Nilpotent classes in Lie algebras of type F,
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Let G be a simple algebraic group of type F, over an algebraically closed
fleld % of characteristic 2. This article gives a classification of nilpotent orbits
in the Lie algebra g of G and informations about the centralizers. Springer’s
correspondence and sheets are also discussed.
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1. We fix a Borel subgroup B and a maximal torus T B. Let @ be the
root system of G with respect to T and let @+ and I be the set of positive
roots and the basis corresponding to B. As in [8] we take IT={a,, as, as, a,}
with ay=e,—e;, ay=e3—ey, as=¢,, a,=1/2(e;—c,—e;—e,) and the root aa,+bas
+cast-da, is denoted abed. For each 1c® we choose x;: Go—G adapted to A.
We can do this in such a way that all the coefficients in the commutation
formulae are 0 or 1 (in particular because the characteristic is 2). Let x,=
(dx2)(1), where the Lie algebra of G, is identified with %.

THEOREM. There are exactly 22 nilpotent orbits in g, and the elements listed
in table 1 form a complete set of representatives. If x is one of them, then
dim G, G./G} and the type of G2/R,(GY) are as given in the table, where G,
is the stabilizer of x. Moreover the order rvelation given by inclusion of Zariski
closures is as described in table 2.

The classes are labelled as follows. There are some classes which “come
from characteristic 0” (for example in terms of Springer’s parametrization, see
(4). For them we use the notation of Bala and Carter [3]. Some of these
classes have also a degenerate form in g, and for such degenerate classes we
use the Bala-Carter notation with a subscript 2. For example let L be a Levi
subgroup of some parabolic subgroup of G and let x be a regular nilpotent ele-
ment in the Lie algebra of L. Assume that L is of type B,. In characteristic
0 we would have dim G,=16 but here dim G,=20. The class of x is then
denoted (B,),, and B, denotes the class of some other nilpotent element x’ such
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Table 1

class representative x dim G, G./GL G?}E}i(oé 0y
o) 0 52 1 F,
A, Xagas 36 1 C,
(A])Z X1232 36 1 B,
g1 X935 Xes42 30 1 B,
(ﬁz)z Xo1a1X1111 28 1 G.
Al"‘"’ﬁl Xiz00T X121 24 1 2A;
As X220 X1122 22 Z/2Z A,
121'2 Xo1a1 X111 Xass2 22 1 Ay
(B2)e X110 Xo122 20 1 B,
A2+ﬁ1 X1200 T Xo122FX1101 18 1 A,
<ﬁ2+A1>2 X110 Xo121 X 1022 13 1 Ay
ﬁz‘)_Al X11107H X101 F X 1192 X120 16 1 @
B, X100 X1100 T X122 16 1 A,
(Cslan). X1110-F Xo101 7 Xo122 16 1 Ay
Cslas) X100 T Xo101 T X 1120 X1242 14 1 )
Fyas) X120 F X 1110+ Xo111F Xo12e 12 &, @
(Cs)2 Xoo10TXo001FX1220 12 1 Ay
Cs X001+ X110 Xo120F X120 10 1 @
B, X 1000~ X010+ Xo122 10 1 Ay
Flay) X1000 T Xo110F Xe011 1 Xo122 8 Z/2Z @
Fiay) X1000~FXo0110T X0120+ Xo001 6 1 @
F, X10007+X0100T Xoo10t Xo001 4 1 @

that dim x’=16.

The proof of the theorem is based on a systematic use of the commutation
formulae. We can work almost entirely in the Lie algebra b of B. For example
if xeb the nilpotent classes contained in G-x (where g-x=ad (g)x) are exactly
those which meet B-x since G/B is complete. Let PDOB be a proper parabolic
subgroup and let MDT be a Levi factor of P. Let m be the Lie algebra of M.
The nilpotent M-orbits in m are known. We can find representatives y for them
such that yemNb and dim M-y=2dim (MNB)-y. For such elements we have
dim G-y=2 dim B-y. This allows to compute easily dim G,. We can use the
same method as in [15] to compute G,/G{ and G3/R.(G}), using in particular
reductive subgroups of G of type C, or Bs+A,. For the class A+A, it s
worth noting that B-x is closed in G-xMb (where x is the representative given
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Table 2.
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Az -Al\ (Cs(al)
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(A2)2 |

(Al) / Al\
\ /

in table 1). This can be used in this case to compute dim G2/R (GJ).

The remaining classes are by definition the distinguished classes (see [30).
If x is distinguished, then G9¢ is unipotent. It remains to compute G,./GY for
such elements. For this we use the Bruhat decomposition. For the elements in
table 1 this leads to eguations which are quite easy to handle. For example if
X is the representative given for the orbit F,(a,), G, meets exactly two double
cosets BwB, namely those for which w permutes the roots e,4&, &€,—¢&;, &2
1/2(e;—¢e,+¢;—¢,) ; an easy computation shows then that G, has two components
in B and four in the other double coset). The details are omitted.

2. Suppese now that % is an algebraic closure of a finite field ¥, (¢ a power
of 2) and let F: G—G be the Frobenius morphism corresponding to some F-
structure on G. We can assume that B, T and the x,’s are all defined over F,.
The elements x in table 1 are then all in g%, and we can use Lang’s theorem
to compute the number of nilpotent G7-orbits in g” and the order of the centralizers.
There are 26 nilpotent orbits in g”. The only extra information we need to
compute the order of the centralizers is the fact that for the orbit A, the
action of G./GS on GY/R.(GY) is by outer automorphisms. This can be checked
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in the course of the proof of the theorem. One can also use the fact that g¥
has exactly ¢*® nilpotent elements [17]. It can also be shown that for the ele-
ments in table 1 all components of G, are F-stable and the reductive groups
GY/ R (GY) are split.

3. Let B be the variety of all Borel subgroups of G, and for xeg let B,
be the subvariety of B consisting of all B’e® such that x=b’, where ¥ is the
Lie algebra of B’.

PROPOSITION. For all xeg, dim G,=2 dim B,.+dim 7.

It is enough to consider the case where x is a distinguished nilpotent element
which can not be obtained by induction from a Levi factor of a proper parabolic
subgroup of G [14]. The only case left is that of the class A,+A,. Let x be
the representative given in table 1. We certainly have dim G,=16=2 dim B,
dim T (the corresponding formula for unipotent elements is proved in [187]). We
need therefore only to prove that dim %B,=6. For each w in the Weyl group W
of G the variety B(w)={¢B|ge BwhB} is isomorphic to an affine space, and the
equations of the subvariety B.NB(w) are quite simple. It can be checked that
dim (B, NB(w))=6 if we take w with matrix

0 0 1

O = OO

0
0
1

o O

0
0
0
with respect to the basis (e, €3, &3, €4)-

4, We turn now to the parametrization by irreducible representations of the
Wey!l group W [16], [6]. The original construction given by Springer does not
cover the case of F, in characteristic 2, but there are alternative constructions
which work in all characteristics [10].

Let W" be the set of isomorphism classes of irreducible complex representa-
tions of W. Let x=g be nilpotent and let A(x)=G,/G). The finite group A(x)
acts on the set of irreducible components of B,. Let A(x); be the set of all
irreducible representations of A(x) which occur in the corresponding permutation
representation. To each ¢=A(x); we can associate an irreducible representation
0= ¢<W", and this defines a bijection from the set of conjugacy classes of such
pairs to W". As in [2] we assume that this is done in such a way that the
regular class corresponds to the trivial representation and 0 corresponds to the
sign representation . (i.e. we use [6] which differs from Springer’s original
construction by &). The methods used in [27, [13] apply also here, in particular
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because of results in [7]. Using [1] we can then easily compute explicitely the
map (x, ¢)—p. g The only trouble is to find which of the two non-trivial
characters of &; occurs. If we take x in the class Fy(a;) as in table 1 and define
P to be the parabolic subgroup of G containing B and with a Levi factor of
type B., then the Borel subgroups of P form an irreducible component of B..
This component is B,-stable, hence stabilized by an involution of &;, but it is
not stable under G, as can be seen from the description of G, given in (1).
This shows that the representation of degree 2 of &, does occur.

The irreducible characters of W have been determined by T. Kondo [9].
We use the same notation as T. Shoji [12], namely we denote y, ; the ;&
character of degree / in Kondo’s table, except for the “isolated” characters of
degree 4, 12, and 16 which are denoted y., y1s, 726 respectively. The groups A(x)
are all of the form &, (1=<r=3) and we label the characters of &, by partitions
of », with (») for the trivial character and (1, 1, ---, 1) for the sign character.

THEOREM. The map (x, ¢)—px, g is as described in table 3.

The Springer representations for F, have been determined by Shoji [12] in
the case where the characteristic is not 2 or 3. We can parametrize the nilpotent
classes by the p. 4 with ¢ the trivial character of A(x). In this way it makes
sense to compare nilpotent classes in various characteristics. All the characteristic
0 nilpotent orbits still exist in characteristic 2, and we have some new orbits.
In a similar way we can say that we have all the unipotent classes which arise

Table 3.

class of x & t O ¢ ‘ class of x ¢ P4 !
@ (D X1, 4 B, (1) Ao, 2
A, L Xo, 4 (Cs(an). (1) As, 3
(A o) zes | Cilay) (1) s
A, 6)) y: | Filay) 3) Y1z
(Aa)e W) yuo | Fday) @20 | e
A+ A, n Yo, 4 Fyas) (1,L,1) —
Az (2> Xs. 4 (C3>2 @1 Yo, 3
A, 11 T Cy (1) oo
A, 1) Yoo B, oy T
(By)s L X Fya,) (2) FER
A+ 4, @ Tae | Filao) 1,1 Ton
AtA). | O s | Fulay 1) Yin
At+A, o) Yot F, o) Tt
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in characteristic 2 (they have been determined by Shinoda [11]) and two extra

classes, namely (C,), and (1712)2. (When comparing with Shoji’s tables one should
remember to tensor by &).

5. For every d=0 the elements x=g with dim G,=d form a locally closed
subvariety of g. The irreducible components of these varieties are called sheets.

A closely related notion is that of a packet. A packet in g is an equivalence
class for the following relation. Let x=s+n, x'=s’+n’ be the Jordan decom-
positions of x, x’ (s, s’ semisimple, n, n’ nilpotent). Then x and x’ are equiv-
alent if there exists g&G such that g-n’=n and c¢(g-s)=c(s). Roughly
speaking x and x’ are equivalent if they have the same type of Jordan decom-
position. The packet containing x is entirely determined by the conjugacy class
of m=cy(s) in g (under the action of G) and by the orbit © of n in m (under the
action of the stabilizer of m in G). We denote sometimes a packet (type of m;
Q) or (m; o).

It is clear that each packet is contained in at least one sheet, and every
sheet is a union of packets. As general references on sheets we refer to the
articles by Borho and Kraft [5] and Borho [4]; for the case of bad characteristic
see also [14].

THEOREM. Let J1 be the nilpotent variety of g, let S be a sheet in g and let
{m;0) be the packet demse in S. The packets occuring in this way are exactly

Table 4.
d W | o l & | d i m \‘ o ¥
4 %) @ F, 16 D, 24, Cilay),
6 A @ Ffay) | 16 F, At Ay | At A
6 44, 34, Fla) | 18 | CHA, | A @ | A+A,
8 | 44, 24; | Fias) | 18 D, A (At A,
8 | B,A24, | Ai; Ai; Ay| Fia) | 20 B, 24, (By)s
10 A, @ B, 22 | Co+A, | @A A,
10 44, A, C, 22 B, A0 A,
10 | Bo+24; | A A @ | Be | 24| Cotds | @50 | AckA
12 44, % Cy, | 24 B, A, A+A,
12 | By+2A4, | @; Ay Ay | Fuas) | 28 D, @ (212)2
12 | BoA2A, | Ay @3 @ | Fulas) | 30 F, A, A,
14 | B;424, | @; A @ | Colay) | 36 B, @ (A,
16 Bo2A, | @, 0D Cs(ay)e 36 Fy A,y A,
16 | Cot4, | Ay A B, 52 F, @ @
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those listed in table 4. Moreover SN is irrveducible and is the closure of the
nilpotent orbit & of g given in the table.

In the table d=dim G, for x<(m; ®). The notations for the nilpotent orbits
in w are similar to those used for g. In particular for the class marked (), m
is of type B, and A, denotes the Richardson orbit corresponding tc the subalge-
bras of type B; in m.

For the proof we consider the various packets in g. Using the method of
induction for nilpotent orbits and sheets [14] we can deal with all packets except
those for which m is of semisimple rank 4 and © can not be obtained by induc-
tion. Moreover if B, P’ are two packets corresponding to the same dimension
of centralizers and BCP’, it is sufficient to look at P’. In some cases we can
use the fact that there is only one nilpotent orbit of dimension d in g.

Suppose that we know the result for the packet (4A4,; @). Let P=(m; O) be
one of the remaining packets. We may assume that m=#g. Define '=(m; ")
as follows.

| By+-24, By424, ‘ Co+4: | Do | B. |
o 4500 0:0:0 | Ave | A D |
‘ o’ A A @D (Zl)z; ;D E Ay Ay 24, } (ﬁl)Z

(here (;11)2 means a short root element). In each case RC R’ and & is the unique
orbit of dimension d in NP

It remains therefore only to consider the case where m is of type 44, and
©0={0}. Let P be this packet.

Let 1 be the Lie algebra of 7" and let Z={s=t|a,(s)=0}.

Claim. bB-Z={s-}+ ZZ;OCAXA [8SZ, Cor00="Co120= Co122™= Cosaa— X1(8)(C1000C 1342

- C1100C12427F C1120C 1222 C1220C 1122) =0} .

Granting the claim, we see that B-ZN7 is irreducible and contains X100+
XootoFXooor. But for all xeB-Z we have dim G,=12. By semicontinuity this
implies that the nilpotent orbit (C,), contains a dense open subset of B ZNa.
Since G/B is complete, N1 is the closure of (Cy)s.

The claim follows from the commutation formulae. Let s€Z and let a=
a.(8), c=w,(s), d=ay(s). Assume that none of a, ¢, d, a+c, a+d, c-+d, a+c+d
vanishes. We need only to show that the B-orbit of s contains all s+A§ C1X,

with the ¢;’s satisfying the conditions given in the claim. This can be achieved
by acting successively by elements of the form x,(d;) with suitable d;€k. We
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can take the A’s in the following order: 0010, 0001, 0011, 0110, 0111, 0121, 1000,
1100, 1120, 1220, 1122, 1222, 1242, 1342, 1110, 1111, 1121, 1221, 1231, 1232. At each
step we can arrange to get any specified value for ¢; without changing the

previous ones, and at the end we have co0="Co120=Co125=0, Cazaa==01(8)(

C1000C1342

- C1100C 1242 C1120C 1225 C1990C112).  This proves the claim.
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