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Introduction

In [2] Atiyah, Patodi and Singer defined an invariant (M) for a (4k—1)-
dimensional closed oriented Riemannian manifold (M, g). When M bounds a com-
pact manifold N, they proved the identity

yaD={ Lp)—sign N

where L is the Hirzebruch L-polynomial and p is the Pontrjagin form given by
a metric § on N which extends g and is product near the boundary M.

The behaviour of » for a finite Riemannian covering is well-known. But
nothing about the behaviour of » for general fibre bundles is known. The main
purpose of this paper is to give a formula of y for a circle bundle over an
oriented closed Riemann surface (Theorem 4-1).

We shall explicitly compute the y-invariants of certain 3-manifolds. In par-
ticular, we get a formula of #-invariant for 3-dimensional complete intersections

Xo= 1 f2ONS,
i=1
where f; is a homogeneous polynomial of degree a,. We obtain
1 n-1
W(Xa)zg{Z aar-@n-l-l)}alaz SN S N

In the case of a lens space, equating the p-invariants as computed by our
method and by the method of Atiyah-Patodi-Singer (using finite coverings), we
have an interesting formula of Dedekind sums:

I
b
The 7-invariant is known to be closely related to the invariant of Chern and
Simons. This is discussed in §5, and we get a formula for Chern-Simons in-
variant of an S'-bundle over a Riemann surface.
The author wishes to express his hearty thanks to Professor A. Hattori who
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encouraged him constantly.

§1. Definitions and some preliminary results

Let (X**-' g) be a compact oriented Riemannian manifold. Consider the

k
operator A on éBl 2?71 the differential forms of odd degree, defined on 2%2-! by
P2
A=(=1)2(xd+dx),

where * is the usual star operator defined by the Riemannian metric g. It can
be easily verified that

i) A is self-adjoint,
ii) A? coincides with the Hodge Laplacian, 4.

From 1) and ii) it follows that A is diagonizable with real eigenvalues {4,}.

DEFINITION 1-1 (Atiyah-Patodi-Singer). We define a function %(s) by =z(s)
:12 sign 4,]4,]~° which converges absolutely for Res large and extends to a
n#0

meromorphic function on the whole s-plane with a finite value at s=0. (For the
further details see [2].) This finite value %(0) is called the »-invariant of (X, g),
and denoted by 7(X).

We now assume that (X, g) bounds a 4% dimensional Riemannian manifold
(Y, & in such a manner that (¥, &) is product near the boundary Y =X, That
is, in some collar neighbourhood X xI, (Y, &) is isometric to the Riemannian
product (XXI, gXds? where ds® is the standard flat metric of the interval 1.
In this situation using the local signature theorem of [13], Atiyah-Patodi-Singer
proved the following

THEOREM 1-2. v(X)ZXYLk(M—Sign v,

where SignY is the signature of Y, L, is the k-th Hirzebruch L-polynomial, and
p is the Pontrjagin form defined by the Riemannian wmetric g.

Note that 7(X) vanishes when (X, g) has an orientation reversing isometry
¢. In fact, A changes its sign under ¢.

We want to calculate the y-invariant for a principal S-bundle over a closed
Riemann surface,
S(EYy — M,

where n: E—M is the associated C*-bundle. To do this, we choose a fibre metric
h on E, an h-preserving connection V of E and a Riemannian metric § on M.
Then the total space E becomes a Riemannian manifold (E, £) by assuming that
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gl(vertical spaces)=~h
and

Z|(horizontal spaces)=nr*g.

Take any point x of £ and choose an orthonormal basis {e;}s;<: 0f T.E so that
e;, e, are vertical and e; and e, are horizontal. Let fy=mse; (¢=3, 4). Then by
the definition of &, {f.}:-s s is an orthonormal basis of T'.,M with respect to
£. We may assume that {e,, ¢,} is positive with respect to the given orientation
of E, and that {fs, fi is positive with respect to the given orientation of A
Choose local orthonormal sections of E with respect to . Then they naturally
define a (global) coordinate system {u!, u?} along the fibre of £. We may assume
that 8/0u“=e, (a=1, 2). Define i, (=3, 4, 1, p=1, 2) by

V;.0/0ur=y3,0/0u*,
then it is easy to see that e¢; and f; (7=1, 2) are related as follows. (We use the

Greek indices as the vertical components and the Latin indices as the horizontal
ones.)

LEMMA 1-3. e;=fi— er;ﬁu*a/au“ .

Let £ and £ be the curvature forms of the Riemannian connections deter-
mined by & and § respectively. Denote by 2% and £% their components with

respect to {fi}s=s+ and {e;};<;<s respectively. Let R be the curvature tensor of
the connection

V:I'(E) — I'(T*MRE).
Denote by Rupw (1=a, §=2, 3=k, [=4) its component with respect to {e;, e,}
and {f,, f4, ie,
Raﬂ kl:h<ea, ([ka7 vfz:l_v[fk’fl])eﬁ) .

Let £ be the corresponding curvature form and £} be its component with re-
spect to {e, e}, i.e.,

Qé:Rmeﬂa{/\ff
where {f%}.,-s . is the dual basis of {f;}is 4
In this paper we will only consider a complex line bundle over a closed
oriented Riemann surface. Hence, up to sign, each 2, £ and R has only one

non-zero component, that is 23, 22 and R,.. For the brevity’s sake we will
simply write these components as £2, 2 and R respectively ;

Q=05 QEQ?U R=Ris.

2 is described by the following
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PROPOSITION 1-4.

1-5) =g,

(1-6) 4= (~ 1, Qui+ o (~ 1Rt Adi?
+%(—1>a+1R2uﬂe§<uzd'Zl—uld“yl% ,

a7 =0 — 5 R+ ()

g w07 A~ d) + REE AT
where {uNl, u% is a coordinate system along the fibre so that {0/0u?, 9/0u®} ={ey, .}
at x, {du®, ¥} aey 043¢ is the dual basis of {0/0u®, e} acy 2izs,«={e1}15754, and
3V A T*MKQQEQRQE*) — I'A'T*MQEQE*)
is the formal adjoint of the covariant differential
47 (A T*MQQERQE*Y) —> ['(A*T*MQEQE*)

defined by the natural inner product induced by & and h. x is the tensor product
of the star operator on A*T*M (defined by §) and the identity map on EQE*
In (1-6) a=1 or 2, j=3 or 4 and B=3—a, k=7—j. In (1-7) wy is the volume
form of (M, 8), i.e.,

a)M:f”;/\ff‘f .

REMARK 1-8. i) By virtue of Lemma 1-3 ¢¥ and du® (1=3, 4, a=1, 2) are
given by

(1-9) e¥=n*f%,
(1-10) ﬁa:dua+;r?zeful )

ity On I'APQERE*) we have the relation

(__1)p+1dv*:*5v .

If we use the polar coordinate system {r, 6}, i.e., r2=(u)?+(u%? tan G=u?/u’,
then Proposition 1-4 is rewritten in the following form:

ProrosiTION 1-11. The componenis of 3 with respect to the basis {(1/7)(0/08),
a/0r, es, ey} are given by the following :

(1-12) Or=n*0,
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(1-13) Q;:<—1)f+%fee;k/\n?é )

J
[

[l

(1-14) (—l)j%ReZ‘/\dr+%(ij)Rﬁ*wM—i— %rzR%?/\r&VB s

(1-15) a3

a0 — —z—rszn*wMJerr/\rdma— %rzﬂ*(*ﬁvﬂ)/\ 4o ,

where the subscripts v and 0 mean taking the componenis with respect to 0/0r and
(1/7)(0/080) respectively, and {7’(?5, dr, e%, e¥} is the dual basis of {(1/7)(0/28),d/0r,
es, ¢;}. j=3 or 4 and k=T7—j.

REMARK 1-16. Making use of (1-10), it is easy to see that do is given by
dO=d0—74et.

For the use of later sections we describe here the connection form of §. In
the same notation as in Proposition 1-11 we have the following

PROPOSITION 1-17. The components of the connection form e of the Rieman-
nian connection determined by § are given by the following :

~

(1-18) ag=—dd0,

(1-19) a;=0,

(1-20) aj=(~ 1)L rRet,
(1-21) az:x*aH%ﬂR(%) )

where &% is the component of the connection form of & with vespect to {fs, [i},
7=3 or 4 and k=T—].

To emphasize the dependence on the radius » we will write the above « as
a(r) also.

Here we sketch the proofs of Propositions 1-7, 1-11 and 1-17. In fact we
can prove more general formulae. Namely let E—M be a vector bundle over a
Riemannian manifold (M, g) (without any assumption on dim M or rank E). We
assume that F has a fibre metric 4 and an h-preserving connection V. Then the
total space E can be equipped with a Riemannian structure (E, &) just asin § 1.
First we determine the Riemannian connection ¥V of & Let {f;} be a local
orthonormal frame of M and {e;} be its horizontal lift with respect to V. Let
{u*} be a coordinate system along the fibre of E determined by local orthonormal
sections with respect to h.



530 Mutsumi KoMURO

Let & be the connection form of V. Let 6%, §: and 4% be its components
with respect to the frame {9/0u®, fi}. (We use the Greek indices as the vertical
components and the Latin indices as the horizontal ones.) Then by the definition
of 4,

3= §(6/0u”, V.8/0uf)et+ T £@/ou, Var00i0/0ub)du?
where {e*, du?} is the dual basis of {e; 9/0u?}.
Using the identity
28X, UY)=ZX, Y)+8(Z, [X, Y)+YEX, Z)+&(Y, [X, Z])

which holds for any three vector fields X, Y and Z, we can easily see that
§@/0uc, V.,8/0uf)y=h(d/0u", V;,0/0uf)

and N
Z0/0u*, V32u20/0uf)=0.

Hence we have §3==*0%, where 6 is the connection form of V. We can deter-
mine the other components 5}- and ¢ similarly, and we have the following prop-
osition.

PROPOSITION 1-22. The components of the connection form 0 of V with respect
to the frame {0/0u®, e;} are given by

. . 1 ~

}:n*ﬁ}—l—E—Ra“iuldu",
2,a2

Ho ]'R Ko, A

j—ﬁg arjrefu’,

Jp=n*03,

where § and 6 are the connection forms of & and ¥ respectively.

Proposition 1-17 is easily deduced from this proposition.
Next a straightforward calculation using Proposition 1-22 will show the
following.

PROPOSITION 1-23. The components of the curvature form @ of N with respect
to the frame {0/0u®, e;} are given by

1
> RaueRguppututef Aef,

Qg:n*Q%—ZI,y,j, k1

.QZ,:—%]?ZL_(VUR)QMWZ@?/\@?
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; RupmRsresutut)ef Adu?,

ko2 p

1
+ZB,ZL(2R41‘3]'L+

~. 1
Q}ZZ’;E(ZKUM— ; ReriiRapmu’ut -+ 2 RojeRapnuu®)ef Ae¥

a, i, ¢ a, i, p

-t

+ Zk(vfkR>aljiuxe;ek/\&\ljla

_2—11,2,
1

Ralijﬁyikulu”)du“/\cfl\lItﬁ ,

2 k

‘!‘Z‘%@Raﬁij"*' ;
where K is the curvature tensor of the Riemannian connection defined by g, and
YR is the covariant derivative of the tensor Re [(T*MQQT*MQE*QE*) by the
tensor product connection.

Proposition 1-4 is a special case of this proposition.

REMARK 1-24. i) In Proposition 1-23 it is to be noted that 2 is written
down by R and K whenever YR=0 occurs.

ii) Proposition 1-23 is considered to be a refinement of Theorems 1~3 of
[15] for the case of a vector bundle E—M.

iii) An h-preserving connection V on a complex line bundle E—M can be
regarded as a connection on a principal S-bundle. In this sense Proposition 1-11
and 1-17 can be considered as generalizations of Propositions 1 and 2 of [9].

§2. Vanishing of VR

The aim of this paper is to study the y-invariant for a circle bundle over a
Riemann surface. To do this we will write down the L-genus by curvature
form and integrate it on the associated disc bundle. Although it may be very
complicated, the same program can be applied to a general dimensional sphere
bundle S(E)—M (associated with a vector bundle E—M).

Since the connection form itself has not much geometrical meaning but the
curvature form does, it may not too restrictive only to consider the case when

L-genus is written down by R and K alone. By Remark 1-24 i), this actually
occurs if VR=0 holds.

REMARK 2-1. Although the term du® also contains the connection form, it
causes no difficulty. In fact if one writes down the L-genus by forms, then the
only part that contributes to the integration is of the form

(a function on D(E))-(volume form of D(E))

=(a function on DENdu'A - Adu"A{(volume form of M)
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where r=rank(E) and D(E) is the associated disc bundle. But du® appears only
in the form of du® in Proposition 1-23.

In this section we shall give some sufficient conditions of vanishing of VR.
We begin with an example in which VR=0 holds naturally.

Example 2-2. Let y—CP™ be the Hopf bundle over the complex projective
space. Its associated C*-bundle is the standard fibration

C"*1— {0} —> CP*=(C"**—{0})/C*.
Identifying

r—(zero cross-section)=C"*'— {0},

there is a Hermitian (fibre-)metric 4 defined as follows. For any local holomor-
phic section s and ze CP® we define

h(s, §).=s(z)"s(z)

where the right hand side is the standard Hermitian metric of C**. We will
refer to /1 as the canonical Hermitian metric of the Hopf bundle. Let (w°:w':
~:w") be the homogeneous coordinates of CP" And set zi=w?/w® on U,=
{w - rw™); w#0}. We take ((2, -, 2"), U) as a local coordinate system.
On U, we can take a local holomorphic section s of y given by

sz, -, 2=, 2, -, e — {0}

so that A(s, §)=14]z|?, where |z|°= f‘_, lz;|%. For the sake of simplicity, the
i=1

real valued function 1+ |z]% will be also denoted by 4 ; h=14[z|% Then the
curvature tensor R of the Hermitian connection determined by h is given by

0%h _, 0h 0h
aZian _I_h aZi 62]
0:5(1-+1z] )—Z:z;

(I4]zi*
where Ri;; is the component of R with respect to the basis s and {9/9z;}. But
up to sign this last expression agrees with that of the so-called Fubini-Study
metric & on CP™; Rij=—g;;. (See [6] or [10].) From this relation, YR=0
follows clearly.

Hence we have proved the first statement of the following

Rijj=~—h"

PROPOSITION 2-3. Let (CP”", g) be the complex projective space with the
Fubini-Study metric. Let y—CP™ be the Hopf bundle with the canonical Hermitian
metric £. Let V be the Hermitian connection defined by /. Then the condition
VR=0 holds. Furthermore if we restrict the metric § of y (constructed from
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£, hand ¥ as before) on S,(y), it coincides with the standard metric of the unit
sphere S*™**'=S(y), where S,(y) is the unit circle bundle associated with 7.

Proor. We use the same notation as above. Let u be the coordinate of the
fibre direction i.e., the points of 7| v, are written in the form,

X=(u, uz,, -, uz,).

Note that we can regard X as an element in C**'—{0} if u=0.
Hence we have

0X

W:(l’ 21, Zay 0, Zn),

0X =0, -, 0, u,0, 0.

aZi

(In the second equation u is in the ({+1)-st place.) It follows that

oX BX . |
Fu w1
oX WX
a—Z]‘ azi _[ul 51']7
80X 90X

ﬁziau =Z;U .
So the standard Hermitian metric ds® of C**'—{0} can be described as follows ;
ds"':(l—l—lz}z)duﬁ—kzzuﬂdzﬁ—zziﬁduEiJrZ[ulzdzi?i—zi.
Define I; by
Va/&‘zi a/au:E a/au »

then by Lemma 1-3 the horizontal lift 5/\8;Z of 9/0z; is given by

8/02:=0/3z:— 3 Tud/du .
Define du by

&Vu:du-{—z_) ludz,,

then {dz,, (?u} is the dual basis (over C) of {5/3%, d/0u}. (See Remark 1-8.)
It follows that g is given by

ds=hdudu-+ 3 gdzdz;
2.7

=hdudu+3 hlidz,du+ 3 hidudz,
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_dzdz; S 07 L SR Vi -
DA S (b I o B de e
Since V is the Hermitian connection defined by A=1+1z|?, I; is given by
oh Z;

- Py "1_:—1
@4 L=h 0z;  1+|z]*°
(See p. 183 of [107.) On Si(y), we have Alu|?*=1, or equivalently

1

— 2—__ -

(2-5) J2] +[z% "

Substituting (2-4) and (2-5), we have

ds™|Sy(p)=ds*| S+
as required.

REMARK 2-6. Sometimes 47 is also called the Fubini-Study metric. It is to
be noted that CP'=S? has volume = with our choice of the metric 2.

REMARK 2-7. The Hermitian connection determined by the canonical
Hermitian metric is precisely the universal connection for the complex line bundles
in the sense of Narasimhan and Ramanan [147.

The reason why VR=0 holds in Proposition 2-3 is the relation Rl;;=
constant-g,;. This relation still holds for a larger class of complex line bundles.

PROPOSITION 2-8. Let (M, g) be a Kdhler manifold and E—~M be a holomor-
phic line bundle such that ¢@ represents the cohomology class ¢(E) for some ceR,
where @ is the fundamental 2-form ~—13 gi;dziANdz; of M. Then we can

% J

choose a Hermitian metric h so that the condition YR=0 is salisfied with the
Hermitian connection N defined by h.

Proposition 2-8 is a direct consequence of the following well-known Lemma.

LEMMA 2-9. Let ¢ be a (1, 1)-form on a Kéhler manifold M, which is coho-
mologous to zero. Then there exists a C* function f such that d=(/=1/27)00f.

For the proof of this Lemma, see [6] for example.

The following corollary of Proposition 2-3 will be used in §4.

COROLLARY 2-10. Let M be a complex submanifold of CP™. Lety, h, & and
¥ be as in Proposition 2-3. Denote by 7| M, h|M, g\ M and N|M the restrictions
of 7, h, & and Y respectively. Then N|M and g|M satisfy the condition VR=0.
Furthermore let § be the metric constructed from g\M, h|M and V| M as before.
Then the restriction Z|S:(y) coincides with the restriction of the standard metric
of the unit sphere S+ on S,(r)CS*"*L,
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PrOOF. In Example 2-2 we showed the relation
—Riiy=§

for V and g. Restricting on M, we have the same relation for V|M and g|M.
It follows that VR=0 is satisfied with V|M and g|M.
The latter half of the corollary is trivial.

REMARK 2-11. When both dim M and rank E are equal to 2, the condition
VR=0 is equivalent to the requirement that £ is a Yang-Mills field. That is

0v02=0.

In fact, by the dimensional restriction, both of these two conditions are equivalent
to the requirement that R==£ is a constant function on M.

§3. Construction of boundary correction term

It is to be noted that in Theorem 1-2 the metric & on Y is product near the
boundary 0Y =X, but that the metric § on E defined in §1 is not product near
the associated circle bundle S(E). In this section we will construct a boundary
correction term TL, such that (1-2) is rewritten as ‘

(3-1) y(X)zgyLk(pHSX TL,~SignY .

This formulation of the correction term is due to Gilkey [5].

Let F be a vector bundle of rank » over N. Let ¥, ¥, be two connections
of F. Let P be an invariant polynomial, i.e., a map from the space M({r, C) of
all the complex matrices to € such that P(AB)=P(BA) for any A, BeM(r, C).
Suppose that P is homogeneous of degree 2% and let P(, ---,) be its porlarized
form. Denote by £, f; the curvature and the connection form of V; =0, 1)
respectively. Let #=460,—0, and for each ¢ (0={=1) we define a connection 8, by

0L:(l_‘t)00+t01 .
Let £, be the curvature form of 4,.

We define
TP=2k| PO, 0., -, Quat.
Then it is well-known that
dTP=P(Q)—P(2,).

(See Chapter X1 of [10] for example.) We shall call this TP the boundary cor-
rection term connecting &, to 6,.
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Let N=X**1x[0, 17 and identify X x {0} with the boundary of Y. Extend &
on Y to a metric g, on NUY which is product near Xx{1}. Let g, be the
product metric on N, i.e. go=gXds? where g=7|X is the given metric on X
and ds? is the standard flat metric on [0, 11. Then two metrics g, and g, agree
near XX {1}. Take P=L,. Since g, is flat in one direction, L,(g,)=0. Hence
we have

(3-2) [, 2uten={ Lu@r—Lutgn=—{ aTL,

:_S TLk:S TL,.
aN X x{0}
It follows that

7)={ Lu@1+| Lig)—Signy

:SYLk(g)—I—SX TL,—SignY

as desired.

Now let X=S,(E) be the associated circle bundle of radius » and let Y =D,(E)
be the associated disc bundle of radius ». DJ(E)—(0) can be identified with
SAE)%(0, ] where (0) means the zero cross-section of E. Let g, be the product
metric on DAE)—(0);

gr:<§lsr<E))><d52

where ds? is the standard flat metric on (0, »] and g is the Riemannian metric
on E constructed as before.

Let B(r) be the connection form of the Riemannian connection determined
by g, Assuming the results of Proposition 1-17, it is easy to see that the com-
ponents of S(») are given by the following proposition.

PROPOSITION 3-3.

3-4) B =0,

3-5) Br=0,

(3-6) B N=(—1y 2 rRef,
3-7) B li=atait 5 RAD,

where 7=3, 4 and k=T7—7.

Let w,(p, r)=ta(p)+(1—1)p(r) with its curvature form 2.(p, r) (p=7r). Then
we have
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3-8 w:(p, r)5=0,
(3-9) oo, Ne=—1d0,
1
(3-10) wlp, P=(~1Y 5 (tp+1—DrReE,
(3-11) wlp, =461+ (to +A—0rIRAD

where 7=3 or 4 and k=7—].
A straightforward calculation will show the following

LEMMA 3-12. The components of 2.(p, v) are given by

(3-13) 2o, =tz
(3-14) Qulp, M=~/ 1+~ D ReEATD,
(3-15) Rp, ri=(—1)* % (to+1A—Dna**=0"2) Nef

~

—%(tp—{—(l—t)r)(tp?—l—(l—t)r2)R2e}‘/\dﬂ,
(3-16) 2p, r)i:n*[:)—%(tﬁ—i—(l—t)r?)Rn*Q
—%(tp2+<1—z)r2>n*(*5m)/\c?é
1 2722 %
—Z(l‘p"l—(l—i)i’) R*n*wy
where wy is the volume form of & on M, j=3 or 4 and k=7—].

Let TL.(p, r) be the boundary correction term connecting a(p) to f(r) (p=7).
Then entirely the same arguement as in (3-2) shows that

(3-17) Ssm TLyp, r):SDT(E) Ll(p)_SDp(E) Li(#)

where in the first integral SD - L,(p) the L-form is defined via the metric which

is product near the boundary S,(F) but in the second integral S ( )Ll(p) the
o B

metric g is not product near the boundary S,(FE). Note that, in the case when

p=r, TL(p, ) agrees with the boundary correction term in (3-1). Letting p—0

in (3-17), since L,(p) is smooth near D,(E)=M, we have

Surw) Ll(p)ZI;IRm{Ssm TLp, r)+SDp(E) Ll(p)}
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= lmeS(E) TLy(p, 7).

p~0

But by the compactness of S(F) the last term equals

SS(E) lim TLy(p, 7).

o0

Thus we have proved the following proposition.

ProrosITION 3-18.
SDT(E) Ll(p):Ss(E) lfl)r_l:‘l) TLsp, 7)

where in the left hand side Li(p) is the Li-form defined via the meiric which is
product near the boundary S.(E).

REMARK 3-19. Consider the case when X is an oriented 3-dimensional mani-
fold. As is well-known, X is parallelizable. Let ¢ be a framing of X, and 4,
be the flat connection determined by o. Let @ be another connection of TX.
In this case the boundary correction term T P(6,, §) connecting @, to 4 is closely
related to the invariant introduced by Chern and Simons. In fact take the in-

verse Pontrjagin polynomial as P, then (1/2)TP(8,, ) becomes the pull-back of
1/2)TP,(0) in [4] by o.

(3-20) —;—TP(&,, 0)20*(%—TP1(0)>.

That is, if we denote the Chern-Simons invariant of (TX, 6) as C.S.(X),
then we have

3-21) c.s.<X)zé—§XTP<oo, 6)  (mod Z).

§4. Main theorem

In this section we will calculate the p-invariant of a circle bundie S,(E) of
radius » which is associated with a complex line bundle over an oriented closed
Riemann surface E—M. To do this we may calculate either

SDT(E) Ll(p)+gs<E) TL(r, »)—Sign D(E)
or
S lim TLy(p, ¥)—Sign D(E) .
S(E) p~0

We will use the latter formula. Our main theorem is the following:
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THEOREM 4-1. Let E—M be a complex line bundle over an oriented, closed
Riemann surface. Let § be a Riemannian metric on M, h be a fibre metric of E
and N be an h-preserving connection of E. Suppose that N and g satisfy the con-
dition NR=0. Then the p-invariant of the Riemannian manifold (S{E), §) is
given by

r?

_l 2 T (T Y
1SHEN=75¢ 6+3C‘{volMX(M) (volM i,

where g is the metric constructed from &, h and ¥ as in §1, c¢,=c,{(E)LM], vol M
is the volume of M with respect to the metric g, y(M) is the LEuler number of M
and ¢ 1s defined by

1 if ¢.>0,
e=1 0 if ¢;=0,
—1 if <0,

ProOOF. Notation will be the same as in §3. Let co:ﬁrré(ﬁ{r)—a(p)), and

Q,=lim 2,(p, ). The first L-polynomial is given by
0-0

_ l 1 A1 o
Lim—ggm Z9 N

so that we have

lim TLy(p, r)= — - [[2101n 0t ebn 2+ B @A QLo FasA QD dt
0-0 j=3,

3 8x%
By (1-16), (1-21), (3-7) and (3-16) we have

(4-2) WIN Q= %Rr?c}\@/\{—-n*[:HL »é—rz(l~t)R7r*.Q+ —é(l~i)ren*(*5vg)/\2{9
+

(l—t)zrszrr*wM}

I N

RrdONm* @+ %R2r4(3—4t+t2)d0/\ *Q.
Similarly we obtain
4-3) B @A Qh=0,
Jj=3,
(4-4) = w?/\Q{g:%r‘(l—t)ngdﬁArc*Q,
F=3.4

(4-5) AN =—tdONT*2 .



540 Mutsumi KoMURO

Note that £ and £ represent 2we(M) and 2zc¢,(E) respectively and that
R=x={), where e(M) is the Euler class of M. Because £ is a Yang-Mills field,

#f) is closed. (See Remark 2-11.) Hence R represents 2z#c,(E). Thus, by
(4-2)~(4-5), we have

4-6) Xsw) %)13)1 TLip, 1)

= {3 eB) 2l M)V e )= 2 (eres BY e BYPHIM

Since H*¥M ; R)=R, we have

C1

A BY=3oTa7

Lo ] C+17.

__ G
T volM
It follows that

! * — Cl
4-7 el E) Vol I

Substituting (4-7) to (4-6), we have

1 w7t

. . 2 Trt e
Jou i T, = et g0~ ) o)

[t remains only to prove Sign D(E)=e¢. Sign D(F) is, by definition, the signature
of the quadratic form

HXDE)X H*D(E)) —> Z
U] W
@*x, *y) —> {x\Uy}[p]
where peH,(D(E), S(E)) is the fundamental class and ﬁZ(D(E)) is the image of
the restriction map

7 HY{D(E), S(E)) —> H¥D(E)).
On the other hand, by the Thom isomorphism, we have
HYM)=H¥D(E), S(E))
w W

I — fw

where o is the Thom class. Hence we see that Sign D(E) equals the signature
of the quadratic form

HM)XH M) —Z
W w
(u, v) — ww{v\wl[p].
But we have

uv{w\ol[pl=uv{c(E)Jo} [ gl=uvic,(E), (M =uvc,
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since
c(EYJo=o\Uw.

This proves Sign D(E)=¢ and completes the proof of Theorem 4-1.
We shall give several applications of our theorem.

COROLLARY 4-8. Let g, be a left-invariant metric on S*=Sp(l) which is of

the form
},2

1

on the tangent space T.S* at the unit element, relative to the standard basis {7, j, &}
of the Lie algebra 8p(1). Then the yp-invariant of the Riemannian manifold
(S?, g» is equal to (2/3)(1—r?)

REMARK 4-9. This is precisely the result of Hitchin [8].

PrROOF. We use the same notation as in Proposition 2-3.

First note that 0/00 corresponds to the orbit of a maximal torus S'CS®.
Hence it can be identifled with the basis 7.

There is a natural (Sp(1)-equivariant) diffeomorphism

Si(7) ——— SN
U] )]
(wo: wy), 1) —> ((wo:wi), vu).
Let z be a local coordinate of CP'=S% By Lemma 1-3, the horizontal Ilift
5/\8;{31(7) is mapped to é?a? |S.(7) under the above diffeomorphism.
By definition, g|S.(y) is of the form

1)

relative to the basis {0/00, 5/\8:;, ’5/\85}. On the other hand, by Proposition 2-3,
Z18:(7) is of the form

1

relative to {7, j, k}.
Now Z|S,(y) is of the form
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relative to {0/00, é‘/?i;, 5/79%:}.
It follows that it is of the form

7,2

1

relative to {7, j, £}. This proves that (S.{y), £ is isometric to (S% g.).
Therefore we obtain the value of the y-invariant by substituting y(M)=2,
¢;=—1 and vol M=r to our theorem. (See Remark 2-6.)

COROLLARY 4-10 (3-dimensional lens spaces). The y-invariant of the lens
space L(k ;1) with the standard metric is given by

1
7(L(k; 1)) =——(k—1)(k—2),

where L(k ;1) is the quotient space of S*CC? by the equivalence relation
(20, 21)~ (225, A2y)

for any A€Z,CS* and (z,, z,)& 5%

PrOOF. Consider the k-th tensor product 7* of the Hopf bundle 7—S%. r*
has the natural tensor product metric %, and the tensor product connection V*
derived from h and V in Proposition 2-3. Let Z, be the metric constructed
from h,, V® and the Fubini-Study metric on S%.  V® clearly satisfies the con-
dition VR=0.

Let s be a local cross-section of the Hopf bundle y—~CP. Let s*<I(y*) be
the k-th tensor product of s. Define ¢:7—7* by

go(us)=kiuksk

for any ueC. Then ¢ is well-defined, and maps S;(7) to S;/(7%). Moreover, by

a similar arguement (using Lemma 1-3) as in Corollary 4-8, we can show that ©
is a local isometry.

Let f be the canonical identification of S;(y) with S°% Then f induces a
diffeomorphism

FiSusr® —> L(k; 1)

such that the following diagram is commutative ;
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f

S ——> 5

lso lp
S —L—> Lt 1),

where p is the natural projection. In fact, ¢ is considered to be the quotient
map of the fibrewise multiplication of Z,CS™

In the above diagram, p and ¢ are local isometries, and f is an isometry by
Proposition 2-3. It follows that 7 is an isometry.

Therefore we obtain the value of the 7-invariant by substituting y(M)=2,
¢;=—1, and vol M==r to Theorem 4-1.

In [3] Atiyah-Patodi-Singer proved a formula of the x-invariants for (gener-
alized) lens spaces. Their result asserts that the z-invariant of L(Z;1) is given

k-1
by ——~—; LZ‘, cot? (—*é n). Comparing these two results, we obtain a formula about
=1

Dedekind sums.

k-1 l 1
COROLLARY 4-11. 3 cot2<—-—n):——(k—1)(k——2).
=1 k 3

REMARK 4-12. For a direct proof of this formula, the reader should consult
Zagier [16].

COROLLARY 4-13 (complete intersections in S***1).  Lat fi(zo, 21, -+, Z0)E
Clz,, 21, =, 221 be a homogeneous polynomial of degree a; and set

Vi={zg:z1: 12,)ECP™; filz0, 21, -, 2,)=0} (1=i=n—-1).
Suppose that V; is non-singular with
VesVinVen - NV # @ (a=(ay, -, Gn-1)
and that V; and V; intersect transversally (1=i, j=n—1). Let X, be the set
{(zo, 24, 5 2p)ESTHY; filze, 21, -, 22)=0 for 1=i=n—1}.

Then the n-invariant of X, with the standard metric is given by
1 n-1
1X)=5 2% a—@n+D}aes - autl.
In particular the p-invariant of a hypersurface

Xuv={(zy, 21, 20E€S%; f(20, 21, 2:)=0, [ is homogeneous of degree N}
is given by

J(X)=(N—DEN-3).



544 Mutsumi KoMuro

PrOOF. By Corollary 2-10, X, is isometric to (Si(r|V,), &), where g is the
metric constructed from g|V,, #|V, and V|V, as before. Furthermore g|V,
and V|V, satisfy the condition VR=0. Therefore if we know the data 1V o),
7lVae), V1> and vol V,, then we can get the value 7(X,) by Theorem 4-1.

From the assumption the normal bundle »(V,) of V, in CP™ is isometric to
the direct sum of the normal bundle »(V;) of V,;, (1=i<n—1).

vV )=V )V D - DoV ,oa).
Hence the total Chern class of V, is given by
c(Va)=c(CP™)/cw(V )V - Uc(Va-y)).
On the other hand we have
(V=) V,,

where (7*)?t is the a-th tensor product of the dual bundle 7* of the Hopf bundle.
So if we denote the standard generator of the cohomology ring H*(CP*: Z) by
x (so that ¢,(y)=—x) we have

e(w(Va))=a1a; - a@n_1x™ 'V,
cVa)=1+x)""(1+a,x) - 14 anx) |V,
where e(v(V,)) denote the Euler class of »(V,). It follows that
(4-14) V=(n+l—a—as— - —a,-1)0105  Qpy
(4-15) V), [VaD=—a1a5 " an-,.
Finally since degV.=aa, - G,-,, we have
{4-16) vol(V )=deg V,-vol(S®)=a,a; - @17 .

(See p. 89 of Mumford [13].)
Substituting (4-14), (4-15) and (4-16) to the formula of Theorem 4-1, we
obtain

Q183+ Qpy

p(Xa)=1+ D2 2 oS g @n 1)

as required.

§5. Chern-Simons invariant

Let X be an oriented 3-dimensional Riemannian manifold. First we remark
that the Chern-Simons invariant can be defined for a connection # on the stable
tangent bundle T Xk, where & denotes the trivial R*-bundle on X. Let ¢, be
©;:=t2+*—1)ONE0, where £ is the curvature form of . For an invariant
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polynomial P of degree [/, we define TP(9) by
TP(ﬁ)zlglP(ﬁ, Pidt .

Let F(X)—X be the principal SO(k43)-bundle associated with TX@k. Then,
since X is parallelizable, F(X) has a cross-section o.

Take the first Pontrjagin polynomial P, as P. Then (1/2)TP,(#) defines a
class

{% TP(0)} € H'(F(X); R).

Furthermore it is known that

{%TPI(B)} | F(X)ne H¥(F(X)n; Z),

where F(M),=SO(k-3) is a fibre over meX. (See p. 63 of [4].)
We define C.S.(M, 8) by

C.S.(X, 0):% TP(6) modZ.

This is well-defined. In fact, let ¢’ be another section. Then, since the first
and second betti numbers of SO(%-+3) vanish, we have (by the Kiinneth formula)

g—o’=1xv+torsion in Hy(F(X);Z),

where ve H(SO(k+3); Z).

When & is the Riemannian connection, we will write C.S.(X, ) simply as
C.S.(X).

Let =: E—~M be a complex line bundle over an oriented Riemann surface.
Because the tangent bundle TM is stably trivial, the associated circle bundle S(E)
can be stably-framed.

More precisely we take a fibre metric # of E and an h-preserving connection
V as before. Then V defines an isomorphism,

1TS(E)Y=z*TMDE)|S(E).

We fix, once for all, a framing of TM@P1. Then TS(E)P2 is also framed by
the above isomorphism. Let ¥V, be the flat connection on 2PTS(E) defined by
this framing. Using the relation (3-21) and Theorem 4-1, we can get a result
about the Chern-Simons invariant.

THEOREM 5-1. The Chern-Simons invariant of the Riemannian wmanifold
(SAE), &) is given by

2

C.S.(S/E)) =c1{7g—lrﬁ 2M)—(25 121/1 )“a} (mod Z)
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where g is the metric of S/E) constructed from a Riemannian meiric § on M, a
Jibre metric h of E and an h-preserving connection ¥ as in § 1, vol M is the volume
of M with respect to 8, (M) is the Euler number of M and c¢,;=<{c\(E), LMD.

REMARK 5-2. It is known that for any oriented 3-dimensional manifold X
C.s. (X)——;y(X)=—a(X) (mod Z)

where ¢(X) is the number of 2-primary summands in H%(X;Z). (See p. 426 of
Atiyah-Patodi-Singer [3].) This formula, together with Theorem 4-1, implies
Theorem 5-1 clearly. But here we will give another proof.

ProOOF. In the proof of Theorem 4-1 we showed that

—;—XS(E)EHJ TLip, =5 cl+c1{ MX( )~ (v01M>2 }

By virtue of (3-21), we need only to show the following: Let TL.(¥,, p) be the
boundary correction term connecting ¥V, to a(p), then

(5-3) SM) lim TL,(,, p>~—

By Proposition 1-17 the components of lmol a(p) with respect to the basis
o
{9/0r, (1/7)(0/08), es, 4, es} are given by

(5-4) aj=—d8, ai=n*ai (3<i, j<5b)
and other components are all zero,

where {es, ¢, ¢;; is the horizontal lift of the framing {fs, fi fst of TMPL with
respect to

V&P (trivial connection)
and &} is the component of
(Riemannian connection determined by g)@(trivial connection)
with respect to {fs, fi fs}. We may assume that

(5-5) the components of V, with respect to fs, f., fs are all zero.

Let ¢,=ta+(1—t)V, with its curvature £2,. Then the components of £, are
given by

5-6) Qi=r*0i (3=i, j<5), p=ta*R
and other components are zero.

(5-3) clearly follows from (5-4)~(5-6).
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REMARK 5-7. The above arguement can be easily extended to the case when
M is a (general dimensional) framed manifold, and gives the following result
about the Adams ec-invariant:
The Adams ec-invariant of S(E) (relative to the framing discussed above) is
given by
1

03 if n=0,
ec(S(E)={0 if n=0 (mod4), n+0,
B, .

—1}k-1 2k=1 / —Ab—
(—1) o) (e EYR-Y [M Ty if n=4k—-2, k>0,

where n=dim M, and B, is the k-th Bernoulli number. This is precisely the
result of Loffler-Smith [117.

In the same notation as in §4 we have the following corollaries.

COROLLARY 5-8. Let g, be the metric on SO3) induced from the left in-
variant metric g, (r=2"1) on S* of Corollary 3-8. Then the Chern-Simon invariant
of the Riemannian manifold (SO(3), gi) is given by

2% —

C.S. (SO(3))=—~T4l (mod Z) .

REMARK 5-9. Up to a sign convention, this agrees with the result of Chern-
Simons [4].

COROLLARY 5-10. The Chern-Simons tnvariant of a complete intersection X,
vanishes.

REMARK 5-11. It is known that the Chern-Simons invariant of 3-dimensional
manifold M vanishes whenever M admits a conformal immersion to R*. (Theorem
6-4 of [4]) The author does not know whether there is actually a conformal
immersjon X,—R:.
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