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Summary. We denote the variables in R**! by x=(x,, x’), where x,=R and
x’eR". We consider partial differential operators of the form

P(x, t'i/f'ix):I é)maa(X)xﬁ"“”(a/ax)“,

where £(;) is some integer =0, a,(x) is real analytic in a neighborhood of x=0,
and Gp,o,..0=1. We define the irregularity :=[1, oo) and the characteristic
exponents A, -+, d.mySC of the operator P at the point £*=(0; +/—1L, 0, ---, 0)
eV —1T*R**,
It will be proved that if (>>1 and all the characteristic exponents of P are
distinct, then P is equivalent microlocally to the operator
x5 1 Crntl — Cra+1

U U

U xE™y
in a neighborhood of #*.

§0. Introduction.

An ordinary differential operator of the form
™(d /S a,0d/ dry,

where a,t) is real analytic in a neighborhood of ¢=0, is said to have a singular
point of the first kind at t=0. It is well-known that such an operator has a regular
singular point at #=0.

Kashiwara and Oshima [5] considered partial differential operators of anal-
ogous type. We denote the variables in R™*! by x=(x,, x’), where x,=R and
x'=(xy, -+, x2)ER" They called a partial differential operator written in the

form
P=I § aq{x)xi*(0/0x)%,

a partial differential operator with regular singularities along the hypersurface
N={x,=0}, where a.(x) is real analytic in a neighborhood of x=0 and @ n.q,...o)
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—1. They proved that in a neighborhood of £*=(0; v=1,0, -, 0)e~/—~1T*R**,
such an operator is equivalent to the very simple operator xg" microlocally.

In this paper we consider partial differential operators of a more general type.
Let P(x, d/0x) be of the form

P(x, a/ax)Zl lZS)maa(x)xS"“”(a/ax)“,

where a.(x) is real analytic at x=0, a(m.o,..o=1 and x(j) is some integer =0.
After Aoki [3], we define the irregularity ¢ of P(x, /0x) by
z-—-max{( max ————E(m)_x.(]) , l}-

osjsm-1  M—]

If (=1, the method of Kashiwara and Oshima [5] is applicable and we can prove
that P is equivalent to x§™ at #*. Thus we consider only the case ¢>1. Such
an investigation has been done only when n==0, i.e., when P is an ordinary
differential operator with an irregular singular point at the origin. In fact Aoki
[1] and Kashiwara [4] proved independently that if n=0, P is equivalent to the
operator x5™ at (0; /—1)e+/—LT*R. The purpose of this paper is to generalize
this result to partial differential operators. ;

Assume that ¢>1 and n=0. In this case we say that the partial differential
operator P(x, 8/8x) has irregular singularities along the hypersurface {x,=0}. In
the classical theory of an irregular singular point of an ordinary differential
operator, situations become rather complicated unless all the characteristic expo-
nents are distinct. Analogous difficulty arises in our microlocal analysis of
irregular singularities of a partial differential operator. To avoid this difficulty,
we consider the simplest case, i.e., the case where all the “characteristic expo-
nents 7 are distinct.

From now on, we always assume that ;>1. Now we define the characteristic
exponents of P(x, 8/dx) to be the roots Ay, -+, d«my Of the algebraic equation

™4 3 0,0, 0OFP=0,
where
n(P):{Ogjgm—l; —————E(m)_ﬁ.(]) Zt} .
m—j

We remark that, since we assume ¢>1, we have r(m)>«(y) for jex(P).

Now we have the following

THEOREM 1. Assume. that ¢>1 and that 2,3 2;, if i=j. Then we can construct
holomorphic microlocal operators Qy, -+, Qeimy defined at %*=(0; /=1, 0, -, 0)
e+/—1T*R™* such that the following sequence

(Qly R Qh’(m)) P

O__’(GB)a(XO)®$N —> Cy—>Cy—0
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is exact in the sense of sheaf theory at %*.

To prove the above theorem, we need to‘ consider a -x(m)Xx(m) matrix
ol cemy+A(x, D) of microdifferential operators of fractional order. Here the
total symbol o(AXx, &) of A(x, D) satisfies

aa(A)( £=0.

and, if 1=p, v=&(n), the (g, v)-element 6(A)w(x, &) of o(A)(x, &) satisfles

la(A)(x, H)I<cl&o| 7 i [§] <eléol

for some constants ¢ and e, Furthermore, we assume that ¢(A4)(x, & admits an
asymptotic expansion ‘ ‘

O.(A)(x: S)N 2 -Aj(xy E) 3

-~pleEiEN/NZ

the precise meaning of which will be explained in §1, and here p and ¢ are
integers satisfying 1=<p<q. Now we have the following.

THEOREM 2. If the eigenvalues of A_pi(x, &) are all distinct, there exist
£(m)Xg(m) matrices E(x, D) and F(x, D) of holomorphic microlocal operators
defined at %* such that E(x, D)F(x, D)=F(x, D)E(x, D)=I, ., and that

E(x, D) {xolecmr+Alx, D} Flx, D)=%0leim: -

Theorem 2 says that xel.m,-FA(x, D) is equivalent to xol.cm;, and from this
fact we can prove Theorem 1 which says that P(x, 9/0x) is equivalent to x&£™.
(Compare the exact sequence in Theorem 1 with the following one:

xlc('rfb)

g{m)-1_
— 76"@) D ()R By S Cop —— Cyp —> 0.)
&

Such a type of partial differential operators was also investigated in
Nourrigat [6] in the category of distribution theory. He proved that under
certain conditions such an operator is C~-hypoelliptic, i.e.,

ueQ’', PueC>=usC>.

However we stress the fact that such an operator behaves completely differently
in hyperfunction theory.

Now we explain the plan of this paper.

In §1, we shall review some important facts concerning m1crod1fferent1a1
operators of fractional order and the irregularity of a partial differential operator,
which are useful for us.

In §2, we shall introduce a matrix of microdifferential operators of fractional
order, which will be transformed into the canonical form in §3 and §4.

In §5, we shall return to the original scalar operator.
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In §3 and §4, we need several estimates, the proof of which will be given
in Appendix 1 and Appendix 2.

The author wishes to express his sincere gratitude to Professors H. Komatsu,
K. Kataoka, and T. Aoki for their kind advices.

§1. Preliminaries.

Let M be an (n--1)-dimensional real analytic manifold, X a complex neigh-
borhood of M, and T*X the cotangent vector bundle of X. We denote by Cu
the sheaf of microfunctions on T%X=+/—1T*M, and by &% the sheaf of holo-
morphic microlocal operators on T*X. The sheaf €y (resp. &%) is often abbre-
viated to C (resp. &%). The sheaf Cy is canonically endowed with the structure
of a left &&|v=ir«x-Module. Not only a usual microdifferential operator but also
a microdifferential operator of fractional order is a section of &£%. (See Sato-
Kawai-Kashiwara [7] and Aoki [2].)

In our approach to irregular singularities of a partial differential operator,
microdifferential operators of fractional order are very useful. Thus we recall
some results concerning &% proved in Aoki [2].

1. We denote the local coordinates of X by x=(x,, x")=(xo, %1, -+, ¥a), and
the dual variables of x by £=(&, &)=(&, &, -, &). Let #¥=(0; ~/—1,0, -+, 0)
be a point in T*X, and A(x, D) be an element of &%;.. Aoki defined the symbol
o(A) of A, which is a holomorphic function on

I={(x, )eT*X; |x|<e, 1&]<el&], |Reéy|<eImé&, and e]&]>1}
for some constant ¢>0. Furthermore o(A) satisfies
(1) sup|a(A)x, E)e?¢| <o for any 6>0.
I

Conversely, let a(x, & be a holomorphic function on I, for some constant
e>0, which satisfies

(2) slgpla(x, &e 9| <o for any 6>0.

Then there exists an element A of &%;« such that the symbol o(A) of A is
holomorphic on I, and satisfies (1) and

(3) slgp] a(x, &)—a(A)x, €)| <o for some §>0.

We write ¢(A)=a if (3) is valid.

2. Let />0 be an integer. For some &>0 fixed, assume that there exists
a sequence

{aj(x: ’E); ]: Ty —2/2; _l/ly 01 l/l: 2/2; .}
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of holomorphic functions on I.. We say that 3} afx, &) is a formal symbol of
J

fractional order if for any >0 there exists some C;>0 such that

(4) slgplaj(x, OI=Cod?E1/T711  for j=1/i, 2/i, -
and if for some C>0
(5) supla(x, OI=CHEPI—I1  for j=0, ~1/i, -,

where [|j|] denotes the largest integer smaller than or equal to |j|. Let
{alx, &); j=(1/i)Z} be a formal symbol of fractional order. We can find a
function a(x, &) holomorphic on I such that for any §>0

sup|a(x, £~ <oo
and for some 8, C>0, :

(6) SII;ID|(1(X, E)—jgj} aix, &)| =Co]&] o[ —j,]!

for jo=0, =1/, —2/7, ---. We write a(x, &)~Za,x, & if (6) holds. For this
function a(x, &), there exists an operator A=&¥;. such that o(A)=a, as stated
in 1. Then we have o(A)~2a;. Such an operator is called a microdifferential
operator of fractional order.

If A=(A(.») is a matrix of microdifferential operators of fractional order,
and if the symbol (A, ,)(x, & of each element A,y 0f A admits an asymptotic
expansion ¢(A,»)~2a;, ., then we write o(A)~3 A;(x, ) where A; is the
matrix A;=(a;, un).

3. Fix an integer />0. Let A(x, D) be a microdifferential operator of

fractional order such that
o(A)~ 3 aix, &)
Jjel/nz

in the sense of 2. Then the symbol ¢(A*) of the formal adjoint A* of A admits
an asymptotic expansion

oA~ 3 (AM(x, &)

jeEQiDZ
where
(_1)151 N
(A¥)x, &)= > - 0% au(x, —&)
iz 0!
5e<z+)j+1

with Z,=1{0, 1, 2, ---}.
Let B be another microdifferential operator of fractional order with

o(B)~ 3 bix, §).
i€z
The symbol g(BA) of the composite operator BA admits an asymptotic expansion
o(BA~ 3 (ba)(x, &)

1/HZ
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where

EIEQ/DZ
de=(Z 4y L
kt1—181=]

bay=, 3 =0, E0kax, §).

§ 2. Reduction to a matrix equation.

As before, we denote the variables of R**! by x=(x,, x'), where xR and

x'=(xy, -, x.)ER". We consider a partial differential operator P(x, d/9x) of
the form
P(x, 3/396):l 2 ao(x)x54(0/0x)°,

where £(j) is some integer =0, a,(x) is real analytic in a neighborhood of x=0,
and @mo,..n=1. If the irregularity ¢ is larger than 1, we say that P(x, 8/0x)

has irregular singularities along the hypersurface {x,=0}. In this paper we
assume that ¢>1.

At 2* we define a microdifferential operator Q(x, D) by
(7) o(Q)x, §={ 3 aa(x)}%

Here a(Q)x, &) denotes the total symbol of Q(x, D), and not the;principal symbol.
Define P/(x, D) by

(8) P'(x, Dy=Q(x, D)P(x, D).

It is easy to see that there exist integers £(0), ---, Etm—1)=0 such that

Hom—F1) 2, BMZFD) _ it and only it 20"~ and that
m—j m—7 —
(9) P'(x, D)=x5™+ 35 P1i(x, D)xfm >,

where P/,(x, D) is a microdifferential operator of order —%. Furthermore, if
we define

=(Py={0Zj=m—1; =) )\ f, ED )

m—j m—j
the principal symbol o.,(P.)(x, & of P/, (x, D) satisfies
(10) o, (PL)O, x', £)= (@), x/, E)lalgn_kaa(o, x")E",

provided m—ker(P).
If u and f are elements of C;+ the equation P'u=/f is equivalent to

u 0\‘
(roleem+A'x, DY 5 |=| 1

xg(m)—lu f/
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where the x(m)Xk(m) matrix A’(x, D) is given by

0 > _l:
an Az, D)= 0 » ,
A,(/c(m),l), """ » Al(x(m),»c(m))
(12) Aleemy, (%, D)= 25) Ply(x, D).

. 15ksm
J=k(m—-k)+1
We transform this matrix xo/.m,+ A’ into another matrix xol,m,+A” as
follows :

1 ‘ 1
Diie
’ .. (%ol eimy+A")

Déx(m)—l)/z D;(f:(m)-l)/:

Do—l/:
xolm(m)"l_A”: .

A”(x, D) is a g(m)Xk(m) matrix of microdifferential operators of fractional
order. The symbol ¢(A”)(x, & of A”(x, D) admits an asymptotic expansion
a(A"x, 6~ X Az, §)

-plgzi€Q /2
in the sense of §1. Here p and ¢ are two integers determined as follows: From

the definition, the irregularity ¢ of P is a rational number ¢/p, where p and ¢
are two integers relatively prime, and 1=<p<g. Furthermore, we have

0, —&5nie
) Araidlx, = o, g ,
Agp/q,(rc(m),l)y """ y Azp/q:(,:(m))m(m))
where
(14) Ao, womr, (2, E)= T 0o l(Alscmy, p N, EEFTY.
m-—kEx (P)

Now we need the Weierstrass preparation theorem for a matrix of micro-
differential operators of fractional order.

LEMMA 1. There exists a x(m)Xx(m) matrix of microdifferential operators of
fractional order W(x, D) such that

(15) aWXx, E)~Iom+ 2 Wik, &)
>IEQIDZ

and

(16) (ol eemy+A"(x, DY (x, D)= 20l pmy+Alx, D).

Furthermore, the symbol o(A)x, &) of A satisfies

an 994 (1, =0,

axO
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(18) o(A)(x’, &)~ P Aix’, &),
~-plazjEQ/Z

and

(19) Apix’, E)=A%510, x/, &) .

The proof of this lemma is just the same as Theorem 2.2.2 in Sato-Kawai-
Kashiwara [7].

REMARK. If an operator H(x, D) satisfies do(H)/0x,=0, we denote this
operator by H(x’, D) as well as by H(x, D).

LEMMA 2. There exists a w(m)Xx(m) matrix W'(x, D) of microdifferential
operators of fractional order such that W(x, DYW'(x, D)=W'(x, DYW(x, D)=I,(m).

PRrROOF. Since the principal symbol of W(x, D) is I,(n), We can construct the
parametrix W'(x, D) of W{x, D) just as in Theorem 2.1.1. in Sato-Kawai-
Kashiwara [7]. Q.E.D.

Therefore we just have to consider x,/,m+A(x’, D) instead of xo/.(m,
+A"(x, D).
In this paper, we assume the following

Hypothesis. All the characteristic exponents of P(x, d/0x) are distinct.
This is equivalent to the following

Hypothesis’. All the eigenvalues A(x’, §), -+, Zum(x’, &) of A_p{x’, &) are
distinct.

In fact we have
Ai=—250, &, )P/ j=1, .-, £(m).

This can be proved using (7), (10), (12), (13), (14) and (19).

Under this Hypothesis’, we shall transform x,/,+A(x’, D) into a diagonal
matrix xel.my+B'(x’, D) of microdifferential operators of fractional order, in §3.
And then we shall transform this diagonal matrix into x,f.(n), in §4

§ 3. Diagonalization of a matrix of microdifferential operators.

In the rest of this paper, we denote by & the constant x«(m). For a £X«x
matrix H=(H,»)p,., we define |H|=rmax|H,, ,|. We remind the reader that
J3Y

the irregularity ¢ of P(x, 0/dx) is a rational number p/q, where 1=p<gq.

LEMMA 3. Let A(x’, D) be a Xk matrix of microdifferential operators of
fractional ovder satisfying the conditions of Theorem 2. Then we can construct
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an invertible £X& matrix T(x’, D) of microdifferential operators of fractional
order defined at %* such that

(20) Lo(T)x", O, 1a(TNx", HI=C  for some C>0,
21) T(x’, DYxol A Alx’, D)=(xol,+B(x’, DNT(x’, D).
Here B(x’, D) satisfies the following conditions :

(22) o(BXx', &)~ X Bix', 8,

-pIqziEQ/DZ

(23) Bj (pw(x’, £)=0 if j=—1 and uy,
and
(24) By, ©=M(x', &,
where
A(x', &)
(25) M(x', &)= i
ALz, &)

PrOOF. It is easy to find an invertible £#Xx matrix' T'(x’, £) such that
[Tz, O, [T =/, =
with some constant C’, and that
T(x'y E)A-pr(x’, T Hx/, E)=M(x’, §).
We define T'(x’, D) by o(T'Xx’, §)=T’'(x’, §). Then we have
T'(x’, DXxol 4+ A(x’, DT’ (x’, D)} *=x,l,+M(x’, D)+-M'(x', D)
where o(M)(x/, E)=M(x’, &) and o(M")(x’, E)~ X Mgx’, §). Here M (x’, &)

-plazi€/Z
is @ £X& matrix homogeneous of order j with respect to &.

Next, we define T7(x’, D) by o(T"Xx’, &)=I.+ > T7(x’, §), where

0zjz-(g-»)/q
Ty(x’, &) is homogeneous of order ; with respect to &, which will be determined
later. Furthermore, we define C(x’, D) by a(C)(x’, &)= > Cyx’, ), where

-(pt+h)/gzjz-1
Cix’, &) is a diagonal matrix homogeneous of order ; with respect to & which
will also be determined later. Then we have

(26) o(T"(x’, D)ol s+ M(x’, D)+M'(x', D)Xx', &)
—o((xol i+ M(x", D)+Cx’, DNT”(x', D)X, §)
=T7(x", XM, E)+ M- pany1x’s E)F -+ M_s(x7, £))
—(M(x’, &)-+C-prn g2, E)4 -+ Cos(x’, ENT (2, &)
+S(x’, §),
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where S(x’, &)~ X Six’, &), Si(x’, &) being homogeneous of order j with
~1zje/)Z .
respect to &, !
We can determine the matrices

T2z’ &) and Coprpix’, §) 1=j=q—p

by induction on j, in such a manner that in the right-hand side of (26) the term
homogeneous of order j vanishes if j=—1. For instance, the term homogeneous

of order —1’:;—1 iS M- pu1y1e—C-psnysqtTorigM—MT -1, Now we define
0 if py,
C-prnyig, uum= .
M—(p+1)/q, [ if u=y,
Q=2 Mepinra un i 135,
Tgllq, (o) — i
0 if p=y.
Then this term is equal to 0. The term homogeneous of order j, ——~‘D—;ﬁ =7/=-1,

can be treated in a similar way. This is a well-known method in the theory of
ordinary differential operators. Q.E.D.

Instead of x.J,+A(x’, D) we may consider x,I,+B(x’, D), which satisfies
(22)-(25). We define B’(x’, D) by

a(B)x', &)= 2 Bylx', 8).

~-plgzjz-1

By (23), this matrix satisfies B, ., (x’, D)=0 if p=v.

“The purpose of this section is to transform the matrix x./+B(x’, D) into
xol 4 B’(x’, D). For this purpose we must construct a matrix U(x’, D) of micro-
differential operators of fractional order which satisfies

(%ol o+ B(x', D)DE&-P1U(x', D)y=D§P14U(x’, D)(xol o+ B'(x’, D).

This equation can be rewritten as follows:

P _

@7 55—0(U)(x', &)+ ngEalo(U)(x’, §)—a(BU—UB")(x’, §)~0.
0

We solve this equation by successive approximation: At first, we shall find a

function U®(x’, &) which satisfies

2 UG, 64 LU, ©

(28),

0

—a(B)(x!, U (x!, E)+FU(x!, E)a(B" )z, £)=0.
And then, for :=1, 2, 3, -+, we shall find U®(x’, & which satisfies
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©8); ,gnguca+ﬂgﬂawmuca

—a(B' )&/, EUS(x’, E)FUP(x’, §)o(B")Nx’, §)

1
Tk iner @ O
1

.8, {3mg¢) 01

9§.Bh(x’, E)ai'U“')(X', E)

aa,U(i'>(X’, é)aaz'Bh(x,y (S) ’

where

(29) ()= {(h, 0, IYE1/QZX(Z)" X Z,;
h—16]—@"/g)=—(/9—1, |R]+]0] 21}

and

(30) wo)={(h, 0, I/ QZX(Z "X Z+;

h—18| =" /)=—(G/q)—1, h=~1, 50}
If (h, 8, )=r.(d) or m.({), we have 7/</. In fact, since

[R]+18|12=1, if (h, 9, 7)er,(@) or m.()
we have
i'=i+qg—q(lRI+ [0S0

This means that if we have already found U®, ..., U%Y, then the right-hand
side of (28); is a known function.

The equation (28); is an ordinary differential equation, where the unknown
function is U®(x’, &), the variable is &, and the parameters are (x’, §’). The
difficulty in this equation arises from the fact that it has an irregular singular
point at &=co. To overcome this difficulty, we employ the technique developed
by Turrittin in [8] in a modified form.

From now on, we write t=£/%. If f(&,) is some function, we denote also
by f(r) the function acquired by substituting z=£}¢ in f(&,), for the sake of
simplicity. Then (28),, 7==0, 1, 2, ---, is rewritten as
(31); %U“)(x’, 7, ENF(g—p)yc U (x/, 7, &)

—grtHo(B' )&/, T, ENUD(x!, 7, EN=UDx', 7, §)a (B x’, 7, £}
=FO(x/, 7, £,
where
(32) FO (%' ¢, &)y=0

and
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32); FO(x!, 7, ymgre-t z(:,)%az,Bh(x', o, ENR U, 7, &)
ETTR !

—gret B S RU, 7, €00 Bal, 7, §)
. wo(i !

for i=1,2,3, ---.
It is easy to see that U®=7-9+? ig a solution of (31),. For =0, we have

the following

PROPOSITION 1. Let ¢>0 and r>0 be small enough. Then there exists a
formal power series

(33); U= b U (x")ci&'e,

Jlg+iais~(i+g-p)/q
where j€Z_=1{0, —1, —2, -~} and as{Z.)", which saiisfies (28); formally. Here
US2(x") is holomorphic on {x'€C™; |x'|<e} and there exists some constant C>0
such that

(+472)i—j+g—p)14] !)u«z—m

q i UMD /2-lal-agt
(g*+Di+glal)!

for any 1=p, v<k, i€Z,, jEZ_, ac(Z)"* and 4d(Z,)", provided |x'|<e.

(34)1 1a£'U,§,l)a (;z,v)(x/)l éc([

Proor. If /=0, the assertion is trivial since we may take U@ =7~ P,
Assume that 720 and that the assertion is valid for /=0, 1, ---, i—1. In the
asymptotic expansion

o(B)x', 6y~ = Bulx', §),

~plazhE/DZ

we can choose each Bp(x’, & to be homogeneous in & of order 4. Thus from
now on we assume that each B,(x’, &) has been chosen to be homogeneous in §
of order h. Considering the Taylor expansion of B,(x’, &) with respect to £’ at
&’=0, we have

(35) Bu(x', 7, &)= = Bja(x")iE.

JEZ~,aE(Z )T
jig+iai=h

Here each B;,(x’) is holomorphic on {x'=C; |x’]| <e}, and there exist some a>0
and some R>0 such that
(36) |04, Biolx")| SaR¥=AL o[+ 411) (h=j/q+]al)

for any jeZ_, any a=(Z.)*, and any 4d=(Z.)", if |x']|<e.

Substituting (33);:, /=0, ---, i—1, and (35) into (32);, we see that F® is a
formal power series of the form
37); F—= > F{2(x"yci&=,

JEZ., as(Z "
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Since j/q+|al=—(G"+g—p)/g in (33),, we have j/¢+|al<—(G+g—p+1)/q
in (37);. Here F{{(x") is given by

F}fz’(x’)Zqz* Bg(x"a% Ui (x)

B!
31 (8—d)!
~qZ}**5l (rzé)x ()0 Brpx"),
where the summation >* is taken for
{870, by D2(C )X Z X2 KB ) 2,2 2% 5
(h, 3, iVem(), ptr—i=a, kti+g—1=j, fzd}
while the summation 3}** for

{(h 8,7, 8, ik, Z)e( Z)X(Z) X ZI KL X X EX Z;

(h, 3, e mli), ptr—b=a, k+itq—1=j, ﬁ>5}
In Appendix 1 we shall prove that

[<q2—|— q—p )l'—(j—]—l)—{—(q—p)ldl] 1>1/(q-p>
q - PRFAR 14D j2-1al-4qi+1
(g*+1)i+gla| —(g—p)!
for any ieZ,, jeZ_, as(Z.)" and d=(Z )", if |x'|<e.
Admitting this for the moment we proceed as follows: Equating the coef-
ficient of z{* in both sides of (31);, we obtain

(14— R0, o(x) =g Z*¥H(B o p(x WU P (x)=UF (x) Brplx' N=FP(x"),

(38); |04 F52 ’)IéC(

where the summation 3,*** is taken for
{(k, I, B, NEZXZX(Z)"X(Z,)";
kiQ+18l=—=p/g, —=(p+D/q, -, =L, kt+itq—1=], p+r=a}.
It follows that /=j+1—g--p in each term.

Calculating the (g, v)-element of the above equation, we have

(]+1+q p)UJH a, (g, /t)(x ) J(u%) (o, ,u)(x/)
and

~g(B_p.0, cp. XV —=B_p,0, 0, (X DU 21 i p, . (X))
:_(J‘I’l’f‘l]—P)U;i)x a, (g, w(x")

+q 2***(312,9 . y)(x ) Bk,@ (v, v)(x ))Ulr (e, u)(x/)

+Fja,(y.v)(x) if paev.

Thus we can solve this equation inductively by setting
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U}-if)l,a.(y,y)(x,) (]+l+q P) l-F](azz(y ,u)(x )
and

UsZispatian o (8)=—=19(B 5,0, cu, 1>(x")— B_ p, 0, ooy (2" )}
X {—(]‘|‘1+(]—ﬁ)U§21 a, (u, y)(x/)
+q 2***(Bk,8 (u, y)(x ) Bkﬁ w, ,,)(XI))U” (e, y)(x/)

FFR (2} if py.

This is a well-known procedure in the theory of ordinary differential equations.
Now we have constructed a formal solution of the equation (31);. The fact

thatéﬂﬂé—’ﬂ% in (34), follows from the fact that %Jr[a[g—L"—qJﬂ

i+q—p+1
—
Assume that if [Z2j—g¢+p+1 and gy, then 94U, . (x’) satisfies the estimate
(34); for any 4, y&(Z,)". (There is nothing to assume if ;= —i—2¢+2p.) Then
we have

e o { [( ey 47D p>z—(]+1)] >1l<q—p)r(j+1)/2_lal_4qi.

L ’”["IJ—I-l—l-q pl\((q2+lz+qla|—(q !
Since j+1-+g—p=<—i—q|al|, we have

in (37);. The estimate (34); can be proved as follows: Let j=—

r
|j4+1+g—p|

provided r=1/(¢>+1). Thus U, 4 (. » satisfies (34); with 4=0. The case 4=0
can be proved similarly.

On the other hand, from the above assumption about U with [
Jj—q+p+1 and p2v, we have

I{Q(B—p.o. (y,p)_B—p,O, ot 7t (4+14g— P)U i+1, @, (2, |

[(42+ q_p>l-__].+q_p_1:l N1/@-p
<42-04( g 7 pUmaEPED 210l di
- (g®+1i+qla])!

= I—;[ Ug*+Vi+gla| —(g—p)+ k)-Va»,

and
I kz:**(Bkﬁ, (7973 _Bkﬁ, (v, v))U{;z (9787 ]

({Sasrioimll S
<2aCR™! S ¥kxp-16 ! (Lr2) -1r1-4qi_
=2eClT 2 g+ DitqlrD! g

Since (I/q)+ 17| =—G4qg—p)/q, we have
[t} e+ 2D)i—G—g+p40]1

(@+DitglyDE = (@ FDitglal)!
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and we have

Zk**R Iﬁl /2y =171~ 4111< Zn(q p_[_l)rl/ (] q+p+1}/2-lal-4qt
#52 —@r/R) ’

provided »r=4-'R. Thus we have

[kgz—:**(Bkﬂ' (,u,gt)'_Bk,B, v, »))Ul()l’z (e, v) [

([(t]2+q;pf>i—(j—q—l—p-{*1)] !>1/<q—p>
<4140 q pligtp D /2-ai-igi
- @+ D+gla!

R*
. <
provided r= Yintigi(g pL i

[<q2+£2)f—(f—q+p+1)] N1 |
((q 1) la)! pI-gFpED) [2-1al-4gi
q2+ Z+q ai)!

From these estimates we obtain the estimate (34); with 4=0, for U, i1, a, w27,
pav. The case 420 is similar. Q.E.D.

Finally we have

le‘é’(x’)lér”“C(

In the rest of this paper, we shall denote by the same letters such as C, 7,
e and p, several constants which do not depend on the indices ¢, 7, &, 0 and 4.
From Proposition 1, we easily obtain the following

COROLLARY. There exist some constants C, r>0 such that

L)
o

for any i€Z,, j€Z, ac(Z)" and A<(Z)", provided |x'| <e.

(39 [04.UR(x"N1=C

REMARK. Unfortunately, the formal power series (33); does not define a
symbol of a microdifferential operator of fractional order, because the estimate

(34); or (39); grows too rapidly as %+Ia|—>—oo. To overcome this defect, we

shall consider the true solution of (28); corresponding to the formal solution (33);.
For this purpose, we employ the method developed by Turrittin [8], using the
Laplace transformation, or rather the Leroy transformation.

Let 0=7%"?, We define the functions B ,{(x’, o, &), J=1, 2, -+, g—p, by
(40) Bu,i(x’, 0,8)= 3 Bj(x)a?Himi@-ngre

19y Fal=h

as in Turrittin [8]. Pzt

We have

a-p
Bh(x,’ 7, E/):‘;EITJ—I)BIL, (J)(x/: a, 5/) .
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We write By (x/, o, E’)=hEJBn.u)(x’, g, &).
&
In the same way, we define the formal power series U =U@(x’, g, &),
J=1: 2: Tty Q_P: by

UE:;,)): » U}fL(x/>U(j—J)/(q—p)$’a.
J—JEW@-mZ
as(Z "

Then formally we have
0 ... .
CANP (q—p);TU?J’)+(f+q—z>)0“UEb’>
—l] E {B(K)U(L) U B}

—gqo 5 {BaUB-UDHBw}=FE J=12 -+ ,q-p

K+L=J+q-p
where

1 o 1 o
(42)1,J F( (] 2 { 2 'agrBh, (K)a‘?c'U&f 2 5— &))ag:'Bh, (K)}
H 7ol

T1(2)

l )
+qo > '—aa/Bh,(mai'UgL) 2 '5— U705 Ba, (K)}

K+L=J+ {n‘ 2
J+g-p 1(8) 5 2(1)
we deﬁne

I4 7Yy s ’ j—d - 4
Cr.n(x’, 0,8)=0 3 Bj(x)gPti-Dia-mgre,
Gip+lal=n
pti-JEG-D)Z
(pt+ji-J)/(g—pr=—2

To proceed, we must consider the Fourier transform Bh, wn(x’, s, &) (resp.
Cr.n(x’,5,&) of By, m(x’ o, &) (resp. Gy, (2, 0, &) with respect to the

o-variable. If |a[>{ 1+|§f|)}q M2 e have

[Ba,(n(x', 0, &)1, 1Ch, (', 0, &) Zan]o]

by (40) and (36). Here ¢, is some constant depending on k. Fixing &<C"
arbitrarily we define

7€)={seC; —e0<Re g <o, Im o= ( a-+1gn)
Then if seR, the integral

Bh, w(x’, s, 8= Sr(&) _“/:anmJ)(xl, o, &)do

=gt oviReop, \(+/, Re otV 1Im o, E)d Re o
is well-defined as the Fourier transform: §’ges—S;. We can prove
43) Bi in(x', s, EV=—2av—1Bn, y(x’, 5, ENY(3).

where Y (s) denotes the Heaviside function and
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ra

. , . ) <_\/:’IS)|p+j—J1/(q-p)—1
44 Buw(x, s, & )_—(j@g:m:nBj’“(x ) M—l)'
q—7p )

ptj-Jelg—-mZ

Defining in the same way Cj. (2, s, E'):X <e )e“’j”C,,, wnx’, o, §Ndo, we have
-

(45) Cr.n(x’, s, &)=—22v=1Cr, (", 5, )Y (5),

where

~ , n , (_,\/_—ls)lpﬂ'—ﬂ/(q—p)—z
(46) Crenle, s, 80=, B Biabs)=—rr
+j—dJ nZ —q__—p—Z) H

E/a_

pj-Je(g
(p+j-J)ig-prs-2

Concerning these families of functions, we have the following

LEMMA 4. gh‘<J)(x’, s, &) and éh, wn(x’, s, &) are holomorphic on
{(x, 5, ENeC"XCOXC™; |x'| <ée},

if €>0 is small enough. Furthermore, there exist some constants a,, Ry>0 such
that in this domain

@) 104,08 B,y (x', s, €| Sayexp {RTY(1+|&'|) a5 ]}

[S[ (gl hi-p+gidi+J)/(g-p)-1)

r(AH=PESBIET

XCH A+ 14141017 R8¢

and

48 104,02 Cr. (2, s, €V | Sa, exp (RT(1-+]E]) @ P (5]}

]S ] (QIR1=p+qI81+J) [ (g-p) -2)

h—141~18
KRR o1 R NI T TIEI Ry
=9

for any Ae(Z)", se(Z), he—;—z and Je{L, 2, -, g—p}. If h=—1, we have

(49) 104.Ch.n(x’, 5, €9
Sa, 4] Ry 414187 ]) 2Dl exp (RyH(14 |£7]) P /e s |}
for any A€(Z.)* and J= {1, 2, -, g—p}.

PRrROOF.
!ag'Bh, wx’, s, &9
|s|Gp+i=Jiltq-p)-1) al

IBJa(x,)[ M—l)' (a—d)!
q—p )

g |raa (by (44))

= X
U +lai=hn

<a2Rh‘1‘“[Ihl]L]S]((qlhl-p+QIaI+J)/(q_p)_1) ) a!
- '[qlhl—p+gla1+1_1}! (a—d)!
q—

gt (by (36))
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[ s [ (gl hi-pglal+J} [ {(g-p)-1)

éath—lathljl 51 210(1[5/{15(_5;

'[qlhl—p+qlal+]_1],
97 )
R=181 lsl(<q1h|—p+q151+J>/<q—p>—1>
[ ETTIET A
q—>p '

<allhl+15171(5)

2187 |\la-d1 Isl(qla—ﬁl)/(frp)
az(S( [qla—ﬁl]‘
Tq—p I°

which proves (47) with 4=0. The case 420 is a consequence of the Cauchy

integral formula for the derivatives of a holomorphic function. (48) and (49) are
proved in a similar way. Q.E.D.

Let §=[x, —x] be a real number. We denote Sy=¢v-1¢R. We define

Bh, w,o(x’y s, EI)Z—Zﬂ\/flgn, w(x’, s, ENY (e %)
and

éh, (J),@(X/, S, 5/):—27r\/-—_l 5n,<J>(x’, S, EI)Y(e"“/jaS)

for x’eC®, |x'|<e, s&S, and &eC" The suffix ¢ will be omitted if con-
fusion is not likely.
We write

B,(J),O(x,’ S, S )

o l

zleh,(J),d(x/; s, &)
and
Cinola'y s, €0= 3 Cuen.ala’, 5, €1
Now we define

~ ) _ UG=JH(g=p) -1
(50); Do, s, &)= 5 U (x) oY1) ‘e
JJEG-DZ I] ]{ __1>
ac(Z )"

Because of (39), this power series converges if x EC", x| <e, &€C?, s&C
and [s|=r/2.
Note that
=N T i itq—pt) g tH]
q—p qg—>p qg—>p q—p
From this fact we obtain by direct calculus

G 109, s, )] gc—[f—'/‘{a—f}_—'u |41 Pexp (K1 &)@ a5}
b

with some constants C, >0, if [x/|<e, |s]<r/2. Let 4, d=(Z,)". Differentiate
both sides of (50); 4, times by xi, -, 4, times by x,, J; times by &, -, d,
times by &,. Using (39), we can easily prove that there exist some constants
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C, »>0 such that
(52); 104,02 U@ (2", s, &)
[L+!A+5|] 1 T,—i—IA+5|
<ct? _
- [Z—I-f‘l‘(]‘a[]]
qg—p )

[S I (i+J+ql5I)l(q-p)exp {7,—-1(1_!_ |E’ D(q—P)/lZ] s |}

for any 4, 6(Z,)", provided |s|<r/2.
If 6<[n, —x], we define
T, 0(x", s, §)=—2nv=1OH (', s, £ (e s)

for x’eC™, |x'|<e, s&Sy, —c0<Le v 1s<yr/2, and E'=C™.

Now fix an arbitrary §=[—=, ). The fact that U 4(x’, s, &) satisfies
(40);,, formally means that U o(x’, s, &) satisfies the following equation (53);, s
rigidly, if [x’]<e, s€S4, and —co<e v 10s<y/2:

6o G—DV=LOE, ol 5, 9 TLLOG, o0, 1, 0

_% K+I= JS {B(K) o(x’, 1, & )U&)),o(x', s—1t, &)
&)),G(xl, s—1, EI)B’(K),o(xI, , EI)} dt

—¢ B ABr-gox 0B, o(x', 5, )=Ud, 0(x’, s, §)Br-golx")}

K+L=J+q-p

$ A -~
o D (G, 1, 000, 51, 89
—Ug?),o(x’: S_t; EI)CA,(K),G(X,: t; EI)} dt
F@ o(x', s, &)
where

(54, s F&,o(x', s, &)

1 .
=o B {3 =\ B oo, 1, €020 (', 51, )it

T 27 kiT-7\s10 61
1 s it ’ ’ 5 ’ v
~ 2 S RO, st 0 Ba o, o', 1, )}

qK+L=J+q-p 73t 0! 62,(7&')’_0(95’, $, €92 Br-q,0(x")
q 1 5 A 3 A (! ’
+5= o K+L2J+q p{ 2( 5T ae Cr o, o(x’, t, ENOLUEY, o(x!, s—t, &)dt

1 - A
= 3 570 E, 0, st €99 Co ol 1, §)t}

We have written
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s, K)={(’, 0)€ Z, X(Z,)"; i'+q|0| —K=i, 650}

Now we choose an arbitrary & such that
(55) O+ e fargu(x) =2 ; 124, vZe, vy, |27]<e}.

If we assume that the solution Uy s of the equation (53);,; can be continued
to a solution on the whole of S, for i/=0, 1, ---, i—1, and J=1, 2, -, g—p,
then F'®, o is a function which is already known on the whole of S,. The
system {(53),s; J=1, 2, -, g—p} is a system of Volterra’s integral equation of
the third kind, and the condition (55) means that we can continue O 0;
J=1,2, -, g—p} to a solution on the whole of Ss. Thus we can extend each

@ 5 on the whole of Sj, inductively. We shall estimate this solution 59X

—1Tw
=U, 0.

PROPOSITION 2. Let 8, —x] satisfy (55). If &, p>0 are small enough,
there exists some constant C>0 such that U (x', s, &) satisfies

(56)1 135'32'0%))(95': S, E/)l
écp-(si+ld+51+J/(Q'P))eXp {‘0_1(1+ IE’ [)(q—p)/qls l}
@ [Z—Zk +IA+5|]! | 5] EHTHQB @D (] 4 | £ )1
E & Gyl P(EEEER] )
q—p

for any 4, 6€(Z.)" and i€ Z,, provided x’, 'eC", |x'|<¢, and s€S,.

PrOOF. It is trivial that (56), is valid. In fact, since U®(x’, 7, §)=7"9",

we have -
—27xsY(e™V"T9s)  J=¢—p,

Q') s, 5’)={
0 J>xq—>.

Now let i=0 be an integer. Assume that (56), -+, (56);-; is true. We shall
prove in Appendix 2 that we then have

(57)1 lag’ag'Fgff))(x” S, E,)l
é(l—l‘ | s [)Cp—(6i+|A+61+J/(q—P))+1eXp {p—1(1+ ‘E'l)(q-p)/ql SH’

([Z__*—qi]"*‘ |A+5|> ! . |S ] (i+J+z+q|5|)l(q—P)(l+ IEI D”q
(k1) i+J+l+qld]
F(———q_—p_—_—l_l)

qi =)
provided |x’|<e.

Admitting this for the moment, we prove (56); with 4=d=0 as follows:
Assume that there exists a point (x’, s, £)=C"=SXC" with |x’| <e, at which
the estimate (56); does not hold with 4=8=0. Choosing such a point (x’, s, §’)
arbitrarily, we fix these points x’€C” and &’C" Deflne §&[0, o] by
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$=inf{]s]; s€S,, the estimate (56); is not valid with 4=06=0}.

$§=r/2 because of (52);. On the other hand, §< oo because of the above assump-
tion. In this way we are led to a contradiction just in the same manner as in
Turrittin [8]. Thus we obtain (56); with 4=6=0. The case (4, 6)=0 can be
proved analogously. Q.E.D.

COROLLARY. Let 0<[x, —x] satisfy (55). If >0 is small enough, there
exists a constant C>0 such that

[Z/qj 1 [ s l [i/¢g-p)]

(58) 00, 5, €)1=Cr st jg oo s HEE S
If Irn(e“jga)>2r'1(l+]E’])‘q"p”q, then the function
(50) UG, 0, €)= 5| o0, 5, £0ds
2m Js,

is well-defined. Furthermore, U@ (x’, o, &) is holomorphic on
2,={(x", 0, ENeC"XCXC™; |x'| <e, Im(eV"T06)>2r (14 |& )y a-migy

Since U (x5, &) satisfies (52);,;, it follows that U D(x’, o, &) satisfies
(41);,; rigidly on £..
In the same way, the function
U, 0, &)= | OG5, &)W T ems
21 Jsy

is also well-defined and is holomorphic on £2,. From (58) it follows that
4]
7
7

(60) [USE (!, 0, N =(@—1DCr?
_rh
[(]‘"PJ )
on £,. Since

0
do

UD (7 N Ei/(q-—p)JU/(i) , ,
A, 0, &)= K, e, 87,

it_follows that

UG, 0, £)|SCrtet@miifq]1| o] 0

on
2:={(x', 0,8)€C"XCXC"; |x'|<e,
Im(e¥"16)>¢| | 4-2r 21+ | & |y @ ig},
We define
(61) U®(x, E)Z?:f({’q[U§?>(x', g, & Jo=glg— D)/ g .

Then U®(x’, &) satisfies (31); rigidly on
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Qe,={(x’, 5eC™"XC™*; |x'|<¢,
Im((eJ—qW(q p)Eu)(q-p)/tz)>27-1(1+‘E/D«;_p),q}’
and there exist some constants C, »>0 such that
62) (U@ (5!, £)| SCr-ifi/q]|&,| (@Dl a-P1a-p1
on
2t ={", §HeC"xC™*; [x'| <,
Im((ev—xqﬁ/(q—p)50)<q—p)/q)>€lgol(q—p)/q+2r—1(l+lE/D(q—p)/q}'

Let us choose a 6 which satisfies (55) and — 5 <0<—3—. Such @ always exists

if we take ¢>0 small enough. It is easy to see that

04,004 ={(x', HECX €5 (x| <s, 0<argo<grn/2g—1),

2r~t \vu@-p ,
6> () a8 D) -
Then (62) means that there exists a £X& matrix U(x’, D) of microdifferential
operators of fractional order defined at £*=(0; ~/—1, 0, -+-, 0), such that

(63) a(U)(x’, é)NZi) Us(x’, &
in the sense of §1. Then from (28);, =0, 1, 2, ---, and (63) we can conclude
(xol +B(x’, D)DEP1U(x’, D)=D{ /U (x’, D)xul,+-B'(x’, D)).

Furthermore we can construct the parametrix of U(x’, D) as follows. From
(62) and (63) it follows that '

64) le)(x’, E)_isgspUﬁ)(xl’ £)| <C7 &, |~ a2

with some C'>0. For /<3¢—3p, we define

— > i DY IPSFEEATACES he
:XS e«/—ms{U{},’)(x s, &) U;”a(x,)( v—15s) E’“}
7]

= J{/((qq—;x%)a 3 (Jfé___%—l)!
X (+/—1s)%ds.
From (62) and (63) we have
Ui, o, £ =C”
with some C”>0. We have
D! By @ (L NEIIE
U (x ’ E)M;(U-J)I(Q—P)z—a,ae(Z+)"U]’a(x )56 qE )

+2 (2 U, 0,8, e—)ia.
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The first term in the right-hand side is of order |&|~¢+¢-»/¢ because %—k ||

=—(+¢—p)/q in the summation, and the second term is of order |&,| (2¢-2»/q,
Thus

(65) lU(i)(xl, E)Iécllllgol—(q—p+1)/q

with some C">0, providéd 1=/<3¢g—3p.. Since U®=&;%"P/7 we can construct
the parametrix of U(x’, D) using (62), (64) and (65), just in the same way as in
Sato-Kawai-Kashiwara [8].
Thus we have transformed the operator
xd,+B(x’, D)
into N
x4+ B {x’, D).

REMARK. Note that U(x’, D) is a matrix of 0Oth order microdifferential
operators of fractional order. This means that we can transform the original
matrix xJ,+A(x’, D) into x..+B’(x’, D) using only matrices of 0th order
microdifferential operators of fractional order. Now we remind the reader the
fact that B'(x’, D) is a diagonal matrix. We shall transform x./,+B'(x’, D)
furthermore into the canonmical form x,/, in the next section. For this purpose
we shall need infinite order holomorphic microlocal operators.

§4. A diagonal matrix of microdifferential operators.

The purpose of this section is to find a matrix V(x’, D) of holomorphic
microlocal operators such that
(ol o+ B'(x', D)V (x', D)=V (x’, D)x,l,
where B’(x’, D) is the diagonal matrix of microdifferential operators of fractional
order introduced in §3. The symbol of B’(x’, D) was given by

oBN, = = Bx', ),

plozjz
where Bj(x’, &) is homogeneous in & of order j.
We denote by #* the point (0; v—1, 0, -+, 0)e+/—1T*R"*, as before.
Define X(x’, Dy)E&F;. by
o{X)(x', E)=exp(X(x’, &) .
Here 2(x’, &,) is a function of the form
2(x, go):. > i%’j(X’)55+3€o(X')10g &,
1— (‘ﬁq()lé%)g (/g

where X,(x’) is a diagonal matrix of holomorphic functions defined on |x’| <e,
which will be determined later.



322 Keisuke UcHIKOSHI

It is easy to see that the parametrix X~Yx’, D,) of X(x’, Dy} is given by
(66) o(XN)(x’, E)=exp(—2(x', &) .

In this paper we always denote by o&(H) the total symbol of a holomorphic
microlocal operator H, and not the principal symbol. (66) is true because

] ) 0
67) TXOG(X):a—Ela(X)z---————a(X)ZO

%,
and ¢(X) is a diagonal matrix.
Now we have

o(X~x', D)B'(x', D)X(x’, Do))(x’, &)
~ f}) 52) 51‘——82,0(){‘1(7&, DB’ (x’, DY)3%. 0(X(x’, De)
=0 1g|=¢ O!
® 1
=2 IEEW% o(B")(x’, £)0%.exp(X(x’, &) X exp(—2(x’, &)).
3= 1=4 O 1
The last equality is valid because of our special situations that all the matrices
are diagonal and that (67) holds.
To investigate this asymptotic expansion more precisely, it is convenient to
prepare the following

LevmMA 5. Let 6e(Z)" and jEZ, satisfy 0=Z7=|0]. Then there exist
holomorphic functions Csi(x’, &) which are defined on {{x'|<e, |&|>1/e} (>0
is a small constant), such that

161
(63) 0% exp(X(x’, &o)= JZ;SCaj(x’, Eoexp(X(x’, &)
and that with some constants C, v>0 we have
(69) ]ag,caj(x" go) ! §C(]AI +]') ! r—xA|—2|5| IEo 1 «g=p) /@ (81~
for any 6, As(Z)" and jEZ,.

Proor. If 0=0, it is enough to define Cypo=1. Let 6=0. Assume that for
any ae(Z,)" satisfying o<, we have constructed the desired function C,;(x’, &),
0=7=|al|. Without loss of generality, we may assume that §,>0. Define
as(Z)" by

a:(51; Ty 57:—1, 5n_1) .
Then we have

0% exp(2(x’, €0))=0,,0% exp(X(x’, &))

151-1
=0.,{ 23 o, E0exp(x (¥, £}

=2 D, Cas(x’, E+Cas(’, £z, E (', E}

Xexp(E(x/, &) .
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We define Caj(x,, Eo), Oé]élalr by

Cadlz,2 if j=0,
Csj=1 05,Ca,j-1TC40.,% if 1=7=10]—1,
02,Co,4-1 if j=10].
The estimate (69) can be proved easily. Q.E.D.
COROLLARY.
(70 Co0=(02,%)4(0,2%)%2 - (0,,%)°n.
Thus we have
o0 151
1) dXB X, O~ Z( 3 3 X', 6)
t=0 \Igl=1 j=0

where we have defined

X', 8= 57 o (B, EXCa', €0).

From (69), it follows that
(72) ‘Xﬁj(x/, S)I écr—lal]' ' [EO] - (DI - 101+ (g~ D) /D (181~ )

with some constants C>0 and »>0.
Defining @,(x’, &), i€ Z,, by

O, 0= 2 X', ©
(71} can be rewritten as
(73) S(XTBX) !, O~ 3 0, 8.

From (72) it follows easily that for any /= Z., we have
[Dx’, E)|SCrtil|§o] = P10t exp(rt(&,| 4P/,
On the other hand, we define ¥, (x’/, &), j=0, 1, 2, ---, by
Tix', &)= 2 Xas(x', 8).
1é1zj
From (72) it follows that for any j€Z,, we have

74 [T i(x", Y ECrI71 & | ~Pin -3,

Thus ilffj(x’, &) defines some holomorphic microlocal operator. Furthermore, it
i=0

also follows from (72) that for any /€ Z,, we have

5) 2 0,7, §— DU, §)] SCrvit [&o]Hexp(r (8, P
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This means that the two operators defined by i@i(x’, &) and by iolffj(x’, &)
i= F=

respectively, coincide. (This fact is proved by Aoki [2].) Now from (74) we
conclude that X-%x’, Do)B’(x’, D)X(x’, Do) is a finite-order microdifferential
operator of fractional order, despite of the fact that X(x’, Do) and X~*(x’, Do)
are holomorphic microlocal operators of infinite order.
From (74) and (75) we have
(X Xz, Do) {xolAB'(x", D)} X(x/, Do))(x', &)

Exﬂ[x_%x(x/y E+To(x, & (mod 0(]&,| @/ -1,

We define Z(x’, &) by
. @-mla
F(x', Eg= 20 Xu(x"EE.
k=1jg
Then from (70) we have
Xso= %(33513%)51.--(6%3@)%32, o(B") (mod 0({&, ] ~t-@/20y)
‘Thus we have

Yo', O= S TP mod (g )

J==(pig}, - (p+1) /g, —

p

where TP (x/, &), —;g j=—1, are some functions homogeneous of order j with

respect to & and which are composed of

Xigpr1dX) s Eiraip(x”)

and a(B){(x’, &).
Now we define X -p4,(x7), -+, Xo(x’) inductively by

xxx'):%af&f'-wxc &, 0)E: 1+ A‘%;Jg%,

Xox)=T§0 (7, &, 06
It follows that
o(X~Hx', Do){xol B’ (x’, D)} X(x', D))(x’, §)
=xol s+ > BiG, O+B"+', &),

J==(plD), —(p+tLy/g, " ~
where BY(x’, §), —%g j=~1, are homogeneous of order ; with respect to &
vanishing at &=0, and B”(x’, §) satisfles

lB”/(X', 5) l éCOHSt. I‘EOI —1—(1/2q).

Let B”(x’, D) be defined by
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o(B")x’, §)= > BIG, 4+ B", £).

J=—(pl®, = (p+1) /g, -
It follows that
e(B")(x’, &)] Sconst. || 421+ 1€7]) .

Thus we have proved the

PROPOSITION 3. Let >0 be small enough. Then we have
(76) Xx', Do){xol o+ B'(x", D)} X(x', Do)=xols+B"(x’, D),
where there exist some constants a>0 and R>0 such that
{7) 108 o(B")(x", &)| <aR™M411§,| -0 -14(14-]£'])
for any 4(Z.)*, on I..

In this proposition, B”(x’, D) is a diagonal matrix of holomorphic microlocal
operators. But this fact is not important. In fact the remainder of this paper is
valid for any x£Xx matrix of holomorphic microlocal operators whose symbol

satisfies the inequality (77).

Now we shall construct a matrix Z(x’, D) of holomorphic microlocal oper-
ators such that

{xol,4+B"(x’, D)y Z{x’, D)=Z(x’, D)xol,
by successive approximation. We define Z®(x’, &), 1=0, 1, ---, inductively by
ZNx', §)=I,

(78) ) 1 & )
ZW(x!, &)= Fgwag'O(B”)(X’, §)0%. Z ) (x’, £)dé&,,

where the summation is taken over {(/, )= Z,.X(Z.)*; '+ |d|+1=i}. We have
the following

PROPOSITION 4. Let e>0 be small enough. Then there exist constants C>0
and r>0 such that ZV(x', &), i=0, 1, -+, are holomorphic on I and satisfy

79 104, Z(x’, §)I§Cjzi% (§°l—j/2‘1]€1'+ {E,I)“jlfo["”j(i—f—i- [A]) 1 pmeintd
on I for any icZ, and d=(Z.)".

Proor. If /=0, the assertion is trivial. Assume that /=1 and that Z©®,
<o, Z9Y satisfy the statement. Let (x/, &) el and &=1&, t<[1, «o]. Then

(x', &, &Yel.. This means that Z D(x’, & is well-defined on I.. From (77),
(78) and (79) it follows that
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[Z¥(x, &)

¢ ) 4 ) ~
—L‘S:ag' a(B")(x’, &, EN04, Z)(x’, &, E)dE,

Tewlt= 41

LSM ad! R—[Al[é—"ol—(llzq>—1—m‘(l+IS/D

Tondrei= 41 )igg

v g |-Ule NS L . -
xc 5 - LIS (g, o | A e |
<aC 3> ROyt —f L LA 6| - 8]
el
el £ |-G+ /2q-1 41
AT o)
-1 [501—(j+1)/2q(1+léll)j+1 v L I 2
§2qaci'+151+1=i(j=o +D! [l 7 —5—1) !)(Y/R)! o
; e ing
zc g [BlECH I g iy 1,
j=1 R
if »<min(R/2, 4ga). Thus we have proved (79) with 4=0. The case 4220 can
be proved in a similar way. Q.E.D.

The inequality (79) means that
129!, ©1SCr 41 6] Hexp {2 &[4/}

on I with some constant C>0 and r>0. Thus there exists a matrix Z(x’, D)
of holomorphic microlocal operators satisfying

{XOII:-*—B”(XI, D)}Z(x/y D):Z(x,} D)XOI:
and

o

o(Z)(x', )~ T ZV(x, §)

i=0
Now we construct the parametrix Z(x', D) of Z(x', D) as follows: We
define Z®(x’, &), i=0, 1, ---, by
Zow!, &=I,
(80) Cos A
S{oa 290, 30BN, E)do.

oo

Zwo(x!, &)=—

i F101+1=1 5!
Just like Z%(x’, &), we can prove that VA Wy’ &), i=0, 1, ---, are holomorphic
on I and satisfy

d ]fo[ﬁlzq(.ll"f‘ IE'D]]EOI—HJ'(Z'_J‘)I L

(81) |Zow!, 9l=CxH

Thus we can conclude that there exists a matrix Z(x’, D) of holomorphic micro-
local operators satisfying

Z(x', D) {xol 4 B"(x’, D)} =xo[.Z(x’, D)
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and
AR WALCHR
We define W(x’, D) by
W', D)=Z(x', D)Z(x’, D).
Then we have
o', O~ Z WO, ),
where
(82) Fow, o= ¥ L

J+EFoI=1 0]

RZI(x!, )05, ZW(x’, &)

Now we have

0 W= _1_

o J+EE01=1 0!
From (78), it follows that
1
j+rFoI=1 0!
= > Lal s Lagra(B”>ag',Z<f'>}az,Z<k>.

JeEEI=i 01 Uraidiei=s 071

S RZOR TP+ B L

j+ETa=1 0!

0% ZP3: 05, 2P,

WAL WAL

From (82), we can prove that the right-hand side of this equation is equal to
1
i +i5T+1=1 0 |

8% a(B")a%, Wan,

Similarly we have

_1_ 3 7o 7k — . i 3 Ari)n8 ”
J+EFBI=1 0] 08 Z90%:0¢,2 7 = i’+!§l—1=i ol 08 W3 o(B").
Thus we have
83) ?__ o= = %{62,o(B”)B‘LW“”—B‘E,W“"ai.o(B”)} :
0 (A +1=% 0 !

It is trivial that W®=1. Assume that ;=1 and that
o — .= -0 =0
6?: W®=0. On the other hand, from (79) and (81) we

0

Then (83) means that

have
. ) | )
(3) | e = A8 (HAd (&)
[W l— j+k§5l=i 51 ag:Z »es. 7
<const. X {|&| Y0014 & )| &, | ~FrRO (1 [£ )R
Jtk+161=1

Zconst. |&, |14 &)
Thus we have W®=0. Now we have proved that
Z(x’, D)Z(x', D)=W(x’, D)=I,.
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Similarly we can prove that
Zx', DYZ(x', D)=I,.
Summing up, we have proved that V(x’, D)=X(x', D)Z(x’, D) satisfies
{xol+B'(x', D}V (x’, D)y=V(x’, D)x,l,

and that V(x’, D) is an invertible matrix of holomorphic microlocal operators.
This proves Theorem 2.

§5. Proof of Theorem 1.

Let u, f€Cs. Using the notation of §2, we define

1 u
1/¢
a=w-ix, D) OV ot
>‘Dérs—l)/: xﬁllu
and
1 0

Dy* 0

Il

.Dél:—l)/z }‘

Then the equation Pu=f is equivalent to (x.I .+ A(x’, D))i= ]? . Applying The-
orem 2 to this equation, there exists an invertible matrix of holomorphic micro-
local operators E(x’, D) such that x,E(x’, Dyu=E(x’, D)f.

It is easy to see that

Ker?m*(xo[x)'—"@@(xo)@B )
and

E-Yx’, D): Kergcss(xol,) =3 Kergeselxol +A(x’, D).
Define 9=W(x, D)i. Then it is easy to see that

Kergei(xol o+ A(x", D)) 3 KerpssP,
" W U

i -

where we have denoted by v; the first element of the & vector o.
On the other hand, Cok¢;«P=0 because Cokgcz«(xol)=0.

Appendix 1. Proof of (38);.

Let i=1. Assume that the estimates (34),, -+, (34);-, are valid. Under this
assumption, we prove the estimate (38);.
Ffo(x") was given by
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U

FO(x"=qg 3* 5‘ (‘35 N Bs(x"0%.U
—g ST 5' ————U“"(x’)a‘l'Bkﬁ(x') .

Here we have retained the notation used in §3. We denote by [, j=1, 2, the
jth term of the right-hand side in this equation. Using (34),, *--, (34);-; and (36)

we have

s 0PNy (g—pylal | 1
Ulléqacz*(g)}gn_]ﬂ,[[hm!(l:( g+ ((q221)2,+q‘jl)f) ] )/(q »

Xr(l—lal)/2—l7’l—-4qi’.
We may assume that R=1. Now we have

'([( I D)t p)IBI]')”w »
Cialdt sy

iIn

(g*+1"+glrD!

( [(q”_g;—p)i—(ﬂ‘l)] ! >1l<q—p>

(g +1Di+glal —(q—zb)) !

( [qz—i—(q—p)(%—{- lo]-+1h 1)—1] ! )1/(q—p>

IA

On the other hand, if r<mm< 3 24 T 4n ) we have

qaC E*ZIﬁth—lﬁlr(l—l5l)/2—17’\—4qi'éqacr(ﬂ-l)/2—1al—4qi+12*(2%)lm(7>xmri |

]' C G+ /2-lal—4gqi+1

<
=2

Thus we obtain
[(q +4= p)z—(;+1>]r 1@
[[1 [ < s r(j+1)/2—lal—4qi+1.
2 (g*+Ditgla|—(g—pN!
Similarly, we can prove
1 ({52 )i—G4n]yren _
[[21 <= > . — pUHD/2-lal-4git]
2 U@+ Ditqglal—(g—pN!

Thus we have proved (38); with 4=0. The case with 420 can be proved in a
Q.E.D.

similar manner.

Appendix 2. Proof of (57);.
(56);-, are valid. Under this assumption,

Let 7=1. Assume that (56), -,
5, the jth

we give the proof of the estimate (57);. We denote by II; j=1, -,
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term of the right-hand side of (54); ,. Furthermore we divide I7; into two parts:
H5:H51+H52 Where :

1
Hsl—_EK-i-L J+g-p wg(1)
hz-1
and
1
H52__%K+L=J+q—p sz'
£-1
Using (47) and (56),, ---, (56);_;, we obtain
C
LIS T2 5 3 explpL+1E/ e s))
i+ k
i +131]!
UL];—@R{L—WIP—(W+|6|+L/<q—p>> Ijz:) l;} LJW/Q]_(H_ |&r| e
glslIt](<111h|—p+ql5I+K)/(<1-p)—1) (IS[ ]t])((i’+L+l)l(q—p)) d[ ]
X . t.
o pfglhl—p+qlo|+K '+ L+
r(ER=EERER)  r(Es)
1
We may assume that R,<1. Now we have L-5{-"6!1—‘g.‘),"“‘”‘”nW'EIhl]! and
\ ‘[Z”’q‘k_*_]m]y [Z—]‘4[/11";‘4]51“*‘13]!—[2’*‘[;‘*‘4}!
Claidt (R 1/e = (R Di1e T (RDYe
Note that
Sm]tl((q\hl-p+q161+K)/(q—p)—1) (is‘___ltl><(i'+L+l)/(q—p)) dl I
. ¢
0 q|h[—p—}—q]5H-K '+ L+
r( +e ) T( a2 +1)
]Si((l-!-.]-l-l)/(q ) +1) [SI((i+J+l)/(q—p)) q_p

P(FEEL ) =(s l)p(z+f+l+1> i

R1 Rl T
B’ et 12><2"q2(q—p)2a1)' Then we have

—p)E R R\~ .
'H”é(l*“lsl)q(q—;zil&%%(;)h(ﬁ) ‘ Ip—(ez 110147 1g-p))

xexp{o 1+ &' D@ P s}

Assume that p§min<

gi-q o I:Z—’_lf]—{—q} {Sl((z«hﬂrl)/(q PI(14|£7)He
X E B Ry P 1)
S S0 Is Do axp (o (L &/ o s )
qi-¢ oo [Z+k+q] Is]((Z+J+l)/<q P))(l_l_‘g’l)l/q
5

k=0 i=0 ((k+4>‘)1/q F(ﬁgj_l,_{_l)
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We can estimate I, -, [1, and I, in the same way using (56),, -+, (56);-;
and (47) or (48). Using (49), we have

| [T £ 98,C ]5| L Rriai14- g7 a-er- ) 1a = (68 41014 L1 (@=2))
2% K+157+q-p xpcty O}
rz-1
% % i l:l -;—k '{‘]5[—1 |s|((i'+L+l+q|B|)/(q—p))(1+‘Ell)l/q
=6 i=o CARL ¢+L4+1+ql0]
rELH —p +1)

x| exp (R 16 )& Pl 4071418 Dol | — ¢} d )

< g% g—p)a,C (&)_15' - (61’ +181+ L/ (g~D))
= 2x(p'—R1Y) K+LZT4g-p mxm\ 7 e
[z—l—k—l—q]
LE i [s|(<t+d’+<q p-K+i)/(g- p)) l'Hf l)((q p-K+b/p
& & (kT A ()
F( q—p +l)

><eXp {p7r A+ &' NP s]}

< S0 |sDpm e exp (o1t €[y am ] )

z-l—k-l—q )
qt—~ i |S|((1,+J+l)/(<1"17))(1+Is’l)l/q
Z=) =0 (( k—l—q)‘)“q F(z-l—f—l—l_H)
Thus we have proved (57); with 4=0. The case with 420 can be proved in a
similar manner. Q.E.D.
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