Some remarks on Dehn surgery along graph knots
By Masaaki U

§1. Introduction.

A knot KCS* is said to be a graph knot when its complement M=S*—Int U(K)
is a graph manifold, i.e., there is a family of disjoint tori T=\UT; in Int M, such
that each component M; of M—IntU(T) is an S'-bundle over a surface, where
U(K), U(T) denote regular neighborhoods of K, T respectively. In this case each
M; is an orientable S'-bundle over an orientable punctured surface of genus 0,
since M is contained in S® (cf. [61). In this paper we give the theorems below
(Theorems 2 and 3) concerning Dehn surgery on graph knots. In § 2 we examine
some properties of 3-manifolds represented by plumbing graphs and characterize
the reduced forms of the graphs which represent Seifert manifolds. In §3, we
determine the types of graph knots by using plumbing graphs and give the
reduced forms of the graphs which represent the given graph knots (Theorem 1).
Finally in §4 we give proofs of the theorems stated below.

For a given knot K let C(p, ¢: K) be the cable of K with linking number p
and winding number ¢ (we assume that ¢=2 and (p, ¢)=1) and let y(K:7) be a
manifold obtained by r-surgery on K where » is a rational number.

THEOREM 2. For a nontrivial graph knot K and a rational number v, y(K:r)
is a Seifert manifold with an orientable orbit surface if and only if (K, r) s in
the following list.

(1) K=C(p, q) the (p, q) torus knot, r=any rational number other than pq.
@) K=C(ps, 12 Clps, ¢2)), r=p1qs+1/s for any s€Z.

() K=C@p1g:+9d, 2: Cps, g1z Cps, o)), ¥=4p1g1+0 where d==x1.

4) K=C(p, 4C(p’, ¢"), r=pg+1'q’.

In cases (1) and (2), x(K, ») is either a lens space or a Seifert manifold with
orbit surface S? and 3 exceptional fibers. In case (3), (X, ») is a Seifert mani-
fold with orbit surface S? and 3 exceptional fibers and in case (4), with 4
exceptional fibers.

REMARK. Cases (1), (2), and (3) are compatible with Corollary 7.4, Theorem
7.5 in Gordon [3], which have been obtained by different methods from ours. In
(1y and (2), the cases when the resulting manifolds are lens spaces are exactly
the same as the cases stated in Moser [7], Theorem 1 in Fintushel-Stern [17], and
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Theorem 7.5 in [3]. See [17, [3], and [7] for the explicit description of the
resulting lens spaces in these cases.

THEOREM 3. Suppose that (K, r) is a non-prime manifold M=DM% - $M,
for a graph knot K and rEQ, where M; is a prime manifold not homeomorphic
to S® for each i. Then k=2 and one of M,’s is a lens space.

In this paper we will assume that all the manifolds and maps are piecewise-
linear and all the 3-manifolds are oriented without otherwise stated.

§2. Reduced plumbing graphs”

Let I" be an integrally weighted graph for plumbing which we call a plumbing
graph. A vertex v of I’ of weight a=Z corresponds to a D*bundle over S* of
euler number 4 and an edge ¢ of weight e=-=1 represents a plumbing whose
intersection number is e. We denote by Pr the 4-manifold associated with /" and
put Mr=0P;. Then M, has a graph structure as follows. Consider the vertex
v of weight a whose valency (i.e., the number of edges which contain v) is 7.
Let I', be the part of I"in Figure 1. Then I, represents a 3-manifold M, which
is constructed as follows. Let B, be an »-punctured 2-sphere, D, be a 2-disk in
Int B,, ¢; for i=1 (resp. ¢o) be a curve 3;B,X* in 0;B,xS* where 0,B, denotes
the 7-th boundary component of B, (resp. a curve dD,X*CadD,XS"), and A be an
St-fiber *xS'CB,XS. We assume that the orientation of ¢,'s and & are induced

by the natural one of B,xS%, so i}oqi is null-homologous in (B,—Int Dy)xX* We

fix the canonical coordinate of 9;B,XS' (resp. 0D,XSY) determined by the
peripheral system {g;, h} (resp. {g, A}) and the coordinate of 9D*XS'CTD*XS!
determined by {8D?x*, *xS%. Then M, with the induced orientation from Mp
is homeomorphic (with an orientation-preserving homeomorphism) to (B.—Int D)
XSl(}} D?x S', where we assume that the orientation of 8D,XS* (resp. dD*XSY)

is induced by the natural one of DyxS! (resp. D?*XSY) and f: 0D, XS'—=0D*x S*
is represented by <_i (l)) Note that the orientation of 0D,XS* is determined

by {—qo, R} here. Then M, is homeomorphic to B,xS* The edge e of weight
¢ corresponds to M,=T? and if the vertices v and v’ are joined by e, then M,
is a component of 9M,, say 8,M,=03,B,XS* (and a component of 9M,, say 0.M,,)
and M, and M, are glued by a homeomorphism g:0;M,—08,;M, represented by

(2 (6)) Note that if we replace the coordinate {g;, A} of 9:M, by {—q:, —h},

1) W.D. Neumann [10] has studied the properties of plumbing graphs in more
general context independently.
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a vertex v

Figure 1.

then all the weights of the edges containing v reverse their signs. We also
consider My with non-empty boundary, in which case I’ is represented as —@),
for example, where — corresponds to a boundary component of M. The
following proposition shows that any oriented graph manifold whose any compo-
nent is homeomorphic to (a punctured S?) XS* is representéd by a plumbing
graph. (The converse is also true.)

ProprosITION 1. (i) Let My be a 3-manifold corresponding to the graph
w—@), where — corresponds to the boundary component 8'Mp=T? Put M=
Mp\J B:XS* for a given homeomorphism g: 8,B,XS'—>0'M represented by (; L;)

g
by the canonical coordinates, where s, t, u and v are integers such that sv—tu=—1.

Then M is represented by the following graph.

0 —1 0 +1a +1a,+1 a_ .a, +1a, ¢

r—1 PN — & r
edges —® ® ¢ ©
,."' ¢ +1 a, +1 a,, - a4, +1 a1 ¢
such that

(- L D D - S, DAY
(e 6D

where u/v=a,—1/a,—1/as— - —1/as=[a,, as, -+, asl, e=~+1 or —1, and all
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the other numbers are integers.

(i) Let M be a manifold obtained from Mp by identifying the two boundary
components by a homeomorphism g:0,Mp—0,Mp represented by (: 1:) where Mr

corresponds to the graph —©— and the edges — represent o.My and 0.Mr.
Then M is represented by the following graph.

a, +1 Qs

where a, a,;, and ¢ are as in (i).

Proposition 1 is easily seen by the construction stated above and so we
omit the proof. (cf. [2], [4] and [11].) In the presentation in (i) and (ii), the
part of the vertex of weight a is inserted only for convenience’s sake. The
weight of the edge is irrelevant unless the edge lies on the cycle in the graph.
Therefore we omit them if the graph is a tree. Note that we can represent M,
for any graph I by a framed link (see [11]). In the remainder of this paper we
assume that all the graphs are trees unless otherwise stated. A graph manifold
My is defined also when the weights of I are rational numbers. The following
two graphs represent the same 3-manifold.

Pplq P PO an
O——o = O—e—>o —o

where p, ¢, ay, -+, e, Z and p/q=[a,, -+, a,] (See [1], [11], [13]). We assume
that any rational number is represented as p/q so that p, ¢g=Z, (p, ¢)=1, and
$=0 from now on. Furthermore there are well-known reduction processes of

I as an integrally weighted graph which do not alter the homeomorphism type
of My as follows (See [117], [13]).

’ a +1 D / a1 b1 Y

1. > —— < } = \ /’I
Vi a 0 b ‘\‘ { 4 a + b \\‘

L -“ > _&— —‘< ; = k‘ >< /

1L
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The following two processes are induced by I and IL

{ I L SN VN
i =2

/,- a [(E— a, b \‘ ‘,’ a I4 bl .
| o=

* 4 N ‘

for some a’, b’'eZ, where [ay, -+, a,]"'€Z in both of the processes.

.

DEerFINITION ([11], [13]). An integrally weighted plumbing graph I is said
to be reduced if no more moves arising from I~III can be performed on it.

DEFINITION 2. A vertex of valency =3 is said to be a multiple vertex. A
linear branch I for a multiple vertex v is a linear subgraph of I" which is
attached to v as follows,

where all the vertices of I are of valency 2 except for the one of the right
hand side which is of valency 1.

DEFINITION 3. A weight of a linear branch Iy for a multiple vertex v is a
rational number [a,, ---, a,]. If this number is an inverse of an integer or equal
to 0, then I3 can be reduced away. Otherwise we call I, an exceptional branch.

In the remainder of this paper we assume that any graph is integrally

. . /
weighted except for linear branches which are represented as F——jo? 7 where p/q
denotes the weight. We examine some basic properties of M, for a plumbing
graph I

PROPOSITION. 2 A graph manifold Mr with OMp+@ which corresponds to
a reduced connected graph I is irreducible.

: .
Proor. We divide I" into the subgraphs \J [; by cutting along some edges
i=1

so that I has at most 1 multiple vertex for each 7. Then Mr, is a Seifert
manifold with boundary since I3 has no linear branch of weight 0 (cf. [14]). If
MpimMpﬂ& @, then it is a torus and we denote it by T, If =1, then Propo-
sition 2 is true by [5], Il Lemma 2.3. Suppose that t=2. If T;; is incompressible
both in Mp, and ij for any ¢ and j, then M=\JMp, is irreducible, and contains
an incompressible torus. If 7';; is not incompressible in Mp, for some i and 7,
then Mr, is a solid torus. Therefore /; has no multiple vertex since any Seifert .
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fibration of a solid torus contains at most 1 exceptional fiber ([5], VI Lemma 3.3).

Then the number of the component ¢ is reduced by 1. Therefore Proposition 2
is proved by induction on ¢.

COROLLARY TO PROPOSITION 2. Let My be as in Proposition 2. Then either
each component of M 1s incompressible or My is a solid torus.

The proof is straightforward.

PROPOSITION 3. Suppose that Mr is a solid torus for a connected reduced
graph I Then I is linear.

PROOF. Proposition 3 is clear by the proof of Proposition 2.

The following two lemmas are necessary for the proofs of Theorems 2 and 3.

LeEMMA 1. Let I be a connected graph (not necessarily reduced). If Mp is

0
not irreducible, then I' is either reduced to ® and hence Mpr=S52XS", or I' is
reduced to a disconnected graph and hence Mp is non-prime.

PROOF. Suppose that there is no linear branch of weight 0 in I. Decom-
pose M as in the proof of Proposition 2. Since M is not irreducible, ¢ must
be reduced by 1 by the previous argument. If t=1, M is a Seifert manifold of
type o, (we use the terminology in [12]). Then M is irreducible unless Mp=

0
S2x St ([12], [15]). But if Mp=S2x S, then I can be reduced to ® (cf. Lemma
5.1 and Satz 5.13 in [11]). Thus Lemma 1 is proved by the reduction process
Il and induction.

LEMMA 2. Suppose that a reduced connected graph I’ contains more than 1

multiple vertices. Then Mp contains an inc'ompressz'ble torus and w(Mr) has a
trivial center.

Proor. We assume that 0M,y=@, but the proof below can be modifled so
that it is also applicable to the case when oM+ @. We take a multiple vertex
v such that it has exactly one non-linear branch. Such a vertex exists since I’
is a tree. We decompose [ as ['=[\UX\JI, such that [} contains exactly one
multiple vertex v, I, contains all the other multiple vertices, and 2 is a linear
subgraph which connects 17 and I, Then My is represented as a union of a

k
Seifert manifold My, Ms=T?XI, and a graph manifold MpzzMAoU(UIMAj)
=

where /, contains exactly one multiple vertex v’ which is the nearest one to v,
and each 4; for j=1 is a non-linear branch of +'. The map =,(0Mr,)—m:(Mr))
induced by the inclusion is injective for both /=1 and 2 by Corollary to Propo-
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sition 2 and Proposition 3. We consider the presentations of z;(Mr ) and m,(M).
Mr, is a Seifert manifold with orbit surface D?, with m-exceptional fibers of
types, say, (a1, Bu), -, (@m, Bm) for some m=2. Then we have the following
presentation of z,(Mp,).
aMr)=1{gs, -, qm, hlgfthfi=1, [g;, h1=1, for i=1}

where we use the notation given in the first paragraph in §2 both for the curves
and for their homotopy classes. Then 7, (Mp)/<h>=Z g - *Z,,, is centerless
since ;=2 and m=2, where <(i> denotes the normal closure of A. Therefore
C(r(Mp))=the center of m(Mr,) is <h> which is infinite cyclic. Similarly we
get

(M) =1gh, -, g B | 783 =1 for k+1=i=n, [q}, h']=1 for i1},

where ¢} (resp. h’) corresponds to ¢; (resp. 2) and ¢} for i=k-+1 (resp. 1=:= k)
is in the boundary of the tubular neighbourhood of the exceptional fiber (resp.
in My,n\M,,). Therefore Clry(M4))=<h’) since (M ,)=(the free group of rank
k) *Z gy, ¥ *Za, (n22). Then 7 (0Mp ) S7:(Mp,) and 7:(0.M4)) S7:(My,) for
any n, (where H<G means that H is a proper subgroup of G). Furthermore it
is easily verified by induction on the number of multiple vertices that 71 (0M )
<Sm(My j) for each 7=1. Next consider =(Mr,). We apply Corollary 4.5 in [8]
successively to nl(Mpz):nl(MAo);}m(MAl jg-o-;"zm(MAk). If =1, we can see
that C(z (M) is contained in an infinite cyclic subgroup of =, (@Mp,)Sm:(Mp,)
generated by h'. If k=0, C(z(Mr,)=<h’> since Mr, =My, is itself a Seifert
manifold. Finally we consider =,(Mp)=n,(Mr1) ;kgnl(M r,) where Z? is contained
in 7,(Mr,) via the inclusion T*X {{ —1} =oMr,CMr, for 1=1, 2, (where T?X {{—1}
CT:xI=Ms). Again by Corollary 4.5 in [8], we get ClelMp)=2*NC(z(Mr.)
NC(@(Mr,). On the other hand M s are glued by a homeomorphism ¢ : M,
—0M, such that G(h)=h'Tq"® for some 7, 6 Z, where h, ¢ (resp. h’, ¢') are the

canonical curves in 0Mp, (resp. in 0Mr,). Therefore if Clzy(Mp))#1, then ¢(h)
£ —=mmmmmmm Cs

=h'*1, This implies that [¢, -, ¢,J=0 where ¥=} @——@—] . (In par-

ticular Ms+@.) But in this case |c¢;[=<1 for some i, which contradicts the
assumption. By the proof above it is easily verified that M contains an incom-
pressible torus. This proves Lemma 2.

COROLLARY TO LEMMA 2. Suppose that I' is reduced and connected. Then
My is a Seifert manifold of type oy if and only if I'is star-shaped.

The proof is straightforward. See also [13].

REMARK 1. We can also obtain Lemmas 1, 2 and this corollary by comparing
Waldhausen’s reduction processes with the reductions of plumbing graphs. But
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the proof given above is of some interest.

REMARK 2. We can also characterize the reduced graphs which represent
Seifert manifolds of type n, by the method stated in Remark 1. To do so, we
examine the reduction processes of Waldhausen [16], 6.2.1~6.2.10 for the graph
structure corresponding to the graph I” which represents a Seifert manifold of
type n,, then apply Satz 8.1 in [16]. The most essential process is the exchange
of the twisted S-bundle over the Moebius band N for the Seifert manifold @
with orbit space D? and two exceptional fibers of weight 2 which is homeo-
morphic to N. @ is represented as

T
—2 ‘

in which the boundary curve 8D?x * is homologous to the S*-fiber of N. Note that

2/(2q+1) b 2 0 0 beg—g—1
= 9 1 .
2/(2¢"-+1) —2

These graphs also represent Q. (The case when g, ¢’=0 or —1 is essential.) We
can see that I’ has the following reduced form if Mr={b, (n,, 2); (@, Bu), =+,
(tr, B}

’_---.~

‘\
‘; y-exceptional linear branches

where @— represents Q for =1, ---, g and the remaining part /I of I' is star-
shaped. The weights are chosen so that if @—’s are replaced by N’s then
their S!-fibers are homologous to the one of My which is a Seifert manifold of
type o,. There are several exceptions in [16], but these are also represented by
the graphs of the form (§) if the graphs are trees except for the case when
Mpr=RP?*RP? or a lens space (cf. [13]).

REMARK 3. If we consider graphs with cycles, there are several other
examples which represent Seifert manifolds. For example, {b, (01, g): (a, B1),
, (a;, B-)} is represented as

with g cycles.
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§3. Representations for graph knots.

Let KCS® be an oriented graph knot (We fix the natural orientation of S3)
and U(X) be a tubular neighborhood of K. By Proposition 1, S*—Int U(K) is
represented by the graph of the form

s vertex v’
\\‘

We denote the vertex which lies on the right hand side of I by v’. Let L be
a framed link associated with I, L, be its component associated with v/, and
my be a meridian of L, which is linked with no other component of L. Then
a tubular neighborhood U(m, ) of m, is naturally contained in M, and (S° K)
=(Mr—Int Ulmy)) thU(K), K) for some homeomorphism h:9(Mp—Int U(m,))

—0U(K). By Proposition 1, I" can be arranged so that s maps a meridian of
oU(m,) to a meridian of oU(K). It follows that the trivial surgery on K is

represented by @—;o =1I"and hence I represents S° Under this condition a
framed link presentation of K corresponding to I” (in which K is represented by
my) is uniquely determined up to framing and orientation. (See Figure 2, in
which the circle denoted by K represents m,.) If U(mn,) is framed by an oriented
pair of a meridian M’ and a preferred longitude L’ in the framed link picture,
then U(m, ) is identified with U(K) so that M’ and L’ are represented by an
oriented pair of a meridian M and a preferred longitude L on dU(K) as follows,

M’'=M, L'=L+¢rM for some integer ¢r.
(Note. ¢ depends on [, but it will be denoted by ¢x once the graph [ is fixed

v
for K.) Then we represent K by the graph of the form @—OK, such that the

ufv
vertex vy corresponds to m, (and hence corresponds to K) and @®—€  represents
u/v-surgery on m, in the framed link picture. (The correspondence between

v
@—OK and a framed link is suggested in Figure 2.) It is easy to see that

u/v '
@—o/ =y(K, u/v+¢r). I' has the weights according to the orientation of

S*—Int U(K) induced by the one of S° and the orientation of K is determined
according to the weight of the edge containing vg. (Consider the associated
framed link.) Furthermore we may assume that the following two graphs
represent the same knot by the link calculus in Figure 2. (We omit the weights
on the edges.)
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Figure 2.
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DV

The graph on the right side is assumed to be determined by the framed link
picture as in Figure 2 and to be framed so that the graph below represents u/v-
surgery on the circle denoted by K in the corresponding framed link picture.

;
{ ufv
1
A

If u/v=oc0, then we ignore it, i.e., we ignore vy in the original graph. Then [}
satisfies the following conditions (cf. [6]),

(i) Iy is a tree. I3 and [ are mutually disjoint for 7+7.
(i) Mp,=S®if we ignore vg.

In this section we obtain a reduced graph for the graph knot K:@-—%K by
applying the reduction processes and their inverses to it. The weights of the
edges in [ are irrelevant since I'is a tree. Finally we will see that the weight
of the edge containing vy is also irrelevant.

PROPOSITION 4. Let I' be a connected graph such that Mp=5® Then for
any multiple vertex v, there are at most 2 exceptional linear branches for v. This
conclusion s valid also when Mp=B?*XS.

ProOF. We can reduce . by the reduction process III so that I’ has no
linear branch of weight 0 without changing the condition about the exceptional
branches. If the number of multiple vertices of I, which we denote by ¢, is
at most 1, then Proposition 4 is true ([5] VL 3.2). If =2, decompose [ as
I so that Mp M, =0Mp,=0Mp,=T* and each I is non-linear. Either
one of Mp, say Mp, is a solid torus. Then I"is reduced to the graph I
which contains [ and #;<tr. On the other hand there is a graph I'” of the

form @_g/q for some p/g=@ such that Mp.=S® and {r.<tp. Thus Proposition
4 is proved by induction on {r. The case when M= B*XS* is similar.

v

Consider the graph knot @—OK. We omit the weight of the edge contain-
ing vg. We assume that @®— is reduced. Let v be the multiple vertex of I’
nearest to vx. Then K is represented as follows,
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where @h— denotes the linear branch containing vy, each @— is a non-linear
branch for i=1, ---, 7, and all the others are exceptional linear branches of v.
Put s=the number of exceptional linear branches of ». Then s=<2 by Proposi-
tion 4. Note that K is unknotted if I" is linear (cf. Figure 2). Therefore we
may assume that I” is non-linear hereafter.

0
Case 1. /, is not reduced to @ if vy is ignored.

Let A’ be the remaining part for \J @-— where vy in 4,C A’ is ignored. Then
izl

M4 must be a solid torus since @— is non-linear for /=1 and M,=S* if vg
is ignored. Therefore it turns out that »=1 and s=1 if r=1 since @— cor-
responds to a manifold which is d-irreducible. Thus K is represented by one of
the following graphs.

0
Case 1. A, is reduced to @ if vy is ignored.

In this case K is represented as follows.

‘(@)
;
;

D
\\

where @— is a non-linear branch such that M,,=S* for each /=L Further-

more k=2 and there is no exceptional linear branch attached to the vertex v.
We can apply the previous arguments to the graph of the form (#%) for

another multiple vertex v {(in this case —@ is assumed to be a graph of the
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is ignored). Then by induction we can reduce the graph to one of the following
types.

! ! 1 Vi
A. i r—— —----I‘H—‘T'O—O—-—O
, | e
5 e — J
13

where [ is a subgraph of I’ as above such that [} is contained in [j,; for
0=/=—-1.

’
4
/

where A; is a non-linear graph such that My=S® for j=1, -+, k. Let I;be a
subgraph as in type A for ;=0, ---, ¢.

In any case, if we ignore vg, I, must be reduced to a linear graph of weight
1/e; for some e,=Z except for I} in case B. The last one must be reduced to

0
— since Mp=S°. In particular I, is reduced away. On the other hand the
graph of the form

r/s a

r/(s—br) a—b i ™

by the composition of reduction processes and their inverses. Thus we can
choose the following representation of K.

can be replaced by

) [)11 ------ bml boy-mmm b, Cy —emem btvz 0 Vi

where [bg1, *++, bus,y, 0, pafgnl=1/e,-y for n=1, -, ¢, and @—o represents S°.
(Note that [bny, -+, bas, 170 since p,=2 for n—-l, -+, t.) Furthermore if K is of
type A, then
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m/m’
[

€y
@ n/n’

where m, m’, n and n’ are integers such that mn'+nm’=e==x1, since

7”/;”' OII ”l/ ",_ If K is of type B, then

= S%
Cy 1/ l) [
o—=e = | for =2,
\\

In any case the above graph gives the presentation of #-fold nontrivial iterated
VK

cable of the knot @ .0 o- This follows from

PRrROPOSITION 2 in [1]. The knot K represented by the graph

e /N bs 0 Vg
H———& —2 -0
plq
where [by, -, by, 0, p/gl=1/e, is the Ox+pdx, p)-cable of the knot
Vi,
1(7; = ¢
where [bs, -+, by]=x/x', xg+px’=0==x1, and ¢x. is an integer defined for the

0 Vi

presentation @—e—0 of K’ asin the first paragraph of §3. (Conversely
any cable is represented as above.)

The knot of type B for =0 is reduced to the graph of the form

(@ vk

]
i
' O
1
1

where @—0 for each 7 gives the presentation of a graph knot K,; which has
the form as above as is seen by induction. Therefore the only possible types of
graph knots are knots in the class generated by the trivial knot under the oper-
ations of connected sum and cabling, all of which are invertible as is seen by
induction. Thus the representation makes sense without the weight on the edge
which contains vg. In particular the above graph represents K # K% --- §K;. It
does not depend on the orientations of knots. Thus we get
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THEOREM 1. (i) K isa graph knot if and only if it is in the class generated
by the trivial knot under the operations of connected sum and cabling. In partic-
ular any graph knot is invertible.

(if)y For any graph knot K, one of its reduced preseniation is given as follows,

7
mim 0 -
L where mn’+m'n=e=-+1
n/n’

for K=C(m, en)

4 bl """""""""""""""" 1234

by 0
2 G—e——e e 1 —0
b/

q
Vg

for K=COlx+pdr., p; K') where K'= @ —e—0 . All the num-

bers are as in Proposition 2 in [1]. In particular

—ap 0 Vg

AR
.

for K=Clo+pgx, p; K')

ll/ v
3) :\ o —
\\
for K=K.% - £K, where ©O——€——»

Mo 0

REMARK. In (2), we can assume that

(iii) The integer ¢ defined for the standard representation of K given in
(ii) (See the first paragraph of this section for the definition of ¢x.) is determined
inductively as follows.

(1) ¢x=emn for K=C(m, en)

@) Pr=p0x+pdr) for K=COx+pdx., p; K

@) ¢gx=¢x,+ - +¢x, for K=K, % - K, for the first presentation in (i),
(3). ¢ for the second presentation depends on b but if we take b=,
it is well-defined and identical to the first case.

REMARK. Theorem 1 (i) has been obtained by [3] by different methods.
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§4. Proofs of Theorems 2 and 3.

In §4 we assume that any graph knot KCS?® is represented by the reduced

u/v
graph given in Theorem 1 and we fix it. Then (X, u/v—{—gbK):@——O/ which
we denote by I'(u/v) (See §3.), where ¢k is defined as in Theorem 1 (iii). We
may assume that v=0.

PROOF OF THEOREM 2. Suppose that I'(u/v) is a Seifert manifold of type o:

for the given knot Kz@—gK and for some u/veQ. First suppose that K=
K.t ---#K, for k=2. Since I'(u/v) must be reduced to a star-shaped graph (§ 2),
it turns out that 2=2, u/v=0, and both of 4, and A, has at most one multiple
vertex, i.e., K is a connected-sum of 2 torus knots. Thus we obtain Theorem 2
(4). From now on we assume that K is of type A or of type B for {=1. We
use the following simple lemma.

LEMMA 3. We assume that p'=2, ¢’ +0.

(i) Supposethat P40 b VYT Pl L PUC o for b Then
p=1, b—b'==1, and p'=2.

’ ’ ’ I4
Gi) Suppose that P2 L U Pl L P e Then
b=b".
(iiiy There are no integers such that P ‘q_g_lé(] = §3 and

pla b g
e—o—o = 5°xS.

The proof is straightforward. (i) is identical to Lemma 5 in [11.

Claim 1. u/v+0.

PRrOOE. Suppose that I(0) is a Seifert manifold (of type o). If t=2, then
the subgraph

Cy bu Cr-1 btl""" thL
@@= = —I o
Pr-1/qi1
bi/a:

must represent S? since I(0) is a sum of the above graph and ®'". Therefore
bis, must be reduced away (§2) and so it must represent S° (Note

that [byy, -+, bes,1#0 by the construction in §3, Theorem 1 (ii) since p,=2.)
Then it follows that I' is of the form



Dehn surgery along graph knots 349

eO b_u e ——— '——51) O U]{
@———-—0—0—---—--——1——-1——4
op
D1/ gi-1
for d=:1, p=2. The following graph must represent S*® by the assumption.
Cq b11 ------- bt-—l,l """"" bt—l,st_l ""51)
H—a—o— -0 — 1
De-1/qe-1

Hence [bsery, =+, bi-1,5,_y, —0P, Pe-1/q:i-1] (0T Leo, by, -+, —0p, pr/gqiliforitype
B, t=2)=0, or 1/w which contradicts Lemma 3 since [b;-11, =+, bs-1,5,-5 O»
bio1/gi-11=1/e;-, (§3 Theorem 1). If K is of type B for t=1, then

and so [eq, by, -+, by, ]=1/w, or 0 (i.e., [by, -, by, J=1/e,. Therefore

s ’

/ e

] for some ¢’ Z (the first case) or
t @

/ 0 —ap

§‘ for d==x1, p=2 (the second case)
\\ @

must represent S® (Theorem 1). Note that in the second case [by, -+, b, 1=1/¢0
and hence K is of the following form. (Recall the first assumption in §4.)

But either one of the graphs does not represent S* (cf. constructions in §3).
The case when K is of type A for ¢=1 is also excluded.

Claim 2. t=2.

Proor. The proof is similar to the one of Theorem 1 in [1]. Suppose that
t=3. Then u=1 since p,;=2 and [b,, -, bes, 1#0.
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G emeemmmem e mas e Ci-1. bu —mpeme——— bLst v ﬁt/(]c
r'im = @—=e-- -—-I s s o3
Pi-1/qe-1
— Bie —
Then &——— @ Y P49« On the other hand, [bu, -, Bus,
0, p./qi]=1/e.-; and v=0. Hence Igl::l.btf‘ = s, v=x1, and p,=2 by
Lemma 3. Therefore ' ‘ ,
- —20 —v 20 ]
I'i/jvy = @— j -———9 (by Theorem 1 (ii).)
’ De-1/Ges
—v 20 —Q2ov+1)/256
Since 6——o0 =6 must represent S% v=-—4 and
—44 Di-1/G:-
(/1) = @reeeeemmnes o Dyt
[ Y —45 /di-
Then it follows that @ N -y p%m - .0

w
or @ , which contradicts Lemma 3.
Clam 3. K is not of type B for t=1.

Proor. If K is of type B for =1, then the subgraph of I'(u/v) of the form

2 /R bes, 0 ufv

])t/ gt
must be reduced to a linear graph of weight 0 or 1/w, where t<2 by Claim 2.
If t=2, then the subgraph is reduced to a linear graph of weight [ey, bi, =+, bisy,
—49, p1/q.] for =21 by the proof of Claim 2. But this case also contradicts
Lemma 3 since [eo, by, -+, bisy, 0, p1/g: =0 by the construction. If =1, then
u=1 (u+0 by Claim 1) and [e,, b1, -+, b1s,, —¥, p1/¢:1=0 or 1/w, which is also
a contradiction since v=+0.

The preceding arguments show that if K is of type A for ¢=2, then p,=2
and u/v=1/v==+1, i.e.,, K=C0-+2¢x, 2; K’) where K’ is any nontrivial cable of
a nontrivial torus knot. In this case I'(u/v) is ¢x-+1/v-surgery on K and it
turns out that §=-v by the proof of Claim 2. Furthermore in this case the
resulting manifold has exactly 3 exceptional fibers by Lemma 3. If K is of type
A and t=1, then u=l, i.e., K=C0x+p¢x., p; K') where K'=C(m, n) and in
this case [(u/v) is a ¢g-+1/v-surgery on K. The case when K is of type A
for t=0 reduces to [7]. Thus if we use Theorem 1 and rewrite symbols, we
get Theorem 2 (1), (2) and (3).
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PrROOF OF THEOREM 3. Suppose that /(x/v) represents a non-prime manifold.
Then K cannot be of type B for 1=0. By Lemma 1 we see that either

€ ~emmeemm e [}

0
Iufv)y = @——@memmmmn —I——e & for some ; or
bilq;

e 0 B0 o
I'ufvy = >__¢ for type A or ': for type B.

In the second case I'(u/v) is either S® (type B) or a connected sum of 2 lens
spaces (type A). Then we only consider the first case.

Case 1. j=2.
e e Y — b, blas
Fufy) = @— ‘> & & e
D51/

Put the first graph on the right hand side as /4. Suppose that M, is not prime.
Then by Lemma 1, [bj, -, b,-sjjzl/w for some w=2Z. Therefore we may
assume by the construction in §3 that '

Vx —-6/)] e; 0 Vx
@O0 = @ -r ------- —r——o (G==1)
Di-1/q5-1 Op; Pl
and
------------- 0p;  Pia/qs- 0p;
/vy = @m=eccemenea- —OJ——J-IOJI—'rOJ.
Butiinzthis case [bj—l,l} Ty bj—l,sj—-p _51).7': p]'—l/QI—l:] (Or [eO: bllr Ty _Ber pl/q1]
for type B, j=2)=0 or 1/w. This also contradicts Lemma 3. Thus M, is prime.
Case 2, j=1.
1fM 4 is non-prime in this case,
- 0 ey byeeeeeeee by '
A = ———— -9 (if K is of type B), or
\\
Qo b11 """""" b]sl

A = &— —9 (if K is of type A)
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would represent a non-prime manifold. But it is impossible in either case since

Ebm o

{11

[21]

[3]
[4]

[5]

[6]
£7]

£8]
£9]

[10]

(11]
[12]
{13]
[14]

[15]
(16]

*, b5, 1#0. Thus Theorem 3 is proved.
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