Notes on Fourier multipliers for H?, BMO
and the Lipschitz spaces

By Akihiko MIYACHI

ABsTracT. (i) General mapping properties of Fourier multipliers between

the spaces H?, BMO and 4, (the Lipschitz space) are summarized; inhomo-
geneous versions of these spaces (h?, bmo and A;) are also considered. (ii)
Mapping properties of the multipliers |&]7?exp(i|£|®) etc. are determined.
(iii) A converse to the assertion for (i) is obtained, which asserts that we
can construct a Fourier multiplier with “arbitrarily” given mapping properties.
(iv) It is shown that the H-boundedness of a convolution operator does not
imply the weak (1,1)-boundedness, and vice versa.

NOTATION. Fourier transform & and the inverse Fourier transform 7' are
defined by

#f@=@ry e teds,
GIfE=af(~8), =R,

¢ and ¢ denote fixed functions with the following properties: ¢ and ¢ are
smooth functions on [0, o), ¢(x)=0 for x=1, ¢(x)=1 for x=2 and Px)=1—(x).
If A(x) and B(x) are nonnegative functions, A(x)=~ B(x) means that there exists
a positive number C independent of x such that C-*A(x)< B(x)=CA(x); we shall
refer to the relation “A(x)=~B(x)” as “inequalities”. If E is a measurable subset
of R®, |E| denotes the Lebesgue measure of E. For a={ay, -, a,)e®\J{0})",
lee| is defined by |a|=a,+ - +a, and the differential operator D* by

(D f)(x)=0/0x ) -+ @/0xx)*f(x), x=(xs, =+, Xa)ER".

For seR, [s] denotes the integer part of s; [s]is an integer and [s1=s<[s]+1.
The letter C will denote a constant which may be different in each occasion.

§1. General mapping properties of Fourier multipliers.

Let X and Y be subspaces of S’(R*) or LP(R™), p<1, equipped with norms
(or semi-norms or quasi-norms) || | and | Jy. Then the classes of Fourier
multipliers for (X, Y) are defined as follows: (X, Y) is the class of all
me D' (R*\{0}) such that

Il s n=sup{|F *mZE Olly/ I/ x| fESNX, [Fllx#0} <oo,
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where S, is the set of all feS(R™) such that FfeCr®R\{0}); MX, Y) is the
class of all meS/(R?) such that

el stcx, ry=sup{l = mEF Nly/If x| fESNX, | flx+#0}<oo.

The spaces of functions and distributions considered in this paper are the
following ones. H?, 0<p<oo, is the space of all f=S'(R") such that

fH(x)=sup [G"n(- /D) f)x)| EL*RY),
0<E<e0
where * denotes the convolution and 7 is a fixed element of S with F5(0)#0;

the norm (or quasi-norm) in H? is defined by |[flge=|lf*lzr. h? 0<p<oo, is
the space of all feS'(R?) such that

= sup 1€ g(-/0ef)(x)] = L2(RY)
with 7 as above; the norm (or quasi-norm) in A? is defined by ||f|.e=|f*.».

Note that HP=hP=L? for 1<p<oco. As for H? and h?, see [5] and [6]. BMO
is the space of all locally integrable functions f on R” such that

| Flavo=sup{| BI{ | fx)—f5ldx}<oo,

where fB:IBi"SBf(x)dx and the sup is taken over all balls B. bmo is the

space of all locally integrable functions f on R™ such that

1 bomo=1f oo+ sup {1817 | £l dab<oo,

where the sup is taken over all balls B with |B|>1. If s=k+e with £ non-
negative integer and 0<e<1, then A, is the space of all functions f=C*R")
such that

|[f”/1"s:m§k sup {1 D fx)—=Df(»)|/[x—y]} <co;

if s=k--1 is a positive integer, then /J, is the space of all functions feCHR™)
such that

1f15= 3, sup {|D*F()—2D*F(x+2)/2)+D*f(3)| /| x—31} <oo.

As, s>0, is the space of all functions feC*R"), %k being the largest integer
less than s, such that

I 0a=1f st 2 1D fllze<oo.

REMARK 1.1. We shall briefly summarize some relations between the above
spaces and the spaces of Triebel-Lizorkin type. The latter spaces are defined as
follows. Let ¥ be an element of S such that support(F¥)C {1/2<1£] <2} and

3 FURE)=1 for £+0, and set ¥;(x)=2""¥(2x) and
J=—t
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O=a-(1- 5, 5U2%));
j=1
then F;,q, seR, 0<p, g=oo, is the space of all f=S’(R™) such that
e . Y 1/g
[ liwpo=|{ £ 12°@ #0017}
J=—c0
and F}, s€R, 0<p, g=oo, is the space of all f =S/ (R*) such that

£z .0 ={ 2 12°@ w01+ 1@ 00|

LP@RD

’

LPRD)

where {33(---)% /¢ shall be replaced by sup(---) if g=oc. (It is customary to denote
the spaces F¢ . and F& . by BS. or B& .. respectively.) The following inequali-
ties hold for feS/(R™) with support(F f)®0:

M=l flfopn,  0<p<oo;
1= b 0w, $>0;
CU S io.000 =N ImMo=Cl fll# 0, -
The following inequalities hold for all feS(R?):
1 lee={fllFo » 2 0<p<oo;
I 4=l pesioom,  s>0;
CH S Nr oo Z N lomoe =Clf 70,0, -
As for these facts, see [14], [16], [17], [13; §6.17 and/or [2; §6].

REMARK 1.2. It can be shown that if X and ¥ are H?, BMO, L, L= or A,
and if meJi(X, Y), then m (€9’ (R*\{0})) can be extended to R” as a tempered
distribution, ¢.e., there exists an &S’ (R*) which coincides with m on R?\{0}.

Now we define X, and X, as follows:

X,=4.,, if p<0, =BMO if p=0, =HY¢ if p>0;
Xo=A-np if p<0, =bmo if p=0, =h'r if p>0.
For me 9’ (R*\{0}), we define
Dim)={(p, 0)| p=0, ceR, mesiuX, X,)};
for meS’/(R*), we define
D(my={(p, 0)| p=0, c€R, meMX,, X.)}.
Then the following theorems hold.

THEOREM L.1. If me @' (R {0}) and m=0, then the set K=D(m) has the
following properties:

(A) there exists a set KCR® which is convex and symmetric with vespect to
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{p+o=1} such that K=RKn {p=0, p=0};
®B) if (oo, 00)EK, po>1, 0,<0, then K contains all the points (p, o) such that
e>1, <0 and p—o=po—0o.

THEOREM 1.2. If me@’' R {0}), m=0 and if support(m) is a bounded set
of R*, then the set K=D(m) has, in addition to the properties (A) and (B), the
following property:

©) if {po, 00K, then K contains all the points (p, o) with p= p,.

THEOREM 1.3. If meS'R™) and m+0, then the set K=D(n) has the prop-
erties (A), (B) and the following property:

D) if (po, o) K and po>1, then K contains all the points (p, oo) with max{l, o}
< o<
= 0= 0.

THEOREM 1.4. If meS'(R™), m=0 and if m has a compact support, then the
set K=D{m) has the properties (A), (B), (C) and (D).

THEOREM 1.5. If meS’R™), m=0 and if F~'m has a compact support, then
the set K=D(m) has, in addition to the properties (A), (B) and (D), the following
property:

(E) if (po, o) K and py> 00, then K contains all the points (p,, ¢) with poe=0=0,.

PROOF OF THEOREM L.1. 1°) D(m)C{p=¢} if m#0. See[7; Theorem 1.1]
and [13; Theorem 3.17.

2°) Dim)N{o=1} is symmetric with respect to {p+o=1}. This fact is due
to the following duality inequalities:

sup{|<f, 1| geSinX,, lglz, =B =flx,,, 020,

which are valid for feS/(R®) with support(Ff)®»0. Cf.[5; Theorem 2], [3; 1,
Theorems 2.1 and 2.5], [17; §2.5] and [4; Theorem (4.1), p. 638].

3°)  D(m) itself is convex. This fact is shown by using the interpolation.
Let po 0120, g0, 01€R, 00, p=p(1—8)+p.0 and og=0(l—0)+o.0. In
order to prove the relation ﬂ%()?po, )?,,O)r\j/l()?pl, XUI)Cﬂ(fm X.), it is sufficient
to show that

(LD X.crX,, X,
and
1.2) (X, X..1cX,,

where [, ]y denotes the complex intermediate space. (The assertions (1.1) and
(1.2) are formal ones since some of the spaces X, are not Banach spaces. How-
ever precise formulation and rigorous proof can be given since all the spaces X,
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are subspaces of S/(R*); follow the example of [3; U, Theorem 3.1 and 3.3].)
The inclusion (1.1) for gy, p;>0 can be found in [3; T, Theorem 3.3]. We shall
not go into (1.1) in the case p,=0<p, but shall explain below how we can get
through with this case (the inclusion (1.1) is certainly true for p,=0=p,<1, but
the present author cannot verify it in the case p,=0 and p,=1). The inclusion
(1.2) for ¢y, 0,=0 can be found in [3; II, Theorem 3.1]. In the case ¢, 0,=0,
(1.2) can be found in [2; Chapter 6] (the theorems in [2; Chapter 6] deal with
the spaces F. . for all real s; hence, with the aid of Remark 1.1, we see that
(1.2) holds in the case oy, 0,<0). We shall show (1.2) in the case 0,<0<0y;
suppose that ¢g,=—s/n and o;=1/p. By the complex interpolation theorem for
mixed LP-spaces (see [1; § 7], the theorems in which can be extended to the
case p<1), we have
‘ I et o R

Then, applying the imbedding theorems for the spaces F;,q ([16; §2.3.3, p. 87],
[17; §2.4.1, pp. 100-104]) and using Remark 1.1, we obtain (1.2) in the case
gy=—s/n<0 and ¢,=1/p>0.

The above results for the intermediate spaces show that D(m)\ {p>0} is
convex. We shall prove that the whole DGn) is convex. Suppose that (00, 00)
and (p;, o) eD(m); we shall show that the line segment joining these two points
is also contained in-D@n). Consider the following cases separately : (i) 00>0 and
p1>0; (i) oo<1 and ¢,<1; (ili) po=0,=0 and p;=g,=1; (iv) pe=0>¢, and
p1=01=1; (v) po=0=0, p;=0:=1 and p,>1. The case (i) has already been
settled; the case (ii) is reduced to the case (i) by duality or the symmetry of
D) {o=1}, and hence is also settled. The case (iv) is reduced to the case
(v) by duality. Hence it is sufficient to treat the cases (iii) and (v). In the case
(ii), we can prove that (1/2, 1/2)D(m) (see [13; Theorem 3.51); thus the case
(iii) is reduced to the cases (i) and (ii), and hence is settled. In the case (v), we
shall appeal to the atomic characterization of H! to show first that D(m) contains
the point (1, ¢) which is on the line segment joining (pe, ¢,) and (p;, o1). (As for
the atomic characterization of H?, see [10] and [11; Remark 1, p. 395].) Let f
be a l-atom which is orthogonal to polynomials of order =[n{p,—1)]; we assume
that support(f)C {|x—x,| =7} and | fl==r"" If we set

FAx)y=rmeetrf(x), zeC, 0=Re(z)=1,
then f, is a holomorphic function of z, f1/,,=/ and

max{ sup | £z SUp [ F1vsylspn} SC,
yER yER

where | |1;,, denotes the quasi-norm in H'/#1 (observe that fi.., is a (1/py)-atom).
Hence, applying (1.2) to the analytic family ¥ '(n%f,), we obtain |F'm%F Nz,
<C, which, by the atomic characterization of H?, implies that meM(H?, )?,,) or
(1, ¢)=D(n). Thus the case (v) is reduced to the cases (i), (i) and (iii), which
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have already been treated. Thus we have proved that D(m) is convex.

4°) In order to prove the property (A), we shall use 1°), 2°), 3°) and the
following

LEMMA 1.1. (i) If medi(H?o, H?0) with 0< p,=1, then msH(H?, H?) for
al p=p, and meHBMO, BMO).

(i) If med(HP, HO) with 0< po<qo=1, then: meNH?, HY for all (p, q)
such that 1/p—1/q=1/po—1/qo and 1/po=1/p>1/ps—1/qo; meH(H", BMO) with
1/r=1/pe—1/qe; mcH(H?, 1,) for all (p, 8) such that 1/p+s/n=1/po—1/q, and
1/po—1/go>1/p>0; and me H(BMO, 4,) with t/n=1/po—1/qo.

Proor. For the proof of (i), see [13; Theorem 3.5]. We give a proof of
(i). If go=1, then the claims are consequences of 2°) and 3°) in the proof of
Theorem 1.1. Hence we assume that ¢,<l. If e=n/g—n, b=n/p,—n and
b—a=n/p-—n, then
Sit(H?Po, H0)C (A, Ap) (by duality)
=ES, w0, Ap-a)
CIL=, Ap-y)  (since L=CES.)
=S(H?, L") (by duality)
=Ji(H?, HY);
as for the first equality, see e.g. [15; II], and as for the last equality, see e.g.

[13; Theorem 3.4]. Now, duality and interpolation (the assertions 2°) and 3°) in

the proof of Theorem 1.1) give all the other assertions in (ii). This completes
the proof of Lemma 1.1.

Proof of the property (A). Set H:D(m)m{p—l—azl} and let H’ be the
reflected image of H with respect to {p+o=1}. Set K=HUH'. Kis certainly
symmetric with respect to {p+o=1}, Kc {o=0} by 1°), and D(m)zl?m{ng}
by 2°). By using 3°) and Lemma 1.1, we can easily show that K is convex.
This completes the proof of the property (A).

5°) The property (B) is a restatement of the following

LEMMA 1.2. If 0<p, ¢<1, s, t>0 and 1/p-s/n=1/q+t/n, then G(H?, 1,)
:j/l(Hq, Z;)

Proor. (Cf. also {8; Theorem 71.) Suppose that s<t. It holds that [&| ¢
ESM(H?, H? (fractional integration; see e.g. [3; I, Theorem 4.17) and |£|!-¢
€A, A,) (see e.g. [2; Lemma 6.2.17). Hence, if medi(He, 1,), then

m=|&|t"S-m- |E|~ O = H(H?, A,);

thus Si(He, A)csi(H?, 4,). In order to prove the reverse inclusion, take 7, v,
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r" and v’ such that 0<r<p<g<n/(n+v)=r', 0<v<s<t<n/r—n=v'and 1/r+v/n
=1/v'+v'/n=1/p+s/n=1/g+t/n. Then, by the inclusion relation proved above,
SWH?, A)CS(H", 1,); hence, by duality and interpolation (the property (A)),

SH?, L)CIHHT, AINFHT, 1,)CIHHY, L),
This completes the proof of Lemma 1.2.
Thus we have proved Theorem 1.1.

PrOOF OF THEOREM 1.2. Proof of the property (C). Suppose that me
X oo )?.,0), p>p, and that m has a compact support. Take a function f&
C?(R™) which is equal to 1 in a neighborhood of support(m) and set A=n(p— po).
Then |&|-*ed(X,, X,) (fractional integration) and |£[2f(&)eXK,, X,,) Gy
the Hérmander-Mihlin criterion; see e.g. [17; §2.1.3] and [12; Theorems 1 and
271), and hence o

m=\§|*f(&)-m- & "X, Xs).

This completes the proof.

Proor oF THEOREM 1.3. Proof of the properties (A) and (B) is similar to
that for Theorem 1.1. We shall prove the property (D). The atomic character-
ization of A%, 0<p=l, asserts that, if p=1 and p=0, a linear operator T maps
Xp,=h'* into X, boundedly if and only if sup{ITflx, | fel/p, N)} <co for
some Nz=[np—n], where A(1/p, N) is the set of all functions f with the fol-
lowing properties: ||f||.»=<1 and support(f)C B for some ball B with |B|=1, or

support(f/)CB, |f].~=|B|"* and SBf(x)x“dx:O for |a|<N for some ball B

with [B| <1 (cf. [6; Lemma 5], [11; Remark 1, p. 395]). (We shall be brief not
bothering about the domain of 7°; some limiting arguments are necessary for
T=9-%mZ-).) Now, the property (D) is obvious since A(1/p, N)TA/p,, N) if
1=p=p,. This completes the proof.

PROOF OF THEOREM 1.4, Same as that of Theorem 1.2; use (1+4-|&|®)*4/2
instead of |&|*%.

ProOF OF THEOREM L.5. Only the property (E) for the case p,>0 needs a
proof ; we shall write p,=1/p and o,=v. Suppose that me M(h?, X,), 1/p>7T
and that G=%"%m has a compact support, say that support(G)C{|x|=<1}. Take
any element feh? and decompose it as follows: f=2X%,f; support(f,)C
{lx—x;1=2}, and

i 112 =Clf I,

where x;'s are points of R” such that |x;—x;]=0 if 7 with a constant 6>0
depending only on n. Such a decomposition is easily obtained if p>1 since then
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hP=L?; if p=1, the atomic decomposition of feh? ([6; Lemma 5]) can be
arranged to provide such a decomposition. Now, since support(G=f;)C {ix—x;1=3}
and the balls {|x—x;| =3} have bounded overlaps, we have

W3 G 12=C B UG IZo=C 3 1G5, 2CA" 5 I = CATLf

where A is the norm (quasi-norm) of m in J(h?, X,). Since H(h?, h?)=H(h?, L?)
{(cf. [13; Theorem 3.4]), (1.3) implies that m=F G M(h?, h?). Hence, by inter-
polation, me< H(h?, X,) for t=¢=1/p. (Some limiting arguments are necessary
in order to make the above reasoning rigorous.) This completes the proof.

§ 2. Mapping properties of some special multipliers.
In this section and in Section 4, we use the following notation:
mE; A, a, b)=A(EDE" expil€]®), =R,

where a and b are real numbers and A is a function on (0, oo).
The multipliers studied in this section are the following ones:

m&; pA, a, —b)=¢(IEDAUENIEI P expl€]®), =0, a#l, bER,
m&; gA, —d, )=g(|ENAED ] exp(il€]~D), d=0, c<=R.

‘We assume that the function A is smooth on (0, o) and satisfies the following
two conditions :

(2.1) Hd/dx)* A =Crx~*, k=0,1,2, -}

(2.2) {x] 27<x<2™, |A(x)| =1} =@ for each integer ;.

When we consider m(&; ¢ A, —d, ¢) as a distribution, we define it by
m&; gA, —d, O)=lim G(1E1/e)g(1EDAEDIE]C exp(|E]~%);

this limit exists in the space of distributions (cf. Lemma 2.6 given below).
Mapping properties of the above multipliers are given in the following theo-
rems.

THEOREM 2.1. If the function A satisfies the conditions (2.1) and (2.2) and
if a=0, a#1 and bR, then
Dn(-; ¢A, a, =) {(p, 0) | p=0, p+aozl}

_{( ) pzo, p+oz=l, p—(l—a)aéb/1z+a/2,}
U p—aZb/nta)2 ‘

THEOREM 2.2. If the function A satisfies (2.1) and (2.2) and if d=0 and
c=R, then
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D(m(-; ¢A, —d, D {(p, 0)| p=za, p+ozl}
~{< ) pzo, pto=l, —p+(1+d)<f§d/Z—H‘/n,\f
TN _pte=d/2+e/n '

THEOREM 2.3. Let A, a and b be as in Theorem 2.1. Then D(m(-; A, a, —b))
=D(m(-; ¢4, a, —b)).

THEOREM 2.4. Suppose that the function A satisfies (2.1) and (2.2) and that
d>0. If ¢c>—n—nd/2, then
Dim(+; ¢A, —d, NN llp, o) | p=o, ptozl}
_{< o) l p=o, ptozl, —p+(I+do=d/2+c/n, }
Y U+ d)e<1i+d/24+c/n :

If c=—n—nd /2, then Dim(- ; $A, —d, ))={(p, )| p=1,0=0}. If c<—n—nd/2,
then D(m(-; A, —d, ¢)) is empty.

(2.3)

We shall begin with the proof of Theorem 2.2. This theorem is derived
from the lemmas given below with the aid of Theorem 1.2. In the following
lemmas, we assume that A is a function satisfying (2.1) and (2.2) and simply
denote m(-; ¢ A, —d, ¢) by my,c.

LEmMA 2.1, If d>0, ceR, —1/p+(1+d)/q=d/2-Fc/n, 0<p=¢<2 and p<],
then mg . MH?, HY). If d=0, ceR, —1/p-+1/g=min {0, ¢/n}, p<1 and ¢<2,
then my, < (H?, HY). ‘

LEMMA 2.2. If d>0, ¢=0 and 1/p=1/2-+¢c/nd, then mq € H(H?, H?).

LEMMA 2.3. If d>0 and c=—n—nd/2, then mq . (LY, L=). If d>0 and
c<—n—nd/2, then my . HHP, L=), where —1/p=d/2+c/n.

LEMMA 2.4, If d>0, —n—nd/2<c<0, 1/p=1/2—c/n2+d) and 1/q=1—1/p,
then mg, = M(H?, HY).

LEMMA 2.5. If d=0, ceR, 0<p=g<co and mg . €HMH?, HY, then
—1/p+U+d)/g=d/2+c/n.

Proor oF LEMMA 2.1. We shall derive the fact mqy .= MH?, HY) with p
and ¢ as indicated in the lemma from the following estimates for myg .:
[(0/08)%m g, (&) | SCIE|e-*+D1at and my (§)=0 outside a compact set.

By virtue of the characterization of H? in terms of atoms (see [10]) and
that of H? in terms of Riesz transforms, it is sufficient to show the estimate

“g—l(md,cgf)”Lqéc) feuqr(p>t 0<7"<OO,
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where A,(p) is the set of all functions f such that support(/)C{|x|=r}, || fllze
<pmp and Xf(x)X“dx=0 for |a|=[n/p—n] (cf. [12; §21). First, we can
obtain the estimate

1F 73 ma,cF Fllsaazizen <C,  fEL(P), 0<roo,
by slightly modifying the calculations given in [12; §2]; we shall omit the
detailed calculations. Secondly, if 0<r<1, then, for f&(p) and |x|=2r,

|55 ma, N0 =|] K=y~ T D=/t

[yi<r

<CyVH-miptn<
where K=%"'mq,. and N=[n/p—n]; thus

1F20na,cF Pllzaceisen=C, fEM), 0<r<l.
Thus there remains only the estimate

IF-20ma, e Fllzaamsn =C, fedlp), rzl;

this is obtained in the following way. Let feA.(p) and r=1. Holder’s inequality
gives

(2.4) 1F = ma,cF Flleazisen SCroM T2 F Y my F e
If ¢=0, then the right hand side of (2.4) is dominated by
C;ﬂl(l/q—llz) Hf“L2§Cr‘n(1/q-1/2)r—nll’+n/2éc;

if ¢<0, then, since mqy .= H(H?®, L?) with 1/s=1/2--c/n (fractional integration),
the right hand side of (2.4) is dominated by

n(1/g-1/2) < n{1/q~1/2) =n/p+n/S — (" nd(~1/q+1/2) <
v I fllas=Cr v v =0,

This completes the proof of Lemma 2.1.

PrROOF OF LEMMA 2.2. Lemma 2.2 can be derived from Lemma 2.1 (the case

p=¢) and the fact m,, =(L? L? by means of the analytic interpolation; cf.
[12; §27.

Proor oF LEMMA 2.3. The latter half of the lemma is derived from the
former half with the aid of the fact that
|§jernindize GUHP LY, 1/p—1=(—c—n—nd/2)/n>0,
(fractional integration). The former half is a direct consequence of the following

lemma, which will show that 9-'(mg )= L> for d>0 and c=—n—nd/2.

LEMMA 2.6. Let p(x)=x°% c€R, o(x)=x"% d>0and A be a smooth funciion
on (0, co) satisfying (2.1). Then the limit
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m=lm §(|x|/e)g(lx DA x Dol x expla(x])), x&R”,

exists in &'(R*) (the space of distributions with compact supports) and its Fourier
transform H=%m has the following estimate:
(2.5) HE)=Ci(r)(x,/r) " P (a"(x))"*p(x)(Alx)+0(1))

where r=1&}, o(1)—0 as r—oo,
Ci(r)=expli(—an/d+r/2+o(x)+rx.)]
and x, 1s given by ¢'(x,)+r=0.

We shall put off the proof of this lemma to the next section and proceed to
the

PRrROOF OF LEMMA 2.4. This lemma is derived from the facts mgy, = HM(L? L2
and My, -p-ng €MLY, L*) (Lemma 2.3) by means of the analytic interpolation;
cf. [13; Proof of Proposition 5.3, pp. 295-296].

Proor or LEMMA 2.5. First, we shall treat the case d=0. We can take
numbers ¢y, -, ¢ty such that 1/2=<#,=52 and ¥, A@;8)|2=1/2 for all s>0. By
the Hormander-Mihlin criterion, the functions

A= 2 1AGIEDI) $UIENTTIED, k=1, =, N,
all belong to JM(H?, H?). Hence, m, .= MH?, H?) implies that
2.6 e 3 M@ e {1:8)=gAIE ) || S HHP, HY).

Now, since F-Y@(1&])|&|»/P**)eHP for any 6>0, (2.6) in turn implies that
FUPpA|ED[E|ermp-m+y e HT for any &3>0, which is possible only when
¢tn/p—n+o>n/g—n for any >0, or —1/p+1/¢=c/n. This settles the case
d=0.

Next, consider the case d>0. If mq . S3M(H?, HY, then, for any 0>0, the
limit

leigrg FUPE]/)P(IEDA(IEDN |1 exp(i] £ -9 [&]™/P"¥9)

must exist in H4R") and hence in particular the function

| ] CemmiporanD IO O A x| [d) ) to(D), |x|—oo,

(cf. Lemma 2.6) belongs to LYR"), which is possible only when —c—n/p—nd/2—38
<—n(l4-d)/q (here the condition (2.2) is used). Since >0 is arbitrary, we have
—1/p+(1+d)/q=d/2+c/n. This completes the proof of Lemma 2.5.

Now we have completed the proof of Theorem 2.2 except for the proof of
Lemma 2.6.
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PROOF OF THEOREM 2.1. Similar to that of Theorem 2.2 (cf. [13]); use,
instead of Lemma 2.6, the following

LEMMA 2.7. Let p(x)=x7° beR, o(x)=x% and A be a smooth function on
(0, o) satisfying (2.1). If 0<a<l, then:

HE)=F[g(lxDplx DA xDexplo(|x ))&, x, E€R™,

is a smooth function in R*\{0} ; (0/0&)*H(E)=0(|&|Y) as |&]—oo for all @ and
all N>0; in a neighborhood of the origin, H(E) can be written as

HE)=Co(m) (/) V12— 0" (2)) 2 p( )W Alx7) +0(1))
-H(a smooth function of r%),
where r=1§&|, o(L)=0 as r—0, x, s given by ¢’ (x,)—r=0 and Cy(r) is given by
Colry=explilan/4—r/2+ {2 )—rx.)].
If a>1, then H&) is a smooth function throughout R™ and has the following
asymptotic behavior as r=|E|—co:
HE)=Co(r)acr/m) 210" (x1)) 2 p (2 )(Alxr)+0(1))

where x, is given by ¢'{x.)—r=0 and Cy(») is given by

Ciiry=explilan/d-+o(x)—rx,)].

The proof of this lemma is similar to that of Lemma 2.6, which will be
given in the next section.

PROOF OF THEOREM 2.3. From the identification of H?, h?, A, and A, as
the spaces of Triebel-Lizorkin type (Remark 1.1), we see that, for f €S’(R"*) with
support(% /) {1§]=1/2},

2.7 I ae={fllre, 0<p<oo,
and [ flla=l/l4, s>0. It also holds that [[fllemo=1/llbme for feS'(R™) with
support(F f)C {|&] =1/2} ; this can be derived from (2.7) with p=1 by means of

duality. Using these inequalities, we see that D(m)=D(m) whenever support(n)
c{]&]=1}. This completes the proof.

PROOF OF THEOREM 2.4. If f is a smooth function such that support(/)C
{|x] =1} and Sf(x)dxsl (such a function belongs to h?, p=1, while not to H?,

p=1), then, from Lemma 2.6, we see that $-'(m(-; ¢4, —d, ¢)Ff) belongs to L?
if and only if (1+d)/g<1+d/2-+¢/n (observe that the function C;(») oscillates
“slowly”). This fact causes the restriction (1-+-d)oe<1+d/2+c¢/n in (2.3). We
shall omit the proof of the other facts; they are similar to that of Theorem 2.2,
or rather reduced to Theorem 2.2 by means of Theorem 1.4.
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§3. Proofs of Lemmas 2.6 and 2.7.

The first half of Lemma 2.7 for A(x)=1 can be found in [18; Part II]. The
proof of [18] might be extended to obtain the second half of Lemma 2.7 for
A(x)=1 and Lemma 2.6 for A(x)=1, but it cannot be applied to the cases A(x)
1 since it is based on the integration of holomorphic functions (the method of
steepest descent). Here we shall give a proof which is based on the calculus of
real functions and hence is available for the cases A(x)=1. We shall present the
proof of Lemma 2.6; that of Lemma 2.7 is similar to it.

Proor oF LEMMA 2.6. Throughout this proof, we shall simply denote
#(s)p(s)Als) by K(s).
If feC=(R"), then integration by parts gives

3.1 SRnﬁb(lx /K x et = F()d x
2 0 ;
=fe (55 o ) s DK 05 ds,

where

<f>(s):S‘ Flsw)pldo),

w|=1
¢ being the (n—1)-dimensional area measure on {w=R"||w|=1}. The integrand
on the right hand side of (3.1) is, in absolute value, dominated by Cp(s)s™ 'a(s)™”
with a constant C independent of s>>0and ¢>>0. Hence, if J is sufficiently large,
we easily see that the right hand side of (3.1) has a limit as e tends to zero.
Thus 1£r; Ol x|/e)K( x|)expo(| x|)) exists in &/(R®).

Applying (3.1) to f(x)=g(|&|]x[)e * * and letting ¢ | 0, we obtain, if J is
sufficiently large,

tim| 911 /K 2Dt g(] xDe-=dx

0

:Sz“élewm(ﬁiﬁ. ;;Z'(?))J[K(s)g&( [&]s)e % %)(s)s" 1 ]ds .

The integrand on the right hand side of this equality is, in absolute value,
dominated C;p(s)a(s)~7s™"! with a constant C; independent of s>0 and E<R~.
Hence, for sufficiently large J,

im0 /e e g8 et

=Crp/r)e/r) P r ", r=|&];

J can be taken arbitrarily large. Thus, in order to prove (2.5), it is sufficient to
prove that the function
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(3.2) Hi=@ay el K(xDe =gir|xhe2ds, r=|e),

has the asymptotic behavior indicated in the right hand side of (2.5).
First, consider the case n=1. We can write

Hr)=I1,(n+1-(r),
where

1:(7’):(271')—1/ZS:K(x)eio<z)¢(rx)eiimdx .
I_(r) can be estimated in the following way. Integration by parts gives

1 « i(e(zx)-rx a ] Z 7 .
[_(r)zvﬁgoe (x) )(ﬂ' a’(x)——r) [K(x)p(rx)]dx;

the integrand in the right hand side of this equation can be expressed as a finite
linear combination of the following terms:

3.3) eH o@D (¢! () 1) T Ig M0 (x) e 0P (2)(0/0x)" LK (x)(rx)]

where m-ny- - n=J+7, 0=m=J, 0=j< ], 1=sm+j= ], and ny, -, 0,22
The term (3.3) is majorized in absolute value by C,p(x)|e’(x)—#| "7 Ta(x)/x~7~7
with a constant C; independent of x and ». Thus

[1-("] éCJj_éo Sj/rp(x) lo’(x)—r|~7Fo(x)x~7dx

IA

CJjé {S::P<x)0(x)“Jdx+7’“J“jgirp(x)a(x)fx—J-jdx}

A

Crp(xr)o(x) I 2,

for all sufficiently large J. Hence we can neglect I_(r) in estimating ]7(7').
We decompose I.(r) as follows:

]+(7’):I+,1(7’)+I+.2(7) )

I+,1(r)=(27r)‘”2§ e D K()p(rx)p(| x— x| [ex)dx ,

1+,2<r>=<2ﬂ>-~2§ @+ KB (| x— 20| fex)d

where ¢>0 is a small number independent of ». I, (») can be treated just in
the same way as JI_(#); we have |I,,")|=Csp(x)o(x,)""x, for all large J.
Hence we can neglect the contribution of 7. (7).

In order to obtain the asymptotic behavior of I, .(r) as r—co, we shall employ
the method of stationary phase. First, we make a change of variables x—u=
u{r, x) so that we have

o(x)+rx=c(x,)+rx.+o"(xu?/2 and (du/dx)(x;)=1;
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if ¢>0 is sufficiently small, then, for large >0, we have a smooth function
[x,—2ex,, x,+2ex,]2x—~uecu,, us] with a smooth inverse [y, uz]@2u—zxe
[x,—2¢x,, %,42ex,], where |u;|, |u;]| =3ex,. (Observe that ¢>0 can be chosen
independent of » so long as r is large.) Then I +2(r) can be rewritten as

G.4) I, 2(7)=exp[i(0(xr)+rxr)]gf (wexplie”(xu?/2)du ,

where
Fl)=2r) " 2K(x)¢(| x—x,|/ex,Ndx/du) .

Next, we rewrite (3.4) as follows:

(3.5 Lio(r)=explilo(x,)-+rx,)]f (O)S (lul/3ex)expo” (x)u?/2)du

Fexplilotx)+ranfy [ =L Iul fex) ]
-exp(o”{x)ut/2)du .
The first term in the right hand side of (3.5) reduces to
expli(a(x)+rx)o” (x:)) 2K (%) {4~ R(Bex,v/ 0" (x,) )},

where the function R is defined by
R(t)=lim (er)‘”zg Pl /te(lv]/a)explivi/2)dv .
It holds that R(H)=O0(@"¥) for every N>0 as t—oo. In order to estimate the

second term in the right hand side of (3.5), observe that, for large r,

](d/du)kxléckx}‘k, k:]_, 2, -
and
Hd/dw) fu)| Cop(xn)xi®, k=0, 1,2, .

From these estimates, we easily see that the second term in the right hand side

of (3.5) is of order o(p(x,)/vc”(x,)) as r—oco. Thus we see that | +,2(r) and
hence ﬁ(r) have the asymptotic behavior as indicated in (2.5) in the case n=1.
Next, consider the case n=2. We can rewrite (3.2) as

36) Hiry=r23 [ K(s)gr9)5726179 [ or)ds

where [iz-5,. is the Bessel function. By Hankel’s asymptotic expansion of the
Bessel function, we can write

M-1 ) ’ M-1 )
3.7 Jn-073(rs)= 2] bre™ T (rs) VA M4 3T bk 0¥ (rs) 1A gy (rs)

m=0 m=0

M=1, 2, -,
where by =(2z) *?exp[+i(—rn/4+n/4)] and
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len(#s)| SCxulrs)~1*-¥ for rs=1.

Replace the [in_n/(rs) in (3.6) by the right hand side of (3.7); then H#) can be
rewritten as a sum of (2M--1)-integrals corresponding to the (2M--1)-terms in
the right hand side of (3.7). The integrals involving the terms b} can be esti-
mated by the 1-dimensional result; those 2M-integrals together give a function
whose asymptotic behavior is given by the right hand side of (2.5). As for the
integral involving ey(rs), we have, if M is sufficiently large,

| 7""’“‘S?K(s)gb(rs)s"”e” S ou(rs)ds| SCyp(l/rir 7,

which is of order o((x,/r)™ 2% (a”(x,))"*p(x,)) as r—oo so long as ¢>—n/2
(recall that p(s)=s°). Hence we have completely proved (2.5) in the case ¢>—n/2.

We shall show that (2.5) is valid also in the case c<—=n/2. Here, instead of
H(r), we shall directly deal with the function

H(r; K)=lim r—nﬂﬂgo¢(s/e)K<s>sn/2eiv<s> Ten-mialrs)ds .
el0
By the reasoning given at the beginning of this proof, the following integration

by parts is easily legitimated :

. —1 -ni2 - 10(s _a_ K(S)Snﬂ](n—z)m(rs)
Hulrs Ko=timreo | gtsfece 5 (T S s

From this, using the formula (0/8s)(s™*J.(rs))=—rs"*],.:(rs), we obtain
H,(r; K)=H,(r; Ko)+riHunl; K,

where Ky(s)=s""*(d/ds)iK(s)s""*/¢’(s)) and K (s)=K{(s)/i0'(s)s. Repeated appli-
cation of this process yields

M
Ho(r; K)= 2 1" Huisr; Gy,
=
where Gj, j=0, 1, -, M, are smooth functions on (0, c0) vanishing on [2, co)
with the estimates
‘(d/ds)ij(S)Iécj, ksc+Md_k7 k:O} 1) 2; )

and, in particular, Gu(s)=K(s)@a’'(s)s)™. If we take M so large that ¢+Md>
—n/2, then, as we have already shown, we can apply the formula (2.5) to
Hpwofr; Gp, 7=0, 1, -, M. In this way, we find again the formula (2.5) for
H,(r; K). This completes the proof of Lemma 2.6.

§4. Converse to Theorems 1.1~1.5.

In the following theorems, (A)~(E) refer to the properties mentioned in
Theorems 1.1~1.5.
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THEOREM 4.1. If a set KCR? has the properties (A) and (B) and if Kis
closed, then there exists an me D' R {0}) such that Dim)=K.

THEOREM 4.2. If a set KCR? has the properties (A), (B) and (C) and if K
is closed, then there exists an me D' (R™{0}) with bounded support such that
Dm)=K.

‘THEOREM 4.3. If a set KCR? has the properties (A), (B) and (D) and if K
s closed, then there exists an meS'(R™) such that D(m)=K.

THEOREM 4.4. If a set KCR* has the properties (A), B), (C) and (D) and if
K is closed, then there exists an meS’(R™) with compact support such that D(m)=K.

THEOREM 4.5. If a set KCR? has the properties (A), (B), (D) and (E) and if
K is closed, then there exists an meS'(R™) such that F-'m has a compact support
and Dim)=K.

We shall prove these theorems by using the multipliers studied in §2. We
begin with the

Proor oF THEOREM 4.2. Let 6, j=1, 2, ---, be smooth functions on (0, co)
with the following properties : support(d;)C(1, 2), supports of #;s are disjoint,
and {s]|@;(s)=1}#@ for every j. Set

Af)= 3 0,@");

then each A; has the properties (2.1) and (2.2). Now, let K be as mentioned in
the theorem. Then, by virtue of the separation theorem for convex sets and
Theorem 2.2, it is possible to take countably many numbers ¢;€R and d;=0 such
that

K= Jh:l Dn(-; pA; —dy, e))= ,61 Dim(-; pA% —dj cy).

Take ;>0 so small that |le;m(-; ¢A; —d; ¢l pe=277 for (p, O)=KN{p=J,
o=—j}, where | |, . denotes the quasi-norm in Si(X,, X,). Consider the fol-
lowing distribution :

m= i}le,-m(- ; 0A; —d;, )€ D' B™N{0}).
f=

This m has certainly a bounded support; we shall show that D(m)=K. The in-
clusion D)DK G.e., mediX,, X,) for all (o, 6)K) is obvious. Suppose that
(p, aYeDim), i.e., meﬂ}t(X’p, )?‘,). Then, for each j, A,(|&§])m(§) also belongs to
jd()?,,, )?,,) and hence, since A,s have disjoint supports, m(-; ¢A% —dj c;)
belongs to (X 03 X,). Thus
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D(m)c [\ Dim(-; $43 —d, c)=K.
Thus we have D(m)=K. This completes the proof.
PROOF OF THEOREM 4.1, Similar to that of Theorem 4.2.

PrOOF OF THECREM 4.4. Only the following five cases are possible to occur.
Case 1, K is the empty set; Case 2, K={p=1, 0=0}; Case 3, K={p=0, p=0};
Case 4, K={p=o0, p=0, 0=0,} with some g,=1; Case 5, KC{s<1} and KN
{o>0} is not empty. Cases 1 and 2 are settled by Theorem 2.4. In Case 3,
K=D(4(]§1)). In Case 4,

K=D(¢(4I§]) |&]°(log(1/1£1)* expGE|E]=4)),
where d>0, 14+-d/2+c/n=041+d) and ¢’/o,<—1; this we can show by slightly

modifying the calculations given in §2." Consider Case 5. In this case, it is
sufficient to construct an m which has a compact support and satisfies

4.1) DimN{0< o<1} =Kn{0<o<1}

(observe that such an m necessarily satisfies D(m)=K). Let A; be as in the
proof of Theorem 4.2. Since each A;(|&]) belongs to M(X, X,) for 0<o<1
(note that X,=LY? for 0<g<1), by the reasoning given in the proof of Theorem
4.2, it is possible to take &;>0, d;>0 and ¢;cR so that the distribution

m:jzﬂejm(- 5 ¢Aj, '_dj, Cj),
which has certainly a compact support, satisfies (4.1). This completes the proof.

PrOOF oF THEOREM 4.3. Using the reasoning given in the proofs of Theo-
rems 4.2 and 4.4, we can construct m; and m,eS8’(R"*) such that support(m,)C
{1&] =£3/2}, support(m.)C {|&1=2} and K=D(m)"\D(m,). U we set m=m;+m,,
then we have D(m)=K.

PROOF OF THEOREM 4.5. If K satisfies the conditions of the theorem, then,
in the same way as in the proof of Theorem 4.2, we can construct an meS’(R?)
which satisfies D(m)=K by setting

m= jglsﬂn(' y ‘;bA]" a j, '—b.i)’

where ¢,>0, 0=a,<1, b,€R, and A/s are functions given in the proof of Theo-
rem 4.2. Since the functions ¢(]x)F(m(-; pA; a; —b,) belong to SR™), we
can choose ;>0 so small that ¢(]x|)F~'m also belongs to S(R™). If {e;} is so
chosen, then ¢(|x|)Z~*m has a compact support and D(F(¢(|x[)F~'m))=D(m)=K
since m—F(¢(| xNFm)=F(P(|x)F'm)eSCM;X,, X,) for all (p, o) with p=o



Notes on Fourier multipliers 239

and p=0. This completes the proof.

§5. H'-boundedness and weak (1, 1)-boundedness.

Many important convolution operators f+— Kxf appearing in Fourier analysis
are not bounded in L! but bounded in H! and of weak type (1, 1), 7.e., have the
estimate

(6.1) Hx [HEO > =CH [, >0, fel

It is natural to raise the question whether either one of the estimates (the H'-
estimate or the weak (I, 1)-estimate) implies the other. In this section, we shall
show that there are no such implications.

1°) It is easy to give an example of m such that the operator T, : f—
F'mZFf) is of weak type (1, 1) but not bounded in HY. m(&)=(£—1)/|E—1],
£<R, is an example; for this m, T, is composed of the Hilbert transform and
multiplications by ¢*** and hence of weak type (1, 1), but it is not bounded in
H! since, for f<S,

(T )Yy =(/ (| F(evdy)xte 406 as 1xl—oo,

and thus 7T,f is not integrable for generic feS\H. The compactly supported
multiplier m{§)=¢({&[/2)6—1)/16—1], £<R, is also such an example.

2°)y There is an m such that T, is of weak type (1, 1), not bounded in H?
and F~'m has a compact support.

PrROOF. Let X be the set of all K&’ such that support(X)C{|x|=<1} and
the operator f—Kxf is of weak type (I, 1). Define a quasi-norm || |x by
”K“X:“K”weak(l,l)y where

I Kl wear vy =sup LA {] Ko/ | > /1 fllzr | 2>0, fES}.

By using the inequality |FK}o~==||Kllwear, 1 (cf. Knopf [97), we easily see that
(X, I lx) is a complete quasi-normed space. Now, assume that our assertion is
false, 7.e., that $Ke M(H?*, H') for all K€X. Then, by the closed graph theo-
rem, there is a constant 4 such that

(5-2> ” EEl{uﬂil(b’l,I{1)§Iqlu'(uweak(l,1)

for all K€X. Since dilation K—r "K(r-'.) does not change both the quasi-norms
NF s, my and || lweara, 1, (5-2) holds for all X with compact supports. Con-
sider the following distribution:

K. v(x)=G/m)({x1/e)p(l x| /N)x"e**, x<R,

(for simplicity, suppose that we are considering the 1-dimensional case). Since
K., wllweaxc.1) is bounded for 0<e<<N< oo, (5.2) shows that
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E-1/Ig=1=_ lim FK.wSIUH', HY,

which is a contradiction. This completes the proof.
3°) An example of m such that the operator Tu: f—F Y mTFf) is bounded
in H' but not of weak type (1, 1) is given by
mE)=¢(|1&/2)|§|*(log |&])’exp[i||(log[§1)¢], &R,
where d+0 and —1/2<c+nd/2=0.

PRrROOF. First, observe that m vanishes in {]¢|=<2} and that it has the
estimates

[(0/08)*m(§) | =Caf (1&g

with f(x)=x""*(log x)° and g(x)=(log x)¢, from which we can conclude that
me MHY, HY) so long as f(x)(xg(x))*2=0(1) as x—co or ¢+nd/2=0 (see [12;
Theorem 17]). Secondly, we can calculate the asymptotic form of F~'m: if d>0,
then
(5.3) (F m)(x)=d " V2Cy(r)r-mi2+e/d+12d(1 L op(1)) as r=|x]|—c0,
where

Calry=expli(rn/d-+tlog t.)¢—rt,)]
with ¢, determined by

(log t,)*+d(log t,)*~*=r,
(5.4) {

t;—o0 as rii—co;
if d<0, then
(5.5) (Frm)(x)=(—d)*Cylr)r~ ¥+ 442241+ o(1))

--(a smooth function of r¥) as r=|x{-0,
where
Cy(r)=expli(zn/4—x/2+1t(log {,)¢—rt.)]
with f,. determined by (5.4). (The same formulas as those in Lemma 2.7 can be

applied to these cases; proof indicated in § 3 needs only slight modifications, the
main one of which is to use the estimate

lo'(t-tet)—ri=|o"({t)|t, as t,—co

for o(x)==x(og x)¢, d=+0.) If ¢+nd/2>—1/2, then, from (5.3) or (5.5), we see
that F-Yme L(1, <o) (the Lorentz space), 7.e., the estimate
[{x ] /(G m)x)] > |£Cat, 0<A<o,
does not hold, and hence a fortiori T, is not of weak type (1, 1). This com-
pletes the proof.
4°Y Let m be as mentioned in 3°) with d<0. Then, by using integration
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by parts, we see that (6/0x)(F 'm)(x)=0(]x|~7) as |x]|—oo for all & and all
N>0, and hence ¢(]x|)F'meS. Thus the distribution

K=¢(|x|)F'm=F Ym—(a function in S)

is an example of K such that K has a compact support and the operator f— Kxf
is bounded in H! but not of weak type (1, 1).

5%) There is an meS’ with compact support such that the operator T, : fr
G- mFf) is bounded in H* but not of weak type (1, 1). In fact it can be shown
that there is a continuous function m with compact support such that T, is
bounded in H*! but F~'me L(1, co). We shall omit the proof, which is similar to
that in 2°).
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