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Introduction.

In a previous paper [1], one of the authors discussed the vanishing of the
cohomology groups with coefficients in the sheaf O of germs of holomorphic
functions over the infinite dimensional topological vector space >C, the direct
sum of complex planes endowed with the DFS topology. It was proved that for
every p=1

H?2(U, ©0)=0

holds for any pseudo-convex open set U in 3C. In the course of the proof we
employed the fine resolution of the sheaf O:

0—> 0 —>&" —> &M —> -,

where &%? represents the sheaf of germs of C=-differentiable (0, p)-forms over
>C.

In this paper we will define the subvarieties in SC and will study the
cohomology groups of a subvariety in 2C. Our main result is the following:

THEOREM. Let D be a pseudo-convex open set in 3C and let 'V be a sub-
variety of D. Then we have

oav, ,0)=0 for every p=1,
where O denotes the sheaf of germs of holomorphic functions on V.

In Section 1, we summarize the results obtained in [17 as preliminaries. In
Section 2, we prove the main theorem using a theorem of Grothendieck. Some
examples of subvarieties will be given in Section 3. In Section 4, we show that
the cohomology groups with coefficients in the constant sheaf C over 2R can
be calculated by means of a fine resolution of C.
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§1. Notations and summary of [1].

We denote by XC the direct sum of the complex planes C endowed with
the inductive limit topology of the sequence of the spaces {C™; ul*}, where
uz™: C"—C™** is defined by ul*'((zy, -+, z2))=(z1, -, 2u, O). Replacing C by
E, we can define R in the same way. Hereafter, u, denotes the canonical
injection of C™ into XJC and we identify u,(C®) with C».

Concerning topological properties of 3)C, we obtained the following prop-
ositions.

PROPOSITION 1.1. Every open set in 3C is paracompact.

PROPOSITION 1.2. Every polynomially convex compact subset of C has a
Sundamental system of neighborhoods consisting of polynomially convex open subsets.

COROLLARY 1.3. Every point of 3C has a fundamental system of neigh-
borhoods consisting of pseudo-convex open sets.

As for holomorphic functions on 3C, we proved the following

PROPOSITION 1.4. Let U be an open set in S3C. We set U,=UNC™". Then,
we have the isomorphism
o) == lim 0,(U)
as topological vector spaces.

COROLLARY 1.5, The sheaf O is the projective limit of the sheaves {(uz)sOn}
over 23C, where (u4)xOx is the direct image of the sheaf ©, of germs of holomorphic
Sfunctions over C™.

PROPOSITION 1.6. The sheaf & of germs of C>-functions over SR is a fine
sheaf.

Combining the above results, we obtained the following result.

THEOREM 1.7. Let U be a pseudo-convex open set in 3\C. Then, the p-th
cohomology group of U with coefficients in the sheaf © vanishes for every p=1:

H?*U, 0)=0.

§ 2. Vanishing of the cohomology groups.

In the sequel we refer to [3] for general results on sheaves, to [2], [5] and
[6] for results on the sheaves of germs of holomorphic functions of several
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variables and to [8] for the general theory of holomorphic functions on infinite
dimensional topological vector spaces.
First, we introduce the notion of subvarieties in 3C.

DEFINITION 2.1. Let D be an open set in 3C. We call a subset V of D
an analytic subvariety if VN\C™ is an analytic subvariety of DN\C™ in the usual
sense for every positive integer n.

Now, we define the sheaf of ideals of a subvariety V in 2C. We put
Iy(={f=oU); f vanishes on VNU}

for an open subset U of D. Then the presheaf {4,(U)} constitutes a sheaf over
D, which we call the sheaf of ideals of V. We denote it by 4,. We equip
I (U) with the induced topology of ©(U). We note that V,=VNC"™ is a sub-
variety of D,=DNC™ in the usual sense. We denote by Jy, the sheaf of ideals

of the subvariety V, of D, As is well known, Jy, is a coherent analytic sheaf
over D,.

In the sequel we will use the abbreviations as follows:

U,=UNnC", Va.=¥ner, D,=DNC",

PROPOSITION 2.2. Let U be an open set in D. Then, we have the isomorphism

Uy == lim Jvn(Un)

as topological vector spaces, the projective limit being iaken with respect to the
~ vestriction mappings.

PROOE. We can easily check the conditions of Lemma 1 of 5.5 in Chapter
XI in Kantrovich and Akilov [7], so that the algebraic isomorphism holds. The
topology of 4y(IU) being induced by ©@(U), the equivalence of the topologies of
both sides follows from Proposition 1.4. Q.E.D.

COROLLARY 2.3. Yy(U) is a Fréchet nuclear space.
We can restate Proposition 2.2 in the following manner.

PROPOSITION 2.4. The sheaf 9y over D isthe projective limit of the sheaves
{(un)eIy, } over D, i.c.,
JV: lim (un)*éfvn .
n

We need the following theorem to prove Theorem 2.7 below. Let us recall
the Mittag-Leffler condition for a projective system. A projective system (A,, fa5)
is said to satisfy the Mittag-Leffler condition (ML) for short) in the sense of
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Grothendieck if the following is valid;

(ML) For any index « there exists S=za such that f./(A,)=f.3(As) for
every y=45.

THEOREM 2.5 (Proposition 13.3.1 in A. Grothendieck [4]). Let X be a
topological space and (F r)ren @ projective system of sheaves of abelian groups over
X. Suppose that F=lim F, and that the following conditions hold :

k

(i) There exists a base B which defines the topology of X such that for every
UeB and every p=0 the projective system (HP(U, F 1)) ren satisfies (ML).
(ii) For every x=X and every p>0, we have hm (hm H?(U, F))=0, where

U runs over the neighborhoods of x belonging to ‘B.
(iii) The homomorphisms vup: Fr—Fn (R=h) defining the projective system
(F 1) are surjective.
Then, if the projective system (HP XX, F 1)) rwen satisfies (ML), theh the canon-
ical homomorphism
hy,: HY(X, ) —> l(iin H?(X, T4)
is bijective. *

LEMMA 2.6. Let D be a pseudo-convex open set in 2C and let V be a sub-
vartety of D. Let U be a pseudo-convex open set in D. Then, the restriction
mapping of Iy, ,(Uns1) into Iy (Un) is surjective.

PROOF. Since it is easy to see that the sheaf homomorphism f:Jy,, —
(uf+1)xIy, induced by the restriction mappings is surjective, we consider the follow-
ing short exact sequence of the sheaves on D, :

0 —Ker f —> Iy, ., —> uls)edy, —> 0,

where Ker f denotes the kernel of the homomorphism f and (u%..,)xJy, denotes
the direct image of Jy . As the sheaf (u},.)xJy, is a coherent sheaf of Onys-
modules by Theorem 8 in Chapter IV, D in Gunning and Rossi [5], Ker f is a
coherent sheaf of ©@,.;-modules. Thus, we have H'(U,,,, Ker f/)=0. Therefore,
the restriction mapping of 9y, (Unsy) into Iy (U,) is surjective. Q.E.D.

Under the above preparation, we can show the following

THEOREM 2.7. Let D be a pseudo-convex open set in >.C and let V be a sub-
variety of D. Then we have
H?(D, 9,)=0 for every p=1.

Proor. By Proposition 2.4, Jy is the projective limit of the sheaves {(u5)«J,}
over D. Every point z in D has a fundamental system B, of neighborhoods
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consisting of pseudo-convex open sets by Corollary 1.3. We have H?(U, (uzn)xIv,)
=H?(Ua, Jy,)=0(p=1) for any U=B,, because U, is also a pseudo-convex open
set in C™ and that Jy, is a coherent sheaf. Therefore, the conditions (i) for
>0 and (ii) in Theorem 2.5 are satisfied. The homomorphism of H°(U, (4n+1)xIv,,,,)
=y, Unss) into H'U, (un)sIy,)=JIy,(U,) is surjective for any U<, by Lemma
2.6. Thus, the conditions (i) for p=0 and (iii) are satisfied. If we take U=D
in the above discussion, the projective system (H?""(D, (un)«Jy,)) satisfies the con-
dition (ML) for any p>0. Thus, the theorem results from Theorem 2.5.
Q.E.D.

REMARK. Theorem 1.7 can also be proved in the same way as above by
using Theorem 2.5. More generally, we can prove a similar theorem for a sheaf
over 3.C defined as the projective limit of coherent analytic sheaves over finite
dimensional subspaces.

Next, we consider the quotient sheaf ,0,=0,/9,. Since (,0p),=0 for every
zeD—-V, we put

VO:V@DIV-
DEFINITION 2.8. The sheaf ,© is called the sheaf of germs of holomorphic
functions on the subvariety V.

We recall a lemma to prove Proposition 2.10 below.

LEMMA 2.9 (Proposition 13.2.2 in A. Grothendieck [4]). Suppose that I is a
Jiltering ovdered set having a countable cofinal subset and that the following is an
exact sequence of a projective system of abelian groups for a<l:

U Va
00— A4, —>B,—>C,—>0.

If (A.) satisfies the condition (ML), the following sequence is exact :

00— limA, —limB, —1limC, —>0.

PROPOSITION 2.10. Let U be a pseudo-convex open set in D and let 'V be a
subvariety of D. Then, we have

W, y0p) =~ lim ['(U., ©p_ /57.),

n
the projective limit being taken with respect to the restriction mappings. Here,
'V, - denotes the section module over W.

PROOF. Since 4y, is coherent, the following sequence is exact:

0 —> 9y, WUr) —> Op,U,) —> rw,, Op,/dv,) —> 0.
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By Lemma 2.6 and Lemma 2.9, we obtain

0 — lim 9y, (U,) —> lim ©p (Uy) —> lim ['(U, Op,/Iv,) —> 0.

n n n

On the other hand HYU, J,)=0 holds by Theorem 2.7. Therefore, we have
0 —> 9y ({U) —> 0p(U) —> I'U, vOp) —> 0.

By Proposition 1.4 and Proposition 2.2, we have the required isomorphism.
Q.E.D.

This proposition implies that 85 is the sheaf associated with the presheaf
{lim 1@, 05,/9,)}.

n
Now, we can prove our main theorem :

THEOREM 2.11. Let D be a pseudo-convex open set in 2C and let V be a
subvariety of D. Then, we have

H?(V, ,0)=0 for every p=1.

PrROOF. Because of the exactness of the sequence
0 — 9y —> Op —> yOp—>0,
we have the following long exact sequence:
0 —> Iy(D) —> Op(D) —> I'(D, vOp)
—> HXD, gy) —> HYD, Op) —> HXD, v0Op)

—> H*D, 3y) —> H*D, 0p) —> HHD, y0p) —> .

By Theorem 1.7 and Theorem 2.2 we have H?(D, 0p)=0. Therefore, H*(V, v©)
=H?(D, 05)=0 for every p=1. Q.E.D.

§3. Some examples.

In this section we will give some simple examples of subvarieties of a pseudo-
convex open set D in XC.

1. Let f(z) be a holomorphic function on > C independent of z,. Put
V=A(zy, 2o, 75, --)ED; z:=[(2)}.
Then, V is a subvariety of codimension one.

2. Let V’ be a subvariety of D, in the usual sense for some positive integer
ne. Then, u.,(V’) is a finite dimensional subvariety of D. Here, uy,, is the
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canonical injection of C™® into XC.

3. We put
V={zeD; z:,,=0 (k=1, 2, --)}.

Then, V is a subvariety of D and its dimension and codimension are both infinite.
4. Let us consider the case V=D,. In this case we can show the following
PROPOSITION 3.1. We have the isomorphism

0,0=0p,;

where Op, denotes the sheaf of germs of holomorphic functions over D, in the

usual sense.

PROOF. Let z be an arbitrary point of D. Then, we have for any k=n
I'Ux, 0p,/9v )= (U, Op,/3v, )2 L Us, Op,)

for any pseudo-convex open neighborhood U of z in D. By Proposition 2.10 we

have
F(U; V@D)gF(Un’ ODn> .

Thus, we obtain the isomorphism ,0=0p,. Q.E.D.

§4. The cohomology groups with coefficients in the constant sheaf C.

We study in this section the cohomology groups with coefficients in the con-
stant sheaf C over SR by analogy with the de Rham theorem in the case of
finite dimensions.

Let U be an open set in 3R, &%U) is, by definition, the set of the follow-
ing differential g-forms:

f_

——i1<~--<iqfi1miquil/\ /\dxiq,

where .., €EU). We put &(U)=&U). We define the operator d as follows.
1<
where ) o
d(firniquil/\ /\dxlq) i
_il"l afll

.iq
_ja—‘axj —dxNdxy N Ndxg,
+q§ p (—l)k—af“"'iq dxg A ANdxg AdxjAdxs, A Ndxy
=1 1p<i<ip 41 axj T4 Tre 7 Mt “ig

0f iy
_'l_(—l)qz %dxil/\ /\dxiq/\dxj‘
J

J>iq
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e«U,) denotes the set of C*-differentiable g-forms on U, in the usual sense,
where U,=UNR".

LEMMA 4.1. Let U be an open set in SR. Then the Sfollowing sequence
over U is exact:

d d

0— Cy—> &) —> &) —> -,

i.e., the above sequence is a fine resolution of the sheaf C.
PROOF. For any x in U, all the open sets of the following kind

W=d:)={(y,, yo, ~)EZR; |y;—x;1<r; (=1, 2, N CU (;>0)

form a fundamental system B, of neighborhoods of x. By the Poincaré lemma
the following sequence is exact:

0-—>I'W,, C)—>&W,) —> -+ —>&™(W,) —>0;
i.e.,

0—I'W,, C)— & W,) —> (Imd),, —0,
(4.1) 0— Ker d)p, s —> &*W,) —> (Imd),, . —> 0 (n—1=k=1),
(Im d)n, sy =(Ker d)y,, (n—1zkz1),

where (Imd),,, is the image of {d:&*W.)—&**(W,)} and (Ker d)a, » is the
kernel of {d:&*(W,)~>&* (W,)}. On the other hand, we have

raw, Cy=limIrw,, ),
4.2) "

ERW)= lim &¥(W ) (k=0).

n

As W, is connected for every n>0,
4.3) Wy, C)—> IT'W,, C)

is surjective. In view of (4.1), (4.2) and (4.3), by Lemma 2.9 and Lemma 2.21
in [1] we obtain the exact sequence

00— I'W, C) -——>6’°(W) — S W) —> -,

Taking the inductive limit as W runs over B,, we have the required exact
sequence. Q.E.D.

Thus, we have the following

PROPOSITION 4.2. Let U be an open set in 2 R. Then, we have
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{f; rel’', ep), df=4b}
{dg; g=l'U, 51}

H*U, C)=
for every p=l.

Applying this proposition to an convex set in SR, we obtain the following

PROPOSITION 4.3. Let U be a convex open set in 2 R. Then, we have

H*{U, C)=0
for every p=l.

PROOF. Proposition 4.2 implies that it is sufficient to show that for any
ge&iU) such that dg=0, there exists an element fe&£TY(U) such that df=g.
We consider the following diagram:

v BT y) —> EFAU ns) —> E4rilUnir) —> ==

l l |

> UL —> &MU —> &MU ——>

As U is convex, each row is exact. Put g,=glgs. Then, there exists fp,<=
&1-YU,) such that df,=g.. Since d(fps1lpa—1a)=0 holds, there exists h,&
e,y for ¢>1 and h,el'(U, C) for g=1 such that dhp=f i1 gn—fn for
g>1 and hy,=fnsilpn—frn for g=1, respectively. By Lemma 2.21 in [1], there
exists hne; €€LAWU 4.y such that Aueq|gn=h, for ¢>1. Obviously, there exists
hns € (Unes, C) such that hypilge=h, for g=1. Put Froi=f ne1—dhns, for
¢>1 and fhe1=fps1—hnw for g=1. Thus, we assume without loss of generality
that we have the sequence {f,} such that fasi|rn=F.and df,=gn Therefore,
the sequence determines an element f=&%U) such that df=g. Q.E.D.

COROLLARY 3.4. We have
H(CR, C)=0
for every p=1.
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