer ) o

el 5 (o]

1

2

ey fro(bas )5 1)

n02"

A

—;—(A1+C-b1)t2.

2 < A,
A+Ch, = A,+Cb,

On the other hand, if z<e, we have <b,. Thus let-

ting t:E—i—iCTb? we obtain from (2.11) and (2.15)

= ]gNexp(—d-n-zz), 2<e,

(2.16) P[H% )

>a. Thus we have got

1—0 1
1

Ty .
where a-—2 o ALCh.
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7 2
2.17) E[exp<a- il 5 X ) Hl X
ln 2 n i=1
“f el gl end
0 n i=t

=S£2a-n-x-e"’“'“20P[x !]—1—%
¢

et £ x)e)

<1+N§ 2n-a-x-exp(—n(@—a)-2*)de

<]

<elda

Na
—a’

=1+~

This completes the proof.

LEMMA 2.2. Let {X;;7=1,2, ---} be independently identically distrib-
uted R*-valued random variables with mean 0 satisfying E[exp(b|Xil)]
<o for some b>0. Let V be the covariance matrix of X, e V=
E[X.-'X.), and let C be a d Xd symmetric matrix. If there exists a,>0 for

which VCVZa,V, then for any a

sup Blesa(a-n (5 E 300 EX)) [ 2

PROOF. We regard the matrix V as a linear operator in R*. Let W
be the image of the operator V. Then W is a linear subspace of R?and

J<ee.

X,€ W with probability one, j=1,2,---. Moreover the restricted map
Vis of V is a strietly positive definite symmetric linear operator in W.
Let Y;=ai?* (Viy)*X,€e WCR® j=1,2,---. Then {Y;; j=12,.--} are

independently identically distributed R°valued random variables with
mean 0 satisfying

(2.18) E[Y,-'Y]<Za, 1,
Note that
(2.19) X;=a; " VY, j=12,---,

(2.20) Y2l S ad (V) ™ [loperater | Xall,
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and

= ”2'“(VlW)—lmnoperator'

(2.21) “

l+x
n i=1 n =1
From (2.20) we see that there exists >0 such that
(2.22) Elexp®'| Y1) ]<co.
Since VCV<a,V, we have

(2.23) VOV L and,.
Therefore we have from (2.19) and (2.23)

s (Egxye pnslipr]

Thus we have our assertion from Lemma 2.1, (2.21) and (2.24).

3. Lemmas for local central limit theorem.

Now let us think of the situation in Introduction. For each z=(x,

%y --+) €M™ and n>1, we denote by p,(x) the probability measure on M
given by
_1
(8.1) P () (dy) == % 0. (dy).
n =i

Let P(M) denote the set of all probability measures on M. Then P(M)
is a metric space with the Prohorov metric.

Let us define a symmetric bounded operator V. in Li(R) for each
RcP(M) by

(3.2) (Vath v) 22wy = S Viw, y)u@)oly) Rde)Rdy),  w,vE Lo(R).

Mx
Then we have
(8.3) D*F(R)=—~2V +1I,,
where I, denotes the identity map in Li(R).
LemmA 3.1. Let R P(M). If the symmetric bounded operator I,—
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Ve in Li(R) s strictly positive definite, then there exists ¢>0 such that

sup Beo-|exp( 2[ V(g 1) (oule) - BI=(du@dy) ),

sup| | 91, ) (oa(0)~ B) (d) | <o | <.

Here E g.. denotes the expectation with respect to R®(dgx).
ProoF. Let g,: MXS—R be a continuous funection given by

84) 0o, 8) =000, 9)— | o, 9 R(dy).

Then we have

85) |, Vo wie - Ry =] o@)([, alv. 0.,

and
3.6 [ 9.9 0.0 - R =] oty 9.lo) ).

Let K, , denote the set {gc c M=, sup ISMgo(y, s)p,(z) (dy) ! <s}. Let {Si™lrs,
€

m=1,2, ---, be decompositions of S satisfying

8.7 lim max{diameter(S;™); k=1, --., m}=0.

Choose an element s ¢ S™ for each k=1, .-.-,m and m=1,2,---, and
let

(3.8) 9" (Y, 8) = T Asim (8)00ly, ™), yE M, s€S.

Then we have
1j2
8.9 du={sup | 10410, 8)~9i” (v, 5) FR(dy) | —0.
as m—oo. Let Vi:MXM—R and V{™: MX M—R be functions given by

3.10) Viler, v} = ods)anlz. siguly. o).

and
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8.11) Vi, y)=| ods)as” (5105 (v, ).
Then we see that
(3.12) V() :L Vilo, y)uy)Rdy), ue LiR),
and
813 [, Vo)~V ) PRERIdY) — 0, meoo.
Now let V{ be the symmetric bounded operator in Li(R) given by
314 Viu=(, Vo yu) Ry, we LiR)

and let 2 be the maximum eigen value of V. Then we have 2<1 from
the assumption, and so, from (3.13) and (3.14) we see that there exists
an integer m, for which the maximum eigen value of V§ is less than

1—;2& for m=m,. Observe that for any ¢>0

(3.15) log Ew{exp(%hm Vot 92) 04 (2) S (dy: Q) ) K]

S SRR
where
(3.16) o,
=%log Ezz@w[exp(p-gSMXM ™ Y yz)pn(z)@’z(dyl@dyz)), K]

(3.17) I;“',’m,szllog ER®w[exp<qﬁS (Volys, ¥2) = V5™ (Y1, ¥2))
q 2 Juxa

Mx

Xpn(:_v)@(dyl@dyz)), K]

3 P
= and g=—"—.

242 1 p—1

Let 0=0,—0, be the Jacobi decomposition of the signed measure ¢
and let g,=0+0.. Then o, ¢, and ¢, are finite measures on S. Since

we have

D
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jMx (VoY ¥2) — Vo™ (Y1, ¥2)) 0a (@) B (dy, Qdy:)

:S o(d <S oly, dy> (S i (Y, 8)0u( )(dy)>}
ég ao(d. S 90y, s)+95™ (y ,S))pn(a_c)(dy)}
%dml {f (019, 9~ 08" (0, 9) L) @)} |

Therefore we obtain

(3.18) Ii:‘?m,éxs—?l;ao (ds) {% log E@m[exp(nqr- dm{h (Goly, 8)
+087 (. 5)'eu ) @9) ) ). K]
+5 log Buow| exp(ngr-d:{ [ (0o, 9
~0 . )o@ dy)} ). K]},
where r=0,(S). Observe that
sup{ar-du|  (0o(y, 9+ 07 0, 9 R(dy)} — 0,
sup( ar-d{ (0w 5) =0 0, ) R} — 0, m—rco,

€S

and
[, @l 510, 9)nlo) @) =1 £ g0l )20 0 5).

Then by virtue of Lemma 2.1 and (8.18), we see that there exist an
integer m, and positive numbers ¢,, m =m,, such that

3.19) sup I, <o, M =M

Now let X;(z) be R™-valued random variables given by

XJ(@) =t(g0(x.7'7 SYM)’ Tty go(xjy sinm)))y

and let C™ be a symmetric m Xm matrix given by
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[a (8™ 0 ]
Cm = g :
0 o(Sa")

Then we have

8200 [, Vit e dn@dn) = (L £ x)om(1 3 x)
and
(3.21) K,,,Ec{a_ce M ]% > X, <m- }

Let V™ =Ee-[X,-'X,]. Then it is easy to see that for any &=(&,
-+, &) ER

(3.22) ts‘Vm’C(m’V‘m’s:(iskgo(-,s,‘:’”), & é&yo(wsi’”’>>>m

m 2
<R S st
k=1 Li®
— 1"‘22 .t$V<m)§.
3

Then from Lemma 2.2, (3.16), (3.20), (3.21) and (3.22), there exists positive
number ¢, for each m>=m, such that

(3.23) sup Lm e <o,

From (3.15), (3.19) and (3.23), we have our assertion.

Lemma 3.2. Let RcP(M). Suppose that the symmetric bounded
operator I,—Vy in Li(R) s strictly positive definite. Then there exists
an open neighborhood G of R in P(M) such that for any open meighbor-
hood U of R in PM) and u€ L3(R),

lim o] exp( v =Tn[ uy)(oule) —B) (@)

n—>00

5, V0 00 ~B* Ay @dy) ), (we Mip.0) €GN U]

=det (IR— VR) -z exp<——;—(u, (IR— VR)—lu)Lg(R)>.

ProoF. Let us take a separable Hilbert space H such that Li(R) is
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a dense linear subspace of H and the inclusion map from L§(R) into H
is a Hilbert Schmidt operator. Then we can take an H-valued random
variable X such that

Blexp(v/ = 1u(X, wyf]=exp( 5 luligm )
for any € H*CLg(R) where H* denotes the dual space of H. Note that
(8:24) Eyoel (|, 0t0) lont0)— R) @) ) | = Il

Thus we may regard p.(x)—R,n=1,2, ---, as H-valued random variables
with respect to R®. Therefore by virtue of the central limit theorem
for independently identically distributed Hilbert space valued random
variables, we see that

(3.25) (o (@) —R) — X, m—co,

in distribution. Since V; is a nuclear operator in Li(R) from the assump-
tion (A), we see from (3.24) and (3.25)»that

(3.26)  (n*(0.(2) —R), n- (0u(&) — R, Vi(0a(@) —R))2m)—— (X, (X, VaX)i2r)
' on HXR, n—oo,

in distribution. Observe that

B21) (e~ R. Valowla) ~ Rt =, V0 ) (oo(e) — B0y Q).

By virtue of Lemma 3.1 and (3.27), we see that there exist »>1 and
£>0 such that

(3.28)  sup EE®°°[ exp (p- %SMXM V (s, ¥) (0. (&) — R) & (dy:.Qdy,) )

sup
3€S

[ o090~ R )| <e |<eo.

Let Gz{QeP(M);sgg‘SMg(y, s) (@ —R)(dy) ‘ <s}. Since S is compact, G

is an open neighborhood of R in P(M). Therefore we see from (3.26)
and (3.28) that

(3.29) lim E'R®oo[exp<«/ S0 (u, 0,(0) — R)2e

N>
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+ 2 {oule) =R, Viloue)~ Bl ) o2(2) €G]
:E[exp(«/———l(u, X) 12, +—;-(X, VRX)Lg(m)]
=det(Ty— V) exp — 1, (L= V) g ).

Now let U be an arbitrary open neighborhood of R in P(M). Then
by the law of large numbers, we have

(3.30) lim R®[p,(x) € P(M)—U]=0.

e

From this and (3.28), we get

B—rcO

831 lim uoe| exp( 2 (6u(e) ~ R, Valoule) —R)iss ). 02le) € G=U | =0.

(3.29) and (3.31) lead us to our assertion.

LEMMA 3.3. Let Rec P(M). Suppose that the spectrum of the sym-
metric operator I,—V, contains a non-negative number. Then for any
open neighborhood U of R in P(M),

lim Bro-fexp( 2 [, Vi v (0.0 —R1*(dy.@dy) )

{xe M™; p;(a_o) € U}]:oo.

Proor. Let H and X be as in the proof of Lemma 3.2. Then (3.26),
(3.27) and (3.30) hold also in this case. Thus by virtue of Fatou’s lemma,
we obtain
(3.32) lim Ere- [exp(-’z,l SMxM V(v ¥2) (0u(2) — B)®* (dy:Qdys) )

R—>00

fgeM>;p.(x) €U }];E [exp<%(X, VX )Lgm)]-

From the assumption on the speetrum of I,—V; we easily see that
the term of right hand side of (3.32) is infinity.
This completes the proof.
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4., The proof of Theorems 1 and 2.
For each R¢ P(M), we define the entropy h(R, ¢) of R with respect

to ¢ by hiR, p)= S 1og(f]/—R( )R(dx), if R is absolutely continuous relative
u
to ¢ and -‘ llog lR (dx) <oo, and h(R, ) =oo, otherwise. Then the

following has been shown by Donsker-Varadhan [1] Theorem 4.5.

LEMMA 4.1. (1) h(-, &) is @ lower semi-continuous mon-negative con-
vex function on P(M), and {R¢ P(M);h(R, ) <t} is compact in P(M) for
any t=0.

(2) 1@%108’# ({z€ M=; pu(a) € K})= —inf {h(R, 1) ; € K}

for any closed set K in P(M).

(3) hm——log 12z € M>; p,(x) € GH = —inf{h(R, ¢} ; RE G}

Jor any open set G in P(M).
The function F:P{M)—R in Introduction is described by

FR)=—( Vi yREREY+hE, ).
Therefore, as a consequence of Lemma 4.1, we have

(4.1) lim ;1; log E e [exp< n Lw V(Y1 v2) 02 (@) (dy: R dys) >]

=—inf{F(R); R€ P(M)}.

Now let P, denote the set of probability measures minimizing the
funetion F and f denote the minimum value of F. Then we have the
following.

ProposITION 4.2. (1) P, is a compact subset of P(M).
(2) For any open netghborhood U of P,

hm—n—logvn({xeM"",ﬂn()€P( )—=U}) <0.
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(8) For any RE P, we have

dR

(4.2 A

() =Chq exp<2§M Vix, y)R(dy)> for p-a.e.r,

where CR=eXp<f—§MxM Viz, y)R(dz)R{dy) )

Proor. The assertions (1) and (2) are obvious from Lemma 4.1 and
the definition of P,, Thus we shall show the assertion (3) only.
Suppose that B¢ P, First we shall show that

(4.3) R (z)>0 for p-a.e.z.

dy
Let A:{xeM; d—R(x)zo} and let
dp
B(dz) = (1—p(A)t) R(dx) +t-ga(x) p(dw), 0=<t=L
Then we have

k(R p)=\ log (1—#(A)t)d—R(x)+t'XA(x) R, (d)
M d/l

={1—pu(A)t)log(l—p(A)t) + (1—p{A)R(R, p)+ p(A)t-log ¢.
Thus if z(A4)>0, then we see that

lim L (1(B,, g)—h(R, 4)) = —oo,

-0

and so we have

lim 1 (F(R)—F(R) = —oo.

t-0

But this contradicts the assumption that R& P,. Therefore we obtain
#(A)=0, which shows (4.3).
Now let

C(lii (:c)} p-a.e. x}

B:{z-h € Ly ;A€ R, he L) and |h(x) 1§min{1,

Then we see that for any he B,
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d

0=—"F(R+t-hiz)p(dz)

t=0

:_2§MxM Viz, y)h(z) pldo) R +S log< ) p(dz).

Since B is a dense subset in Li(y) by (4.3), we see that there exists a
constant C¢€ R for which

(4.4) 10g< ‘ffz @ ))—2§MXM Vir, ) RAy)=C, p-ae. .

Integrating both sides of (4.4) by R(dx), we obtain

(4.5) F(R)— S V iz, y) R(dz)R(dy) =C.

MxM

(4.4) and (4.5) lead us to our assertion (3).

Let Py= {R ¢ P,;The symmetric operator D*F(R) in Li(R) is strictly
positive definite}.

Now let R€ P, Then from Proposition 4.2 (3), we have

48)  Zwldg)=exp(n f V (s, 92) 00 (@) dy: D)

—n 1oz 22 )o.(0)(d) ) & Ridn) & pldm
)U k=1 nt

—exp(—n-fn|, | Vi, v 0.0~ R dy@dy) )
yid

@ Rlde) ® pldw).

k=n+1
Noting that p.(z) depends only on (x,, ---,x,), we have got
(4.7) eI Z v, ({0.(2) € G})

=Bl exp(n [, Vit loule) ~R*(dy:@dy.) )
we M=: pula) € G

for any open set G in P(M).
The following is an easy consequence of Lemma 3.2, (3.8) and (4.7).

LEMMA 4.3. For any RE Py, there exists an open meighborhood Gy
of R in P(M) such that
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lim ¢ Z,E, [ exp v =T-m- jM wly)pul2) ) ), (0 M= pula) € Ga U} |

N0

=det(D*F(R))-" exp(——;—(u, D*F(R)) ,,g,m)

Jor any w € Li(R) and any open neighborhood U of R in P(M).
The following is an immediate consequence of Lemma 8.8 and (4.7).

LeMMA 4.4. If R ¢ PPy, then for any open neighborhood U of R in
PM),

lim e/ Z,v,({x € M ; p,(z) € U}) =co.

Then we have the following.
PROPOSITION 4.5. For each R€ P, R is an isolated point in P,

Proor. Let G be an open neighborhood of B as in Lemma 4.8. It
is sufficient to show that GxNP,= {R}. Suppose that B,€c GNP, RB,=R.
If R ¢ P,—P,, then we have from Lemma 4.4

lime ' Zy,({lee M= ; 0,() € Gp}) =0,
which contradicts our assumption for G, If R,€ P, then there exists
an open neighborhood G, of R, which is an open neighborhood for R=R,
in Lemma 4.3. Let U and U, be disjoint open neighborhood of R and
R, respectively. Then we have

lime*/Z,v,({zg € M™; p,(x) G NUY)

R—rCO

=lim ¢"/ Z,v,({x € M*; p.(x) € Gz}),

and
lim e/ Z,v,({z € M™; p.(2) € Gz NG, N U >0.
But this is impossible. Thus we obtain our assertion.

Now we are ready to give the proofs of Theorems 1 and 2.

First let us prove Theorem 1. Suppose that P,=P, Then from
Proposition 4.2 (1) and Proposition 4.5, we see that P, is a finite set. Let
P,=Py={R, ---,R,}. Then from Proposition 4.2 (2) and Lemma 4.3,
we see that
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(4.8) lim e/ Z,=2= 3. det(D*F(Ry) ",
k=1

-

and that there exist open neighborhoods G, of R, k=1, - --, m, such that
Gr,’s are mutually disjoint,

(4.9) v.({g€ M= pu(2) €Ge,NU}) —> i,  m—>00,
for any open neighborhood U of R,, k=1, ---,m, and

(4.10) vl{z € M= pu(x) € P(M)— kCJI Ge}) — 0,  m—oo.

Let h: M'—R, r=1, be a bounded continuous function. Then by virtue
of (4.9) and (4.10), we get

(4.11) lim SMwh(xl, ooy ) (de)
=lim f} 1 j Rz, -+, 2 )v.(da)
1w iy,eini=1 BT J M i s

B0

=lim ¥ B, UMvh(yl, 1) ® o) (). pul@) € GRk]

n-co k=1

=tim [ _un(de({, v © 0.0 dud)

i=

= % akj by, e, ) @) R (dx,).
k=1 M i=1

This proves Theorem 1.
Now let us prove Theorem 2. Suppose that {R;} =P,—Py,. Then by
virtue of Lemma 4.4, we see that

(4.12) lim ¢/ Z, =oo.

R0

This and Lemma 4.3 tell us that there exists an open neighborhood G
of R for each R¢ P, such that

(4.13) lim v, ({z € M= ; p.(x) € Gg}) =0.

Therefore from Proposition 4.2 (2) we see that

(4.14) limv,({fz € M= p.(z) € U}) =1

for any open neighborhood U of R, in P(M). This and the argument for
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(4.11) prove Theorem 2.

5. Remarks on 7-body potentials.

In this section, we consider r-body potentials, ¥=8. Since the proof
is almost the same as in the case of pair potentials, we will state results
without proof.

Let V:M'—R be a symmetric bounded continuous function satisfying
the assumption:

(A7) There exist a compact metric space S, a signed measure ¢ on
S with bounded total variation and bounded continuous functions f;: M X
S—R, t=1, ---, 7, such that

S k=1

Vigw o)== | B fimsolds, (@ -2) €M
iypeeesip={1,een,r

Let v,, n=7, be a probability measure on M> given by

(5.1) vn(dx):Z;‘eXp< LI V(wa»“',%)>®#(d%’)»
n @1,...,1,,,:1 i=1
where
(5.2) Z,,:S eXp(———l > Vo, w))é pe(dw;)
e n,,_1 v 1? y M, =1 Jle

Now let F': P(M)—R be a function given by
63 FR)=-{ Vi, o) @Rdz)+hiR:p),  RePOM),

and for each Re P(M), let D*F(R) be a symmetric bounded operator in
LiR) given by

(5.4 (DF(R)u, )= —rr=1){ , Rido) Ridmulz)vlo)
r—2
X {SMT_2 V(xlv xz: ylr DR y'r--z) @ R(dy,) }
+5Mu(x)v(x)R(dx), u,v€ LY(R).
Let P, denote the set of probability measures on M minimizing F',
P, denote the set {R€ P,; D'F(R) is strictly positive definite}, and f

denote the minimum value of F as in Section 4. Then we have the
following.
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ProposiTION 5.1. (1) lim 1 log Z,=— 1.
n—o 1

(2) P, is a compact subset of P(M).
(3) Each point of Py 18 an tisolated point in P,
(4) For any open neighborhood U of P,

-0

Tim %mg v,({z € M= ; p.(x) € P(M)—U}) <0.

LEMMA 5.2. For any R¢ Py, there exists an open neighborhood Gg
of R in P(M) such that

lime*/- Z,

n—>00

XE,"[eXp(V —1.n¥ SMu(y)pn (z) (dy) ) e M=; p.(x) €GeNTU }]

—det(D*F(R))" exp<~_;.(u, D’F(R)~u) ,,gm,),

Jor any w€ LYR) and any open meighborhood U of R in P(M).

LEMMA 5.3. For any R¢ P,— Py and any open neighborhood U of R
wm P(M),

lime - Z,-v,({x € M~ ; p.(z) € U}) =o0.
THEOREM 3. Swuppose that P,=P, Then P, is a finite set and v,
are convergent to the probability measure z7* 3, det(D*F(R))"*R®>, where
RGPO

z= 3, det(D*F(R))™"%. Moreover lim Z,-¢"f=z.

REPO n—co

THEOREM 4. Suppose that {R,} =P,—Py,. Then v, are convergent to
the probability measure RE>, and lim Z,-¢" =co.

n—>c0

6. An application te the central limit theorem for diffusion processes with
mean field interaction.

Let (2, B, P) be a complete probability space. Let ¢ be a rapidly
decreasing smooth function on R? satisfying @(—2)=0@(2), z€ R®. Let
Yi(w), 7=1,2,---, be independently identically distributed R*-valued
random variables with E[|Y,]?]<<co. Let us consider the following
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stochastic differential equation for each n=1:

dXi(t, @) =dB(t, o) +L 3> grad ¢(Xi(t, o) — X2 (¢, ))dt
n i=1

(6.1)

X0, 0)=Y' (), i=1,---,n,
where Bi(t,®), 9=1,2,..., are independent d-dimensional Brownian
motions.

Fix T>0, and let M denote the complete metric space C([0, T]—>R%.
We define a random measure E,(dw;w) on M by

62 [ f R w0 = L 5 il o)

for any bounded measurable funection f on M. Our concern is in asymp-
totic behaviour of the distribution of the random measure R,{dw;w®) as
N—>00,
Now let us consider a stochastic differential equation of McKean
type:

dX(t, ) =dB'(t, o) +<Ld grad O(X(t, ) —z)ut(dz)>dt

X0, o)=Y w)
u,(dz) is the probability distribution law of X(z, @),

(6.3)

and let R, denote the probability distribution measure on M induced by
X(t, ), 0=t<T. Then the following has been known.

LEMMA 6.1 (McKean [2])). For any bounded continuous function f
on M*, k=1,
k

lim ELAX( ), - X3, o)1= At 0 @ Rofdaw),

Let 2 be the probability distribution measure on M induced by
Y*w)+ Bt, w), 0Zt<T, and let ,,n=1, be the probability distribution
measure on M" induced by (Xi(t, w), -+ -, X*{t, ®)), 0=t<T. Then by virtue
of Cameron-Martin-Maruyama-Girsanov’s formula, we have

dp,

4
(6.4) e

(w.) = eXp(% Z= S:grad O (w'(t) —w’(t))dw' (¢)

n Zdt>

grad @ (w'(t) —w'(t))

ol j=1 |
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where w,= (", - - -, w") € M" and the first integral in the term of the right
hand side is Ito’s stochastic integral.
Let V,: M*—»R and V,: M*~R be given by

(6.5) Valw', ) 2_;: S: arad @ w(t) —w(t)) ([duw () — dur(t))
=200 (1) —H(T)) ~ 0 ((0) —u?(0)
- S 20w ) — (1)) dt},
and

6.6) Vil wt, w) = — % X : grad @(w'(t) —w*(t)) - grad @ (w'(t) —w* (1)) d.
Let V:M*—R be a 3-body potential given by
6.7 Vw', v, w ——‘%{Vz('w‘, w?) + Va(w?, w?) -+ Vo{w®, w')}

+={Vsw', w’, ¥+ Vi, w?, w4 Va(u?, w', w%}.

0|

Note that

o) =( ) |, explv =Tz de.

27
where ¢(§) is the Fourier transform of ¢. Then it is easy to see that
the 3-body potential V satisfies the assumption (A’) in Section 5, observ-
ing that @ is a rapidly decreasing function. Let D?F(R), R¢ P(M), be
the symmetric linear operator in Li(R) given by (5.4) for the 8-body
potential V.

Then we have the following.

THEOREM 5. For any u ¢ LiR,),

tim B[ exp (v=1-w* | ufw)(R(dw:0) )]

B>

= eXp< — ——é— (’LL, DZF(R()) —lu) L%(Rw).

Proor. Let Z,, v, F, f, P, and P, be as in Section 5 for the 3-body
potential V. Then we easily see that
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(6.8) va(dw) =2, (dw,) @ @ pldw).

t=n+41

Thus we see that Z,=1, n=>1, and f=0. Therefore we have

(6.9) lim Z,em/=1.

B0

On the other hand, we know from Lemma 6.1 and (6.8) that
(6.10) valdw) —> @ Re(dw’) in P(M™) as n—oo.

It follows from Theorems 3, 4, (6.9) and (6.10) that P,— Py,= {R,}. There-
fore from Lemma 5.2, Proposition 5.1 (4) and (6.8) we have our assertion.
This completes the proof.
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