On the equation of nonstationary stratified fluid motion:
Uniqueness and existence of the solutions

By Hisashi OxaMOTO®

§1. Introduction.

Let 2 be a bounded domain in R? or R® with a smooth boundary. We con-
sider an inhomogeneous viscous incompressible fluid occupying £2. Let p, u, p
be the mass density, the velocity vector and the pressure of the fluid, respectively.
Then these quantities obey the following system of equations:

(1.1) %f-+u-vp=o 0<t, xe9),
(1.2) p{-aa%—l—(u-V)u}:Au—Vp 0<t, x=2),
(1.3) divu=0 (0<t, xe9Q).

Here we have assumed for simplicity that the viscosity is unity and external
force is absent. In what follows we solve (1.1), (1.2) and (1.3) under the initial-
boundary conditions below :

1.4 1| a0=0
(1.5) U] gme=a(x), olico=polx).

This system is a generalization of the Navier-Stokes system. In fact, if the
initial value po(x) is a positive constant, our system is reduced to the Navier-
Stokes system because of the uniqueness of the solution (which will be proved
in the context of the present paper).

The mathematical study for the initial-value problem (1.1), ---, (1.5) was
initiated by Kazhikhov [117] and there he proved the existence of a weak solution
of Hopf-type and also a classical solution. However, he did not show the
uniqueness of the solution. Later Ladyzhenskaya and Solonnikov [13] proved the
unique existence in the framework of the L?-theory. They obtained the global
solution for n=2 (n is the dimension of the domain {). However, they required
that p>n. Furthermore they did not mention the global solution in the case of
n=3. On the other hand, Lions [14] proved the existence of a weak solution
different from Kazhikhov's without uniqueness even in the two dimensional

* This work was partially supported by the Fjukai.
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problem. Marsden [15] dealt with the case of an inviscid inhomogeneous fluid,
i.e., he solved the system in which the term du in (1.2) is dropped.

In this paper we employ the L2*theory and prove the unique existence (local
in time) of the solution. The main tool is the theory of linear evolution equa-
tions. This local existence theorem is used to prove the following global exist-
ence theorem:

[} Inthe two dimensional problem the solution always exists globally in time.

1) In the three dimensional problem the global solution is obtained, if the
initial values are sufficiently small.

The important fact is that in the two dimensional problem we do not need to
assume smallness of the initial values.

This paper consists of seven sections. In section 2 we give various function
spaces and we formulate (1.1), ---, (1.5) in the framework of the theory of evolution
equations. Main theorems are also stated in this section. Sections 3, 4 and 5
deal with the proof of the local existence theorem. The global existence of the
solution of the two-dimensional problem is proved in section 6. The three
dimensional case is considered in section 7. Here we use a technique inspired by
Matsumura and Nishida [16].

ACKNOWLEDGMENT. The author would like to express his deep gratitude
to Professor H. Fujita for his important advice. He is also grateful to Professor
N. Itaya for his useful comment. Special thanks are due to Professor S. It5,
who suggested the proof of Lemma 6.2.

§2. Funection spaces and abstract formulation of the problem.

We solve (1.1), -, (1.5) by Fujita-Kato’s method (see Fujita and Kato [4]).
To this end we use the following function spaces:
C3 D)= {v=vy, -, v2)ECHD*; dive=0 in 2}
(n is 2 or 3 according as RQCR? or QCR?),
W™ D)= {fe LYD); [0°flrtmy<oo (lal=m)}

(m=0, 1, 2, -, 1=g<o0, D=8 or 10, T[ X&),

V ; the closure of C3.(2) in H{M={feWr2)"*; fla=0}),

H; the closure of Cy,(2) in L),

L(H); the Hilbert space composed of all bounded linear operators in H.
We also use the following symbols :

P the orthogonal projection from L* )" onto H,

A ; the Stokes operator, i.e.,

A=—P4, D(A) (the domain of A)=H)"N\V .

It is well-known that A is a positive definite self-adjoint operator in H and is
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characterized by the relation
(Aw, v)=Nw, Vo) (weD(A), veV).

Here and in what follows we denote the inner-product in H (i.e., the L? inner-
product) by (,). The L%norm is denoted by || | and the L=-norm by | [
The following assumptions on the initial data are employed throughout this
paper.
(A.1) The initial value p, belongs to Wh=() and satisfies

min py(x)>0.
zs0
Hereafter we put m=min p,(x) and /=maxp,(x).
zeD 1]

(A.2) The initial value a belongs to D(A7), where y is a number satisfying
n/4<n<1 (RCR* n=2or 3).
Now we formulate (1.1), ---, (1.5) as follows: Find oeW'=(]0, T[ X&) and
weC([0, TJ]; [HNC*Q0, T1; H)NCO, T1; D(A))  such that

2.1) %‘;)—~+u'Vp=0 (a.e. (4, x)=70, TLX D),
2.2) Bp(t)%t‘t——}—Au(t)—kF,,u(t):O 0<t<T),
(2.3) wO=a, p(0, x)=py(x).

Here B,(f) is a bounded linear operator in H defined by
2.4) B,y w=Pptyw=Pp(t, -)w (weH)

and F, is a nonlinear operator defined by
(2.5) Fow=P{o®)(w -Vw}.

Later we see that F,w is well-defined in H if we D(A%®) (RC R or if weD(AY)
(RQCR?, 1/2<%). The main results in this paper are stated as follows.

THEOREM 2.1. (local existence theorem). We assume (A1) and (A.2). The
dimension of £ may be two or three.

iy For any 0<mo<l,<oo, 0<k; and 0<k, there exists a positive constant
To=To(8Q, ms, Ly, k1, ks) such that a solution {p, u} exists in [0, To] provided that
mo<<im, 1<y, |A%al| <k, and |V pollw<ks. The solution is unique in W4=(]0, T',[
XDNCO, Tol; D(A).

il Furthermore u and p satisfy the following inequalities:

(2.6) [A*u®=cill A%al  (a=5/8, ; 0=t=T,),
@.7) IVo@ll=ScolVooll-exp e A7all)  (0=t=T),
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ey L sclvplelaralespielaral)  0=t<Ty.

Here ¢, is a positive constant depending only on 2, m, and I,

THEOREM 2.2. If 2 is a two dimensional domain, then the solution always
exists in [0, oo[ under the assumptions (A.1) and (A.2).

THEOREM 2.3. If 2 is a three dimensional domain, then there exists a positive

constant e;=e,(£2, my, lo) satisfying the following property: {p, u} exists in [0, oo
so long as

me=m, [=Zl,, |A%a| e, and ||[Vpola=Ze,.

REMARK 2.1. Note that in THEOREM 2.1 we do not require smallness of
[A7all or Vool
The proof of THEOREM 2.1 is carried out by the successive approximation
method, i.e., we put
wt)=e*a and p,@, x)=px).

And if u,_, and p;-, are given, we define p, and u, by the following linear
equations, respectively.

(2.9) igt’*-ﬂk-l.vpk:o 0<t, x=Q),
(2.10) 0500, £)=po(x),

(2.11) B,, d;t’* +Au+Fpy_up =0 (0<1),
(2.12) uO)=a.

In the following sections we justify this procedure by making use of the theory
of evolution equations. Here we summarize a general theory.

Let X be a Banach space with norm || |. The operator norm of a bounded
linear operator in X is also denoted by | ||. Assume that {Au())} <27 is 2 family
of densely defined closed linear operators in X satisfying the following properties :

(H-1) For any t=[0, T] the half plane {z=C ; Rez=0} is contained in the
resolvent set of A(#) and we have

(2.13) lz—AM)=c/0+1z])  (Rez=0)

with a constant ¢ independent of ¢ and z.

(H-2) The domain of A(¢) is independent of . Furthermore we have for
any r, s, t<[0, T]

(2.14) HANO— A} AN =L |t—s]|’

with a constant L>0, #<=70, 1] which are independent of », s and 1.
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(H-3) There exists a positive constant ¢’ such that for any a=[0, 1] the
following inequality holds true.
|A®* A() | =¢’ 0=t, s=T).
Under these assumptions we have
THEOREM 2.4. (Tanabe and Kato). There exists a unique evolulion operator
U(t, s) O=s=t<T) for the problem du/dit+A@Bu=0 0<t<T). Furthermore

the following inegualities hold true.
i) For any a and B such that 0=a<14+6, 0=B<min{l, a} we have

(2.15) TA® U, $)A(S) Pll=cit—s) @@ 4-g(L) (t—s)~ (= H*0
O<s<t<T).
iy For any a, B and A such that 0=8=a<1 and 0<2<1—a we have
(2.16) JADO{U@+h, s)=Ut, )} A(s) 2]
Zeph {t—s)" @B L G(LYRA(t—s)~ (P40
O<s<t=t+h=T).

Here the constants ¢, and ¢, depend only on ¢, ¢/, a, B, A and T (not on 6 or L).
The constant ¢(L) is of the form

¢(L)=cL%*exp(EL)
(¢ is a constant independent of L).
REMARK 2.2. From (2.15) we can estimate more roughly :
(2.17) 1A@ TG, HAG)Pl=g(L)t—s)~ "

For the proof of THEOREM 2.4, see Tanabe [18] page 127. The inequalities
(2.15) and (2.16) do not seem to be well-known facts. However, one can show
these inequalities by the same method as the proof of (2.17), which is a well-
known inequality.

REMARK 2.3. To obtain U(t, s), the assumption (H-3) is not necessary. But
(H-3) is used to derive (2.15) and (2.16).
The next lemma is also useful.

LEMMA 2.1. Let T, a and 8 be positive constanis and v be a constant such
that 0<r<1. Then for any function f; [0, T]—[0, ool satisfving

f(t)§a+,8§:(t~s)‘rf(s)ds 0=t<T),

we have
fOZcaexp {797t (0=t<T).

Here ¢ is a positive constant depending only on r.
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For the proof, see Okamoto [15].

§3. Preliminary linear problems.

Hereafter we consider the case where £ is a three dimensional domain, since
the two dimensional case goes similarly (even more easily). In this section, 7T is

an arbitrary but fixed number. The following proposition will be used to solve
(2.9) and (2.10).

PROPOSITION 3.1. We assume (A.1) and (A.2). Let u be a continuous func-
tion on [0, TIX 2 such that

T
3.1) SO Vi) wdt<oo.
Then there exists a unique peW*=(10, TLX ) such that 9p/0t+u-Vp=0 for a.e.

(¢, x)€10, TLX 2 and p0, x)=po(x). This p satisfies the following inequalities
for any t<70, T ;

3.2) m=p(t, x)=<! (xe),
(3.3 IVo®l-=clVpuloexp (| I7u(9)lds),
G4 [22-0]_=civpdalucotoexs ([ 1I9ueot.ds),

with a constant ¢ depending only on £.

We refer the proof to Ladyzhenskaya and Solonnikov [13]. It is, however,
important to note that under the assumption (3.1) there exists the characteristic
curve &, (x), i.e., & ;(x) is a solution of

(35) Gudmy=xt|ulr, &)y (055, 1T, 2 Q).

The condition (3.1) ensures that (3.5) is uniquely solvable (see, Coddington and
Levinson [3]). Note also that p(f, x)= 0o(&o,¢(x)), from which (3.2) is obvious.

To solve (2.11) and (2.12), consider peW=(J0, TLX L) and veC({0, T];
D(A™). We assume that

3.6) m=Zp(t, x)=I 01T ; x€8),

_ dp )
3.7 MO:Sup{'—at—(t, x)[ 0<t<T, xEQ}<oo
(3.8) A v®OI=N  O<i=T; a=5/8, ),
(3.9) [AvH =Nt~ *-» 0<t=T),

(3.10) [ A8 (&) —v(H}H | ENGE—s)fs-? O<s<t<T).
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Here N and #<11/4, 3/8[ are positive constants.

PROPOSITION 3.2. We take v and 6 such that 1/4<y<6<3/8 and fix them.
Under the conditions (3.6), ---, (3.10) there exists a unique w=C({0, TJ; D{(A"N
€0, T7; DAYNCKI0, T; H) satisfying

(3.11) Bp(z‘)%—l—Au(t)—l—va(t):O 0<t<T),
3.12) u®)=a.

Furthermore there exist positive constants c;=cy(£2, my, 1) and co=co(2, mo, Lo, T)

such that ¢, is increasing in T and we have the inequalities below if mo=m and
=1,

(3.13) [A*u@BlZeil A%al+tp(Mo)| A%al
+oMON*-=  (0=t=T; a=5/8, 1),
(3.14) 1A fu®—u(R | =@E—5) {c.s? | A%2a]]
+H(M A al+(MIN?  (0<s<i<T),
(3.15) lAul et Ara]|+¢(Mo)t7] A7al]
+HMIN?  (0<t<T),
(3.16) IVu@)wZ et~ D || Ana|[--$(M)tT 7| A7a )]

+(MON2T O<t<Ty,
where we have put ¢(My)=c,(14 M) exp (c.M,).
The proof of this proposition is divided into several parts.

First-step. 1f we put A@)=B,(¢)"*4, then (3.11) is rewritten as

(3.17) id’t‘—+A<z)u=—Bp<z)-1va(t) :

In view of this equality we show that the family of operators {A(f)}es:cr generates
an evolution operator U(, s) (0=<s=<¢=<T). To start with, it is easy to see that
B, is a positive definite self-adjoint operator in H, whence B o()~* is a bounded
linear operator in H. Next we show that the family of operators {A()}osecr
satisfies the hypotheses in THEOREM 2.4.

First it is obvious that D(A®)=D(A). The inequality (2.4) follows from
{AD— A} AW =B o(s)"{B,(s)—B,t)} B,(t)B,(r),
1Bo(s)— B =lp(s)—p)|w=M,|t—s],
1Bo()=ly and [B,(s) [ <m3".
We can check (2.13) in the following way. Observe that
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(z— AW f=w & B,()f=zB,(H)w—Aw
which is equivalent to
(3.18) () f, v)=z(p(t), v)—Nw, Tv) weV).
If Rez=0, then we have

Re {(Vo, Vu)—z(p(th, v)} Z[Vo|*  weV).

Hence by the Lax-Milgram theorem we can assert that if Rez<0 then we can
find a unique weV satisfying (3.18). This implies that (z—A@)) ‘< L(H). Sub-
stituting w into v in (3.18), we obtain [Vw|*—z(p(Hw, w)y=—(p@®f, w). From
this equalily we have the inequality (2.13).

Now THEOREM 2.4 and REMARK 2.3 ensures the existence of an evolution
operator U(t, s) (0=s=¢=<T). Therefore we can write (3.11) and (3.12) as

(3.19) w)=UG, 0)a+S:U(t, 9)PD(s)ds,
where we have put @(s)=—2B,(s)"*F,v(s). The hypotheses of PROPOSITION 3.2

and LEMMA 3.4 below assures that u defined by (3.19) belongs to C([0, T]; H).

Second-step. Here we study several properties of fractional powers of A@®)
and connections between A() and U{Z, s).

LEMMA 3.1

1) For any t<[0, T] and weD(A) we have
(3.20) [AOwl=m3'llAwll, [Awl=LIA®w].

i) For any a<[0, 1] we have D(A%)=D(A®)*) O=t=T) and the inequality
(3.21) [AD*A-*|=¢, |A*A®) “|=Zc (0=t=T)
with a constant ¢ depending only on £, me, L.

Proor. The inequality (3.20) is obvious from (3.6). In order to show (3.21)
we consider a Hilbert space H; which is equal to H as a vector space but is
equipped with an inner-product (v, w).=(p(t)v, w) (v, weE H;). Denoting the norm
in H, by | |l;, we have

S wlslwisme 2 lwl, (weH).
As is easily seen, A() is a positive definite self adjoint operator in H,. From

these facts and the Heinz-Kato theorem we obtain (3.21)(see, e.g., Kato [8]).
Q.E.D.
LEMMA 3.2. Let a and B be fixed numbers satisfying 0LB<a<2 and 0=f

=1. Then there exist positive constants cy;=cy(82, mo, by, @) and cy=c (2, my, I,
a, T) such that for any 0<s<t<T we have
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(3.22) IADUE, $)A(S) Pl Scs(t—s)~ P
FHMt—s) (e,
Here we have put ¢(Moy=c(1-M,)*exp (¢.M,).

REMARK 3.1, The above ¢(M,) is different from that in the statement of
PROPOSITION 3.2. However, we denote quantities of the form c(1+ M,)* exp (c M)
(=1, 2, 3, c=c(£, mo, L, T)) by (M) or ¢'(M,) without distinction. On the
other hand, ¢, ¢/, ¢; etc. mean constants depending only on £, m,, [, and T (not
on M,), even when we do not explain them.

REMARK 3.2. From (3.22) we can estimate more roughly ;
(3.23) IA@®)UE, $)A(s) P S G(Mo)(E—s)= =B,

LEMMA 3.3. Let «a, B and A be fixed numbers satisfying 0=p=a<l and
0<A<l—a. Then there exist positive constants cs=cs(£2, ms, by, @, ) and ce=
ce(82, mo, by, a, 4, T) such that we have

(3.24) §A{U+h, s)—UE, )} Als)78|
Zcshf—s)y @ P A4 d(Mpht  O<s<i=t+h=T)
so long as me=m, (Zl,. Here ¢(Mo)=-c(1-+M,)exp(csM).

These two lemmas are direct consequences of THEOREM 2.4 and LEMMA 3.1 (the
case of §=1 in THEOREM 2.4).

LemMA 3.4. There exists a positive constant c,=c.(8) such that we have for
any w, ve D{A%®)

(3.25) [(w -Vl =c A w] | A% ]

We refer the proof to Inoue and Wakimoto [7].

The inequality (3.25) shows that the mapping F,; D(A%%)—H is locally
Lipschitz continuous. This fact, together with (3.8) and (3.10), implies that @(z)
is locally Hélder continuous in ¢. Therefore it is concluded that v=C(J0, T7;
D(AYNCY(J0, T1; H) and that u satisfies (3.11) and (3.12) (see Fujita and Kato[4]).

Third-step. Here we prove (3.13) and (3.14). For a=5/8, » we have
|l S14UG, Oal+ | 1406, 90(s)lds.

By LEmMMAS 3.1 and 3.2 the first term of the right hand side is majorized by
c(l1+tdp(M))jA%a|. 1t is easy to see that [|@(s)<cN2% Now (3.13) immediately
follows from (3.23) and this inequality.

Next we show (3.14). We start with the identity

A u(t+h)—u@)}y =AU G@+h, O-=U(t, Ot a
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t+h
+Sc AU (-, $YD(s)ds

+S:A5’8{U(t+h, O—UG, ) Ols)ds

=0h+1+1s.
By LEMMA 3.3 we have

IN=Z{ch? 2+ (MR} A al.
By (3.23) we have

IRE S N R VUL O

§¢'(M0)N2h3/8§¢”(M0)N2/’L0 .
I; is estimated by (3.24) as

lllsﬂ§¢(Mo)h0§:(t—s)“"‘5/3cN2ds§¢’(MO)N2h".

From these inequalities we obtain (3.14).

Fourth-step. Here we prove (3.15) and (3.16). To this end we consider the
following equality :

(3.26) Aut)=ANUE, 0)a

+A<z>§:U<t, HO(s)— D)} ds

+A(t)SzU(t, HOW)ds

=i+t
By LEMMA 3.2 we have
3.27) IS et +g(Mo} | Aval),
(3.28) ILISgM0| (t—5) 1 ()~ 0l ds.

On the other hand, it follows from LEMMA 3.4 and the hypotheses of PROPOSI-
TION 3.2 that

(3.29) [()—DWI=IB (s) {Fpu(s)—Fvt)} |
+[{Bo(s)1— B, &)} Fou(®)
=m3'{p(s)—p®)} w(s)-Vo(s)|
+mt | o) {w(s) - Vv(s)— @) -V} I
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+met Mo — )| Foo()l)
S (M)t—s)N>+cN*(t—s)?s=9.
. By (3.28) and (3.29) we obtain
(3.30) I/2ll=@(Mo)N*.

With the aid of integration by parts we can rewrite J; as

(3.31) jng(t)S:{%U(t, s)}A<s>~1<D<z)ds
— @) — ABUE, 0)A0) D)
—A(t)S:U(t, s)A“lP%g(s)@(t)ds.

Hence we easily obtain ||/:|=<¢(Mp)N% From this inequality, (3.27) and (3.30),
we have (3.15).
Before entering on the proof of (3.16), we note the equality

(3.32) %l;— =—AMWU, O)a—A(t)S;U(t, SH{P(s)—OW)} ds

AU, O)A(O)‘l@(t)—l—A(t)S:U(t, s)A‘lPaa—i(s)@(t)ds )

which follows from (3.11), (3.26) and (3.31). We recall that 1/4<y<6#<3/8.
Consequently we have the continuous imbeddings :

DA w2y C LY2)* (1/g=1/2—2y/3).

Here the first imbedding is well-known (see Fujita and Morimoto [5]). The
second one is a comsequence of Sobolev’s imbedding theorem. Since g satisfies
the inequality 3<g<4, we have

(3.33) Nulo=clu®lw> @t =c [ Au®) e

On the other hand, we obtain

(3.30) laule= B2 1 1F vl
dt e

Slg

du

S el
du
dt

The second term of the last side is majorized by ¢N%7 in virtue of (3.8) and
(3.9). Therefore we obtain (3.16) if we have shown that

écl

A7

(t)[} el | AT Av)] .
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@35 |4 ‘fft‘ 0| et =P | ATal + G (Mot T] ATall + GMIN*T

O<t<T).

To show this inequality we note an inequality obvious from (3.32):

HAT L1147 A0U(, 0)al

+[aranve, snoe-owias
HIATADUE, 0AO) u@a l

+ 14 awue, 94y

P P (o) Hu(p Blds

=K+ K+K+K,.
It is clear from LEMMAS 3.1 and 3.2 that
K = {et= =0+ oMt 7} | A%al 0<t<T).
K, is estimated by means of (3.23) and (3.29) as
Ky=¢(M)N*tT (0<t<T).
From (3.23) and the inequality ||@®)|=c|A*®*()|2=cN? we obtain
K=g(MN3T  (0<t<T).

The same inequality for K, is derived in a similar way. From the above inequal-
ities we obtain (3.35). Thus the proof of PROPOSITION 3.2 is completed.
Q.E.D.

§4. Construction of approximate solutions and their boundedness.

We still assume that £ is a three dimensional domain. Let 7 be a fixed
number such that 0<7T <1. Then one can easily verify that u,(f)=e *4 a satisfies
the hypotheses of PROPOSITION 3.1 and that p,(f, x)=pe(x) and u,() satisfy those
of ProposITION 3.2. Consequently we obtain {p,, u,} in [0, T] by means of the
formulas (2.9), .-+, (2.12). Successive use of PROPOSITIONS 3.1 and 3.2 ensures
that {pn, u,} defined by the schemes (2.9), ---, (2.12) exists in [0, T](n=1, 2, ---).

To show boundedness of the approximate solutions we put

Ny =max( sup [ 4°%u,(s)], sup | A%un(s)],
0<Ls<t 0<s<t

sup 7| Aua(s)l, sup (s—r) 0r | A% {uu(s)—ualr)} )
08t 0r<s<e E

and
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)

00n
a5

My(h=max( sup [7pu(s)l= sup
08t 0<s<t

Then we have the following

PROPOSITION 4.1. For sufficiently small T,=730, T, the sequences {N(T\)},
and {M(T))},. are bounded.

ProoF. In the first place we have by PROPOSITION 3.2
4.1) A U (S S ey {15 (M)} [ A%al
F (ML NN ()25t O<s<t) -

for a=5/8, »,

(4.2) s A nea(S) | S e {14 s (ML)} A al|
FO(MLONBs7 (0<s<D),

(4.3) (s=) 7 I A% s () — nr (N} | Z 1| A0

+HMO) 04 a |+ g(MLO)NLD7?  0<r<s<i).
Furthermore, by (3.16) and PropPOSITION 3.1, we obtain
(4.4) IV onse1()lw=calVpolloexp (e1s7 7 {14 s (M)} | A%l
F MNP (0<s<t),

w20 sclVodate, 14 sp0L0) 147a

+S(ML@)NL()sT™7)
Xexp (e sT | ATa [ {1+sp(Mn()} + (M) NL{)2stT)
0<s<h.

Then we define K as the maximum of N(T), My(T), 3ci|A%%a|, 3¢l A%al,
¢V poll-exp(3c,| A%al) and c.f|Vpoll=3¢i)|A7allexp Be,||A7all). Then it is easy to
take a 7,10, 7] such that we have N, (T)=K and M, (T,)<K so long as
N.(TH)EK, M (T)<K. Since N(T)<K and M,(T,)<K hold true, we obtain
the desired results. Q.E.D

COROLLARY 4.2. The following inequalities hold true for all n;
(4.6) lA*un Ol =3cillA%all  (0<t<Ty; a=5/8, %),
4.7 IVor®)lle=cal|Vpollwexp BeilA%all)  0<t<Ty),
(4.8) - Vun®llo=3c it~ 7P [ Aa| 0<t<Ty.

PrOOF. The inequalities (4.6) and (4.7) are shown in the proof of the preced-
ing proposition. The inequality (4.8) is derived from (3.16). Q.E.D.
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§5. Proof of Theorem 2.1.

Putting o,=pr—pn-1, We have
(5.1) %‘——{—un-sz,,:——(un—un_l)'Vpn—l 0<t<T,, x€8),
5.2) .0, x)=0.
Therefore we prepare a lemma useful for estimating o,.

LEMMA 5.1. Assume that veC([0, T,\1X 2) satisfies

[ 1wv@lade<eo.

Let reWr=(10, T.LX Q) satisfy

O vTr=geL0, T.; L%Q).
Then we have
5.3 IrOlSlr O+ lg6)leds  O<t<T).

PROOF. (This lemma is essentially due to Bardos [2]). As is noted after
ProprosITION 3.1, there exists, under the above hypotheses, a unique characteristic
curve &; {(x), i.e.,

e =us, Gl (0<s<T,

Ez,z(x):x .
Then it is easily verified that

Lo, oD =g (0, &),

Consequently we have
5.4) rt, &) =r(0, )+ gGs, & )ds.

On the other hand, it is well-known that for a fixed &[0, T,] the mapping
x—&; o(x) is an isomorphism from £ onto itself (see, e.g., Kato [9]). From
this fact and (5.4) we obtain (5.3). Q.E.D.

Applying LEMMA 5.1 to (5.1) and (5.2), we obtain by means of (4.7)
t
oa@o=K | Iuals)—un-s(s)leds.

If we put w,()=u,{t)—u,-,(¢) and hn(t)Eoggg fATw,(s)|, we have
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6.5 loa®)le=ctha(®)

by Sobolev’s imbedding theorem.
Next we note that

(5.6) Ba) L2 Ay (Pt Foestinc)

—(But)—Baa(t)
wn+1(0)=0,
which follows from (2.11). Here we have employed abbreviations B,(t) for
ap" ), and Foua() for P{p(t)(u,-V)u,}. The family of operators Au(f)=

n(t) 'A (0=t=T,) generates an evolution operator. Denoting this operator by
U,lt, s), we have

1A U, $)An(s) P|Zc(t—s)-t@H

for any 0<s<¢<T; and 0=pB=<a<l. Here ¢ does not depend on = in virtue
of PROPOSITION 4.1 and COROLLARY 4.2. Using this inequality, we estimate
Wa+:(f) which is represented by (5.6) as

Wss®= Ualty ) Bals) ™ Fumsttnes(5) = Futta()} ds

dun

SU (2, S)Bo()  H{Ba-1(s)—Bals)} (s)ds.

In the first place we have

[AT0nes @S | (=971 Faestin 5= Purtn(lds

S(t—s) Tho(s)s7ds

by making use of PROPOSITION 4.1 and (5.5). On the other hand, it holds by
PROPOSITION 4.1 that

[Fn-1thn s 8)—=Frttn(SH = pa() {(utn-1-Vtta-1—(uz - Ty} |
FHpa-1(8)—pa($)} 1t p-1-V)1tn-||
=cllA%wa(s)+clloa(s)e=c'(1+s)hals).
Consequently there exists a positive constant ¢=c(2, m,, ;) such that

JA waes @IS e { =9 Tha(s)ds  O<t<Ty).

Since h,(s) is increasing, the right hand side is increasing in ¢. Hence we have
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hma)gcS:@—s)—rhn(s)ds 0<t<Ts
By induction we obtain for n=3, 4, ---,
R = A{ct*=7} B—y, VB(l—y, 2—) --- B0—7, 1+(n—3)1—9)h)

_ {1 I(A—p)}?
I'Q+(n—2)1—7))

ho(t)y  (0<2<Ty),

where I"and B are Euler's gamma function and beta function, respectively.
Therefore we have

3 halT <0,

which implies that the series 3| A%w,(¢)|| converges uniformly on [0, T,] and
that S o.t)|. converges uniformly on [0, 7,]. Consequently there exist p&
C(0, TJXQ) and v =C([0, T,]; D(A")) such that

(5.7) pn—>p as n—>co  uniformly on [0, T,JX 2,
(5.8) 1A% {u)—u@®)}) —0 as n—> 0 uniformly on [0, T.1.

We shall show this {o, u} is a solution. First we obtain by (4.8)
T
(5.9) Tu)e L@ 0<i<Ty), | ITu@lodi<eo,

Clearly p satisfles the initial condition o(0, x)=p.(x). To show (2.1) we take
an arbitrary smooth function ¢ on [0, T,1x 2 satisfying H(Ty, x)=0. Multiply-
ing 0pn/0t+un-1Vp,=0 by ¢(t, x), we integrate it on [0, T,\JX£. Then we
have

OZSQ”‘)("WO’ x>d5+g:1S9pn(t, X){%ﬁf(t, X)Ftnoy V0, x)}dxdt
since px(0, x)=po(x) and divu,-,=0. Letting n tend to infinity, we obtain
O:Son(x)slf(O, x)ds+SDT1SQp(t, x){aa—gf(t, X)+u-g(t, x)}dxdt.

Hence by the following lemma we can conclude that p=W*=(J0, T,[x2) and
o satisfies (2.1).

LEMMA 5.2. Let w,eW'=(2), wc L0, T.[x2) and veC{[0, T,Jx2) be
Sfunctions satisfying

SOTlIIVv(t)udeoo and
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T
0

OZSQwo(X)Sb(O, x)dx+g Sgw(t, x){—aa%(t, x)+u(t, x)- Vi, x)}dxdt

Sfor any smooth function ¢ such that (T, x)=0. Then w belongs to W=(J0, T.[
X £2) and satisfies
Ow

S +v-Vo=0, o0, x)=w,(x).

For the proof, see Ladyzhenskaya and Solonnikov [137.

Next we show that u(f) satisfies (2.2). Since peW*=(J0, T,[ X 2) and m=
o, x)=I, the family of operators {B,({)"*A}.s.<r, generates an evolution operator
Ult, 5) 0=s=t=T,). On the other hand, we already know that || B,()™!|, | Fru.@)|
and ||U,(, s)| are bounded. Therefore if

(5.10) U.(t, s)—> U(t, s) (strong convergence) as n —> oo

is true, then we have
(.11) u(t)=U(, 0)—S:U(t, $)B,(s)"'F,uls)d s
by letting n tend to infinity in
Uana®=Unlt, a—{ Unlt, 9Bals) " Frun(s)ds.
From PROPOSITION 4.1 it follows that

1A% fut)—uls)} | Sclt—s)’s™"  (0<s<t<Ty).

This inequality allows us to conclude that the solution u(¢) of (5.11) belongs to
CQ0, T.1; DAYNCH0, T,]; H) and satisfies (2.2) (the proof is the same as that
in Fujita and Kato [4]).

There remains only the verification of (5.10). However, this is easily done
in virtue of

(5.12) (z— A, ) — (z—AH™* (strong convergence)
as n —>o0 for Rez=0, 0=(=T,

(see the construction of U,(t, s) or U, s) in Tanabe [187]). (5.12) follows from
the uniform convergence of o, to p. We omit the details.

Finally we prove the uniqueness. Let {p, u} be the solution which we have
just proved to exist and {s, v} be another solution in W*'=(]0, T,[X2)X
C([0, T.]; D(A7). Putting Te=min{T,, T;}, we prove that p=¢ and u=v in
[0, Ts], which show the uniqueness. To this end, put w=u—v and z=p—o,
then we have

orn

(5.13) “ér—{"u'VTZ:—W'VO',
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(5.14) (0, x)=0,
(5.15) Bp(t)(ii—L;—l-Aw(t):—Fpu(t)+Fav(f)+ {B.(t)—B,®)} %
(5.16) w()=0.

Hence we obtain for 0=(=T,
w0= U tt, H(Forls)—Fyuls)+ (Bol9)— Bl -T-(5))ds,

where U ,(t, s) is the evolution operator generated by {B,({)*A}. Since we can

casily obtain [A**u(®)|=c¢ and H—‘fi”t—(t)ugcrwn it follows that

[Aw@OSe | (=57 os)— ple)L1+s7077)
+1A7w(s)} ds.
Applying LEMMA 5.1 to (5.13), we have
lo()=pl-=] AT 1To(dr-
Therefore h(t)= sup [ A7(s)| satisfies
MOz =9 This)ds  O<t<Ty).

From this inequality we obtain hA(t)=0 (0<t<T;) (see the proof of the conver-
gence of D A%w,@)|). Hence we have uz=v and p=o. Thus THEOREM 2.1 is
proved. Q.E.D.

§6. Global existence in the twe-dimensional problem.

To prove THEOREM 2.2 we derive in this section several a priori estimates,
assuming existence of the solution. Hence we assume that 7 is an arbitrary
positive constant and that {p, u} exists in [0, T[.

LEMMA 6.1 We have for any t<[0, TL
6.0 mlu@2 [ dssiale.
ProoF. Taking the inner-product of (2.2) and u«(f), we have
(o2, )+ Tult, Tu)+(oXu- D, =0.

On the other hand, we obtain
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du 1 d
(oS, w) =55 (o, W=D, w)
by means of (2.1) and integration by parts. Consequently it holds that

—jT(p(t)u, W2 Vu®|2=0  (0<i<T).

Integrating this inequality on [0, T, we have (6.1) because of m=p{t, x)=[.

LEMMA 6.2. There exists a positive constant ¢ depending only on 2, m, 1
and [|AY*a| such that

6.2) lqu(t)HM—S:l]Au(s)HZdSéc O<t<T).

PrROOF. Taking the inner-product of (2.2) and B,()"'A, we have

% % LAY 2u @+ (Au®), B,(6) Ault))

< |(Fou®), B,&)*Ault)].
Since B,()"! is positive definite, we obtain
T+ | Au oSl Drll| Au)|

with a constant c¢=c(2, m, ). (Note that c|Vul|=<[AYu{=c/[[Vuf). On the
other hand, the following inequality holds:

I -Vull=cllullzalVu] s
=cful|Vull Auf'®.

Therefore it follows that

6.3) % IVu@ PP+ Au®P=cllal*2[Vud) || Au@)*®

<L auperlalEvam).

Here use has been made of (6.1) and Young’s inequality. If we put f{&)=|[Vu(®)|®
and integrate the above inequality, we obtain

fOZINal+elal | [Vu@IEf9ds  0<i<T).

Applying Gronwall’s lemma, we have f(f)<c¢ (0<t<T). This inequality, together
with (6.1) and (6.3), implies (6.2). Q.E.D.

LEMMA 6.3. There exist positive constants <10, 1L and L depending only
on T, 2, m, I, |A?all, IV polle such that
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6.4) sup | plt, x)—pls, M) SLlt—s|® (s, tel0, T,
TEL

REMARK 6.1. This lemma is essentially due to [13]. But we give the proof
for the completeness.

PROOF. From now on we denote by L or L’ various constants depending
only on T, &, m, [, |AV%a||, |V poll.. We start with the equality ot, x)=po(&o, (x))
where &, ,(x) is determined by (3.5). In view of

(6.5) lp(t, x)—p(s, x)[ =V polle|&o,e(x)—Eo,s(x)]

we estimate Y (z)=|&, (x)—&. 4(x)] 0=<t=<s). Since we now deal with the two
dimensional problem, we have

luls, 2)—uls, w)] ZclAul)|glz—wl),
where ¢(t)=t(14-]logt|) (0<f) and c=¢(£2). Now it is easily obtained by (3.5) that

e )—Ee ) = 10, &GN —ur, &N

+| ut, & anlar.

Hence we obtain

(6.6) Y()<|t—s| 1’2<S:||u(r)ll§,dr)l/2
e 14w g () dr

§L[t—s[1’2+cgj{]Au(r)||¢(Y(r))dr O<z<s).

Here the second inequality follows from {ull.=<c|Au}l and (6.2). We put the
last side of (6.6) as Z{zr). Then we have

d

—d—TZ @ =cl|Au@ QY ()= | Au() Y Z ()

by the monotonicity of ¢. Putting f(»)={sign(logr)} Xlog(1+ |logr|), we can
rewrite the above inequality as

d d
——— [Z@=—{T- 2@} /g Z@)=cl Au@)].
Hence it follows that

67 —fzo+zo=( 1z auepar) =1,
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From this inequality we can easily derive the following assertion:
(6.8) Lt—s|'?<min {l, exp(1—e™)} implies Z(r)=1.

From (6.7) and (6.8) we obtain

6.9) log Z(t)=1—e Y +log (L” |t—s|?)
if Lit—s]¥?’<min{l, exp(l—¢*')}. Here we have put 9:%9‘”, whence 6§
satisfies 0<8<1. Now (6.6) and (6.9) imply
& ()= (D=L [t—s]?  (0=r=s=D).
From this inequality and (6.5) we obtain (6.4). Q.E.D.

LEMMA 6.4. The following inequalities hold true:

6.10) A=l  0<i<T),
6.11) S:IIVu(t)detéL.

Herve and hereafter we denote by L or L’ wvarious constants depending only on
T, 2,m, {, |A%a) and |V psle
PrROOF. We have by THEOREM 2.4 and LEMMA 6.3

AT @B =cll AU ¢, 0)AW0) "] Aa]

+e| 1AWUE 1) ds
<L+L | u=s - Duids

§L+L'§:<t—s>-v|1A1/2u<s>nnAvu<s>uds.

The last inequality is a consequence of Sobolev’s imbedding theorem. Therefore
we have

|47t S LA+L{ =) 7 Amu(s)lds.
Applying LEMMA 2.1 to this inequality, we obtain (6.10).
To show (6.11) we note that
IVulloZcll Ault)lle

<ot o]+ Im e

80| 1At

el
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Here we have chosen the constants ¢ and ¢ such that 1/g=1/2—¢, 0<e<

min {1/4, #, »—1/2}, 6 being the constant appearing in LEMMA 6.3. Hence it
suffices to show

”AE%@)H§L¢"““'” 0<i<T).

For this purpose we use the equality

e du e As
43S = — AU, O)a
—AEA(t)S:U(t, {O(s)— D@} ds
—AEA(t)S:U(t, O ds+A D)
=L+t
(see (3.26) and (2.2)).
The inequality _
(6.12) Il Li-Gre-D 0<t<T)

evidently holds by THEOREM 2.4 and LEMMA 6.3. THEOREM 2.4 also allow us
to estimate

IS L{ =541 00)— 0] ds.
In a way similar to the proof of (3.29), we obtain
[P(s)—PDOI= L p(s)~ oWt LIA? {u(s)—u®} .

The first term is majorized by L’(t—s)?. Estimating in a way similar to the
proof of (3.14), we see that the second term is majorized by L’(t—s)?s-?. Con-
sequently we have

(6.13) [Jli=Lt=  (0<t<T)

in virtue of the inequality e<4.
We next rewrite J; as follows.

]3=—ASA(X)S2U(L‘, $A(S) [A(s) " — AW} D)d s

——ASA(t)S:U(t, DA(S) A 1D d s+ A D)

Ef4+]5-

Then we have
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(6.14) ASL| =9 G—s)ds Lo,
Integration shows that

— As ¢ a —1@ s@

J=—AAw| {=-U6 9t Av-0wds+ A0

=A AU, OADDE).
Hence we have
(6.15) 1= Lt
From (6.12), ---, (6.15) we obtain (6.11). Q.E.D.

PROOF OF THEOREM 2.2. First we note that for any 7>0 there exists a
positive constant L such that

(6.16) Vole=L  (0<t<T),
(6.17) lATu@ISL  (0<t<T).

This is evident from LEMMA 6.4 and the inequality (3.3). Now let [0, T*[ be
the maximal interval where the solution {p, u} exists. If T* is finite, then we
denote by L* the constant appearing in the right hand side of (6.16) and (6.17)
for T=T%*.The local existence theorem (THEOREM 2.1) ensures the existence of
a positive constant T, satisfying the following property: {p, u} exists in
Uz, v+T,] if

[A"u(@)|=L* and |Vp(o)|.=L*

are satisfied. Since [A7u(T*—T/2=<L* and [Vpo(T*—T,/2)|l.<L* are known,
the solution must be continued to [0, T*--T,/2[. This is a contradiction, since
[0, T*[ is the maximal interval. Thus we have established THEOREM 2.2.

Q.E.D.
§7. Global existence in the three-dimensional problem.
THEOREM 2.3 is derived from the following a priori estimate.

THEOREM 7.1.  There exist positive constants 6=08(82, l,), es=e4(22, mo, L) and
¢=C(82, mo, lo) (F=1, 2) such that the assertion below holds so long as my<m,
I=ly: Take an arbitrary positive number T and suppose that

2 9| se0 sup MlaTul=e,

sup
0=tsT

and ||[A%a|£1. Then we have for any t<70, T
(7.1 fAcut)| =i jA%alle=®  (a=5/8, 1),



638 Hisashi OxkamoTo

.2 IWplZedToule, | 220 _SeiTpul

Admitting this theorem, we now carry out the proof of THEOREM 2.3. In
the first place we note that THEOREM 2.1 ensures the existence of a positive
constant T'o=T,(82, m,, l,) such that {p, u} existsin [0, T,] so long as {A"u(0)]
<&y, IVoO)llo=é, me=m and (<[, Taking a constant k such that [A**a|=

E|A%all (veD(A™), we put
(7.3) ey=min {1, &;/cok exp (0T ), es/ o1k exp(0T), €1, Ty,
s/ co€Xp(Co), &s/CoC185€XP (Col1)}.

Here ¢, is a constant appearing in THEOREM 2.1. We then show that for this
&, the statement of THEOREM 2.3 is valid. So assume that |A%a||=¢, and |[Vpl-
Ze¢,. In virtue of the definition of T, the solution {p, u} existsin [0, T,] and
satisfies

(A Bu@BiScol| A all=cok|A%al  0<t<Ty),

"%—?(t)Hécollvpollw!lz‘l”a I exp (col A7al)

=Zcoexp ()T pollw 0<t<Ty).
Consequently it holds that

7.4 sup ATl Sk exp (T ATalZe,,
@.5) sum 190-0]_sciexo olTpolozen.

Hence we can apply THEOREM 7.1. We have for 0=t<T,

(7.6) |ATuplZelA%ale ™ (@=5/8, 7).,
7.7 [VoDlle=C:2lV ool
@.8) 122 0] =z

In partiéular we have [A7u(Ty)[|£é; and |[Vpo(To)ll-=¢&. Again from the defini-
tion of 7T, the solution {p, u} exists in [Ty, 2T,]. Furthermore it holds that

1A u(@) | o APu(To)| Seols| A allexp (—0T),
Haa% 0| _ el ToTllal A7T ) lexp (col ATu(To))
Zcotsta| Vool A7al exp (cots| A7al)

for any te[T,, 2T,]. Therefore we have for any te[T,, 2T
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P A Put)| S ol A al| S ol kPO ATa | Se,
dp - 4
|2 0] _scotstoexp ot T pollazes.

These inequalities also holds true in [0, Tyl (see (7.4) and (7.5)). Hence we can
apply THEOREM 7.1. Consequently the inequalities (7.6), (7.7) and (7.8) hold in
[0, 2T,]. In particular we obtain [[A?u(2T )| <¢, and {Vp(@2T)[=<é. Therefore
{o, u} exists in [2T,, 3T]. Repeating these procedures, we can conclude that

the solution exists in [0, n7T,] for any natural number n. Thus we have proved
THEOREM 2.3. Q.E.D.

The remaining part of the present paper is devoted to the proof of THEOREM
7.1. From now on we do not mention the assumption m,<m, {</,. We prepare
some general theorems. Let oeW*=(00, T[ X ) be a given function satisfying
my=o(t, x)=l, (0<t<T, x=£2) and

sup aa—(;(t)H =M,.

0slsT oo

We denote by U(t, s) the evolution operator generated by B,()"!A=A(t). Then
the following proposition holds true.

PROPOSITION 7.1. There exists a positive constant ¢ depending only on 2 and
lo such that

i) For any a<[0, 1L and B<[0, o we have
(7.9) [A@®UE, s)A(s)~#|
Sco, o(IHM) (L+1—5) (t—s)" =P exp {(—0+4csMo) (¢ —5)},

where cs=cy(82, me, lo) and cy, a=c4, (2, mq, Lo, @) are positive constants:
ii) For any r<[0, 1L and B0, 1] we have

(7.10) TAB™TUGE, s)A(s)"#])
e, (I Mo)A(14-t— )Xt — )" 7B exp {(—d+c.Mo)t—s)}
(0<s<t<T),

where ¢, is the same as in 1) and ¢ ,=¢5,,(82, mo, Lo, 7)>0:
iiiy For any a, B and 0 such that 0=F=<a<l, 0<O<1l—a, we have

(7.11) [A«{U(t+h, s)—=U@, s} A(s)7#||
Zca, o0 (IHM)@—s)" @B -fexp{(—5+csMo)(t—s)}
X {14+t—s+ht= 2= 0(t—s)a-B+0( 4+ h— ) exp [(—d-+cs M) —s) T}

O<s<t<t+-h<T).
Here cq, 9=ca (2, ms, L, o, 6)>0.
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COROLLARY 7.2. If M, satisfies the inequality c;M,<8/3, then we have
(7.12) [A={Ut+h, s)=U(, s)} A(s)~#]
=Zch, o RO U+M)(1+Ht—5)t—s) @B -0 exp{—26(t—s)/3}.

REMARK 7.1. Various constants appearing in ProprosITION 7.1 and COROL-
LARY 7.2 do not depend on T.

To show PROPOSITION 7.1 we have only to estimate various operators arising
in Tanabe [18], page 118-127. Although it needs careful calculations, we can
carry out that procedure in an elementary way. Hence we omit the proof.

Now we prove that the conclusion (7.1) in THEOREM 7.1 holds for a=5/8.
Hereafter constants depending only on £, m,, /, are denoted by ¢, ¢’ or ¢”. Put

dp
5 @

E=max< sup

0stsT

, sup M A ().
o 0st=T

Then we have in a usual way

LA ()] < L+ E)L+D)] A%a | exp{—G—c.E))
(14 B (1t = 5)(e—9)75] A7) |* exp (— (3¢ EYe— )} ds

Here we have made use of ProposiTioN 7.1. If E is so small that EZ
min {1, d/3c¢s}, then we obtain

A5 P u(t) | S c(l+1)e*2 2| A% q |
—l—cSZ(I-{—t—s)e'w"”’B(t—s)“"”s)]A"”Su(s)llzds .

Putting K()= sup ¢*/*| A%*u(s)ll, we can rewrite the above inequality as
0<ssT

KH)=c| A5%a ||+cK(t>2e—5~3§:(1+z—s)(z—symds

ZcllAfall+ ' EKG).

Consequently we have K()<2c¢|A%*%all if E<1/2¢’. Thus (7.1) for a=5/8 is
verified by putting e;=min {1, 1/3¢s, 1/2¢’} and by rewriting 6/3 as d.

Proof of (7.1) for a=7. We assume that E<e,. Then it is clear that
lAT U@ S c(l+8)e ® 2| Anal]

+CS:(1—H—S>e*25<z—s>/3(2‘—8)—”“As/su(s)nzds
<cle % Aral

+C/S:(l+t_3)8—25(6—8)/3<t_s)—7]2-—25S/3d3”A518a”2.
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Since [A%%a]<e;<1, the above inequality implies (7.1) for a=7.
Next we note that under the condition E=<e,, it holds that for any 0=:(=
t+hET

(7.13) SN AR u(t+ ) —u@} [E < ch®| A%l .

Here 8 is the constant appearing in section 3. This inequality can be shown in
the same way as the proof of (3.14) (use COROLLARY 7.2). Hence we omit the

proof.
We next prove that
(7.14) T Au@)| Sce P Anal O<t<T),

so long as E<e;. To this end we put @@)=—B,()"*F,u(t). Then we have by
(3.26) and (3.31)

JAu®IZIAUG, O)al
+{ 1406, 9110 -0wlds
+IAAW OO |+IAU 0A0)IIOE)]

+{’1ave, sa-ip2-w]iowids

=/ttt s
By PROPOSITION 7.1 we obtain
IS c4-te2es- 4= | Ara]]
Zclemt-U-m || Anglf,
On the other hand, it follows in a way similar to the proof of (3.29) that
10(s)— DD =cl|A*ale 1 {(t—s) s~ +(t—s)}.
Here we have used (7.13). From this inequality we obtain

WL ce s Analjt-4-7 .

The inequality ||/sl|<ce=?*|A%a|t-4-7 is proved similarly. J, is estimated as
Hj4|[chZ(l_!_t_s)ze—zﬁ(c—s)/3e—26s/3dsnA5/sa”z

Zcle | Anall.

Here we have used (7.1), [A%a||=£1 and [|A%®a|<Fk|A%a|l. From the above
inequalities for J; (7=1, 2, 3, 4) we obtain (7.14).
Our next task is to show that

(7.15) IVudllo=Zcl|ATal|e-d/5-d+7-m O<t<T),
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so long as E=e¢; and ||A7a||=<1. However, this inequality is proved in a way
similar to the proof of (3.16). The only difference is to use PROPOSITION 7.1
and (7.14) instead of LEMMA 3.2 and (3.15), respectively. Hence we omit the
proof.

Now (7.2) follows from (7.15) and the inequalities (3.3) and (3.4). Thus we
have completed the proof of THEOREM 7.1. Q.E.D.

REMARK 7.2. The argument in this section is suggested by Matsumura and
Nishida [16].
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