Semipositive line bundles

By Takao FujiTa

Introduction.

In this paper we want to study semipositive line bundles. As we explained
in [F2], there are several different ways to define the notion of semipositivity.
The strongest one is the semiampleness, i.e., a line bundie L is semiample if
Bs|mL|=¢ for some positive integer m. The weakest one is the numerical
semipositivity, i.e., a line bundle L on a space S is numerically semipositive if
LC=0 for any curve C in S.

Semiample line bundles have many nice properties. For example, the graded
algebra G(S, L)= tE;BO H(S, tL) is finitely generated (see (1.3)). So, it would be

important to find a good sufficient condition for a line bundle to be semiample.
Our theorem (1.10) improves upon Zariski’s famous result in [Z]. Although our
criterion is still too strong, it seems difficult to obtain a better one.

On complex analytic manifolds there is another notion (called the geometrical
semipositivity) based on the real differential (1, 1)-form representing the Chern
class ¢,(L). The significance of this notion lies in the vanishing theorem (4.9),
which is slightly stronger than Kodaira’s original one.

In [F2] we introduced a couple of other notions, but now the cohomological
semipositivity turned out to be equivalent to the numerical semipositivity. This
is a consequence of a strengthened version (5.1) of Serre’s vanishing theorem.
As applications we obtain the results (6.2), (6.5), (6.9), (6.10), (6.12) etc., which
were known in [F2] only in case of characteristic zero.

In the final section we give a generalization of Ramanujam’s vanishing theo-
rem in positive characteristic cases (see (7.5) and (7.8)).

Notation, Convention ond Terminology.

Basically we employ the notation as those in [EGAJ, [Ha 2], [F1] and [F31.
We work either in the category of algebraic spaces which are proper over a
fixed algebraically closed field &, or in the category of compact complex analytic
spaces. An object in these categories will be called a “space”. When we say
simply “space” in a statement, then it is valid in both categories. A variety
means an irreducible reduced space. A non-singular variety is called a manifold.
Vector bundles are identified with the locally free sheaves of their sections.
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Tensor products of line bundles are denoted additively, while multiplicative
notations are used for intersection products of Chow rings. The pull-back of a
line bundle L to a space T by a given morphism 7T—S will be sometimes
denoted simply by L when there is little fear of confusion. Otherwise we usually
write Lo

The author would like to express his hearty thanks to Dr. N. Maruyama,
who pointed out a mistake in the original version of the proof of (5.8).

§1. Semiampleness.

(1.1) DEFINITION. A line bundle L on a space S is said to be semiample if
there exists a positive integer m such that BsimL|=@; i.e., @s[ImL] is gener-
ated by global sections.

(1.2) PROPOSITION. [f L is semiample, then f*L is semiample for any
morphism f: T—S.

This is obvious.

(1.3) THEOREM. For any semiample line bundle L on a space S, the graded
algebra G(S, L):t@oH"(S, tL) is finitely generated.
=

To prove this fact, we introduce several terminology.

(1.4) Given any linear system /A on a space S, we set L=[4]<Pic(S) and
let V4 be the linear subspace of H%S, L) corresponding to 4. By a A-module
system we mean a system consisting of a coherent sheaf & on S, an integer ¢
and linear subspaces M, of H%g[tL]) for each integer t such that the image of
MRV 4 under the natural mapping HAF[ LRV 4— HYF[(¢+1)L]) is contained
in M., for every integer . & is called the associated sheaf of this system. q
is called the degree.

Let R4 be the graded subalgebra of G(S, L) generated by V, Then M=
c@ M, is a graded R module in a natural way. Sometimes M is called a

A-module system. M is said to be bounded if M;=0 for any sufficiently small
integer .

(1.5) LeMMA.  Let M be a bounded A-module system as above. Then M is a
finitely generated R s-module if and only if the natural mapping M,QV 1— M4y
is surjective for any sufficiently large integer t.

The proof is easy. In this case M is called a finitely generated A-module
system. '
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(1.6) LEMMA. Let M be a bounded A-module system as in (1.4) and let
¢:F[—L]1—F be a homomorphism induced by an element § of V4 Set K=
Ker(yp), c=Coker(p) and N,=Im(M,—~HYC[tLT). Suppose that M,=HYF[tL])
and HPYALL=0 for any sufficiently large integer t and that N:@Nt s a

Jinitely generated A-module system. Then M is finitely generated too.

Proor. Set J=Im(p) and I,=H%Y[tL]). Then, for any sufficiently large
integer ¢, M;.,—1, is surjective since HT*Y(A[*L)=0. Hence K,=Ker(M,—N,)
comes from M, ;. This implies K,CIlm(M,..QV —~M,) because €V, On the
other hand, N,..QV,—N, is surjective by (1.5). Hence M,..QV —M,—N, is
surjective. Combining these observations we infer that M,..QV,—M, is surjec-
tive. So (1.5) applies.

(1.7) THEOREM. Let A be a linear system on a space S such that Bs A=@.
Then any bounded A-module system M=@M, is finitely generated.

PROOF. We use the induction on n=dim(Supp(F)), where & is the associ-
ated sheaf of the system M. For any general element § of V,, the induced
homomorphism ¢ : F[—L]—9 is injective by [F3; (1.2)]. Moreover, dim(Supp(C))
<n for C=Coker(p). Take a bounded A-module system F such that MCF and
F.=H%4[tL]) for t»0. Using (1.6) and applying the induction hypothesis we
infer that F is finitely generated. So F is Noetherian module since R, is a
Noetherian algebra. Hence its submodule M is finitely generated.

(1.8) ProoF OF (1.3). Take m>0 such that Bs|mL|{=g. Then, for each
r=0,1, -, m—1, t@H"(S, (tm=-7)L) is a finitely generated |mL|-module system
z0

by (1.7). So the mapping H*S, tLYQHYS, mL)—~HYS, (t+m)L) is surjective for
any sufficiently large integer ¢ by (1.5). This implies that G(S, L) is finitely
generated as an algebra.

(1.9) Problem. Find a good sufficient condition for a line bundle to be
semiample.

Here we prove the following

(1.10) THEOREM. Let A be a linear system on a space S. Suppose that the
restriction of L=[A] to B=Bs A is ample. Then there exists an integer kb such
that Bs|tL|=@ for any t=k. In particular L is semiample.

(1.11) LEMMA. Let things be as in (1.10). Then any bounded A-module system
M=&M, with ¢>0 is finitely generated.

Proor. We use the induction on d=dim V,. If d=0, then B=S and L is
ample. So M,=0 for >0 and the assertion is obvious.
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When d>0, take a general element 6 of V4 and let ¢: F[—L]—F be the
induced homomorphism, where & is the associated sheaf of M. Then %p=
Coker(¢) is supported in the zero-subscheme D of § and we have dim 4,<dim A.
Moreover, X =Ker(p) is supported on a subset of B by [F3;(1.2)], on which L
is ample. Take a bounded A-module system F=¢F, such that MCF and F,=
HYg[tL]) for 0. Then, applying (1.6), we infer that F' is finitely generated.
So F is a Noetherian R module and hence M is finitely generated.

REMARK. If ¢>dim B, we get the same conclusion even if Ly is not ample.

(1.12) LEMMA. Let R be the symmetric algebra of a vector space V of finite
dimension. Seo, R is a polynomial algebra with @ natural grading. Let M= g}o M,

be a finitely generated graded R-module. Then, for any general element & of V,
the multiplication mapping @.: My—M,.. by 8 is injective for every sufficiently
large integer L.

PrOOF. Let P=Proj(R)=P(V). Then there is a coherent sheaf ¥ on P
such that M,=H%P, 9()) for every ¢>0. The homomorphism ¢ : $—%(1) induced
by deV=HYP, o) is injective by [F3; (1.2)]. Hence ¢, is injective for any
large £.

(1.13) Now we prove (1.10) by induction on d=dim V4. Let ¢:Os[—L1-0s
be the homomorphism induced by a general element § of V. Then Coker(¢)=0p
for the zero-subscheme D of § and K =Ker(yp) is supported on a subset in B.
Using the exact sequence 0— X—0s[— L]—J—0 where J=Im(p), we infer that
HYS, ¢—1)L)==HYI[tL]) for any ¢>0, because L is ample on Supp(X). Com-
bined with (1.11) and (1.12), this implies that HY(I[tL])—HS, tL) is injective
for ¢>»0. Hence HS, tL)—H%D, tLp) is surjective and Bs|tL|=Bs|tLp| for
t»0. So, applying the induction hypothesis to A, we obtain the desired con-
clusion.

(1.14) COROLLARY. Let L be a line bundle on a space S. Suppose that Bs|L|
is a finite set. Then Bs[tL|=@ for t»>0 and hence L is semiample.

REMARK. This was proved by Zariski [Z; §6] when S is a normal projec-
tive variety. Our result (1.10) is valid even if S is a non-algebraic analytic
space. However, as a matter of fact, the existence of such a linear system A
implies that any irreducible component X of S is algebraic if XN\B=@.

(1.15) Example. 1t is possible that Bs|tL|x¢@ for infinitely many positive

integers ¢ even if L is a semiample line bundle on a variety V such that L*>0,
n=dim V.



Semipositive line bundles 357

Let L, be a line bundle on a non-singular elliptic curve C such that deg L,
>2. Let L_, be an m-torsion in Pic(C). Let P be the P*-bundle P(LPL-1)
over C, let D, and D_, be the sections of 7 : P—C corresponding to the quotient
bundles L, and L_,, and let H be the tautological line bundle on P. Then the
restriction of H to D; (=C) is L; and D;e |H—=*L_;| for j==41. Given any
positive integer f, we write i=mg--» for some non-negative integers ¢, » with
r<m. Then [tH|=rD_,+A, for some linear system A, with Bs 4,=@. Hence,
although H is semiample and H*>0, we have Bs|tH|x @ for any integer ¢ with
=<0 (mod m).

(1.16) It should be possible to improve (1.10). One might ask: Is L semi-
ample if the restriction of L to Bs|L| is semiample ?
Unfortunately, the answer is No.

Example. Let C be a non-singular elliptic curve and let E. be an indecom-
posable vector bundle on C with rank », deg(E,;)=0 and A%C, E,)=1. Atiyah [At]
shows that such a vector bundle E, exists uniquely for each »=1 and that there
is a non-splitting exact sequence 0—O¢—E,—~E. ;—0 for each r. Let P=P(E,)
and let H be the tautological line bundle on P. Then H contains a unique
member D, which is a section of P—C. Moreover Hp=®p. However, H is not
semiample. In fact, [At] shows that E,=S"Y(E,) for every »=2. Hence h°(P, tH)
=h%C, S E,)=h%C, E,.))=1. So |iH|=tD and Bs|tH|=D.

(1.17) DEFINITION. Given a line bundle L on a space S, by SBs(L) we
denote the intersection QBs[tLI, which is a Zariski closed subset of S. This
0

will be called the stable base locus of L.
Using this notion, we will prove a variant (1.19) of (1.10).

(1.18) PROPOSITION. For any line bundle L on a space S, there is a positive
integer m such that Bs|mL|=SBs(L). In particular, L is semiample if and only
if SBs(L)=@.

PROOF. Assuming the contrary, we will derive a contradiction. Let B=
SBs(L) and B,=Bs|tL| for each positive integer . Set n;=dim(B,—B) and let
7, be the number of irreducible components of B, of dimension #, not contained
in B. Take a general point x on one of such components. Then x& B and
hence x& B, for some u>0. Clearly B;,CB;B,. Hence n,,=n,. Moreover,
if nu=n,, then 71, <ri. S0 (Mew, rw)<(n:, ¥¢) with respect to the lexicographical
order. Repeating similarly we find a sequence (7, 1)> (Miuy 7tu) > (Pruw, Fruw) >
of infinite length, which is impossible.

(1.19) THEOREM. Let L be a line bundle on a normal variety V. For any
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connected component X of SBs(L), the restriction of L to X is not ample. In
particular, SBs(L) has no isolated poini.

PRrROOF. By virtue of (1.18) we may assume Bs|L|=SBs(L). Let & be the
subsheaf of ©,[ L] generated by global sections. Then J=8[—L] is an Op-ideal
which defines a subscheme B such that Supp(B)=Bs|L|. We will derive a
contradiction assuming that Ly is ample. Let & be the ©,-ideal of the subscheme
B—X and let f:T—V be the blowing-up of V with center . So &=f*T is
a principal @r-ideal defining a Cartier divisor £ on T lying over B—X. More-
over, f¥|L{=E-+ A for some linear system A on 7' such that Bs A=f"X)=X.
Then [A] is semiample by (1.10). So Bs|mf*L|=E for some m>0. On the
other hand, Bs|mf*L|=Bs(f*|\mL])=f"*Bs|mL|)=f"YSupp(B)Df(X) since
V is normal. This contradiction proves the assertion.

(1.20) THEOREM. Let f:V—W be a surjective morphism from an irreducible
space V onto a normal variety W. Then SBs(f*L)=f"YSBs(L)) for any line
bundle L on W. In particular, L is semiample if so is Ly=f*L.

PROOF. 1t is clear that SBs(L,)Cf~(SBs(L)). In order to show the converse,
let V—S—W be the Stein factorization of f. Since g«Oy=0g¢ for g:V—S5, we
have |tL,|=g*|tLs| for any ¢ and hence SBs(L,)=g YSBs(Ls)). Thus we
reduce the problem to the case in which f is finite. Moreover, we may assume
that V is a normal variety. Indeed, if v:V—V is the morphism from the
normalization of V,eq, then SBs(Ly)=(f *v)~%SBs(L)) implies SBs(Ly)=f~"YSBs(L)).
Our proof proceeds in several steps.

Step 1, the case in which W is the quotient of V with respect to an action
of a finite group G. Suppose that there is a point x on V not in SBs(Ly) such
that y=f(x)eSBs(L). For any c=G we have ¢(SBs(Ly))=SBs(L+) since ¢*Ly
=Ly. Hence o(x)&SBs(Ly). We may assume SBs(Ly)=Bs| Ly| by (1.18). Then,
for a general o= H(V, Ly), we have p(o(x))>0 for any o&G. Set (D:q@ago"

eH(V, gLy) where g is the order of G. Then @= f*¢ for some ¢ = H'W, gL)
because @ is G-invariant. By construction @(x)30, hence ¢(y)=0, contradicting
y<=SBs(L).

From now on, we treat the algebraic and analytic cases separately. First
we consider the problem in the algebraic category. Let &) and W) be the
fields of rational functions on V and W respectively.

Step 2 in the algebraic case, where &(V)/&(W) is a separable extension.
There is an extension of flelds F/8(V) such that F/R(¥V) is finite and Galois.
Let X be the normalization of W in F. Then the morphism g: X—W is factored
through V since f is finite. We have SBs(Ly)=g %SBs(L)) by Step 1. This
implies SBs(Ly)=f"%SBs(L)) since the former contains the image of SBs(L x).
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Step 3, where R(V)/S(W) is purely inseparable. By a similar technique as
above, we reduce the problem to the case in which f is the Frobenius morphism
F, that means, V is isomorphic to W as an abstract scheme and F is defined on
any affine open subset U=Spec(R) of this scheme by F*¢=£&? for every £€R.
(Warning : Usually V is not isomorphic to W as a f-scheme.) Then, for any
e HYV, tLy), we see that ¢® comes from H°(W, tpL) via F* where p=
char(®). This implies SBs(L;)=f"YSBs(L)) similarly as in Step 1.

Step 4, general cases. Let F be the separable closure of KW) in &V) and
let Y be the normalization of W in F. Then f is factored through ¥. Our
assertion is valid for Y—W by Step 2 and also for V—Y by Step 3. Therefore
it is valid for f.

Thus we complete the proof in the algebraic case. Next we consider the
analytic case. Using the desingularization theory we take a non-singular model
g:M—-N of f:V—W. Then SBs(Ly) and SBs(L ) are the inverse images of
SBs(Ly) and SBs(Ly) respectively since V and W are normal. Replacing further
M by Specan(g+Ox), we reduce the problem to the case in which W is non-
singular, V is normal and f is finite. Let B be the branch locus of / and set
U=W—B. Then fy: f{U)-U is an étale morphism. Let H be the subgroup
of 7 (U) corresponding to fy, that is, the image of z(f~XU)). Take a subgroup
N of H such that N is a normal subgroup of =,(IU) and that G=r,(U)/N is a
finite group. Let U’ be the quotient of the universal covering [/ of U by the
natural action of N on /. Then we have a natural étale morphism f7:U'—-U
which makes U the quotient of U’ by the natural action of G. By construction,
St factors through f-(U). Now, thanks to [GR], we have a finite morphism
f V=W from a normal compact variety V'’ such that its restriction over U is
nothing but f. Then f’ factors through V. Moreover, we see that the action
of G on U’ is extended holomorphically to ¥V’ and f’ makes W the quotient of
V’ with respect to this extended action. Hence SBs(Ly.)=(f")"'SBs(L) by Step
1. 'This implies SBs(Ly)=/"%SBs(L)) similarly as in Step 2 in the algebraic
case. Thus we complete the proof.

(1.21) The above assertion would not always be true if W were not normal,
In fact, if f:V—W is the normalization of a rational curve W with a node and
if L is a non-torsion element in Pic,(W)= G, then SBs(L,)=@ while SBs(L)=W.

§2. Numerical semipositivity.

(2.1) DEFINITION. A line bundle L on a space S is said to be numerically
semipositive (abbr.: n-semipositive) if L7X=0 for any irreducible reduced sub-
space X of S, where r=dim X.
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(2.2) PROPOSITION. For any morphism f:T—S, f*L is n-semipositive if so
is L on S.

This is obvious. It is also clear that any semiample line bundle is n-semi-
positive.

(2.3) PROPOSITION. Let f:T—S be a surjective morphism between algebraic
spaces. Then a line bundle L on S is n-semipositive if so is f*L.

PrOOF. Let X be an irreducible reduced subspace of S. We should show
L' X=0 for r=dim X. Replacing T by f%X) if necessary, we may assume
that S=X. Furthermore, we may assume that T is a variety. By Chow’s
lemma, there is a projective variety V together with a birational morphism
z:V—T. If dimV>r, then a general hyperplane section H of V is mapped
onto X by fow. Replacing V by H and repeating this process if necessary, we
reduce the problem to the case in which dim V=r. Then (L,){V}=deg(f)-L"X
>0 since Ly=x*(f*L) is n-semipositive. So L"X=0 because deg(f)>0.

(2.4) PROPOSITION. Suppose that S is projective and let A be an ample line
bundle on S. Then A+L is ample for any n-semipositive line bundle L.

For a proof, use the criterion of Nakai [N].

(2.5) COROLLARY. Let Ly, -, L, be n-semipositive line bundles on an algebraic
variety S with dim S=n. Then L,--- L,{S}=0.

PrROOF. By virtue of Chow’s lemma we may assume that S is projective.
Take an ample line bundle 4 on S. Then A-+tL; is ample for any :=0 by (2.4).
Hence (A-+tLy) - (A+tL){S} >0 for any i=0. Letting ¢{—co, we infer that
Ly L,=0.

(2.6) COROLLARY. Let Ly, -+, Ly, L, -, L}, be n-semipositive line bundles
on an algebraic variety V with dim V=n. Suppose that there exists a positive
integer m; for each j=1, -, n such that |my{L;—L})|*@. Then Ly L, {V}=
Li--- L,{V}.

PRrROOF. Because of the birational invariance of the intersection numbers we
may assume that V is normal. Take a member D of |m,(L,—L3)| and let
D=3 §,D; be the prime decomposition of D as a Weil divisor. By (2.5) we have
LyL,  {D}=X6;L,L,1{D;}=0. So Ly-- L,=L,- L,_1L;. Similarly we
obtain Ly L, Lh=L, Ly Lh Ly==L,Ly--- Lp=L{--Ly. Thus we
prove the desired inequality.
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(2.7) THEOREM. A line bundle L on an algebraic variety V is numerically
semipositive if LC=0 for any curve C in V.

This very useful criterion is due to Kleiman [K1J]. A proof can be found
in [Ha 1; p. 34] too. In fact, all the elementary numerical properties of semi-
positive line bundles were established by Kleiman.

§3. Index of positivity.

(3.1) DEFINITION. Given a numerically semipositive line bundle L on an
algebraic variety V, we define o(L) to be the maximum of the dimensions of
subvarieties X of V' such that L™ X>0 for r=dim X. Clearly 0=Z¢(L)=n=dimV,
and ¢(L)=n if and only if L*>0. Sometimes ¢(L) will be called the index of
positivity of L. As we will see later, this is a numerical version of the Kodaira
dimension (L, V) (cf. [I] and [F3]).

REMARK. This formulation does not work well on non-algebraic complex
analytic varieties.

(3.2) PROPOSITION. Let f:W—V be a morphism between algebraic varieties
and let L be an n-semipositive line bundle on V. Then o(Lw)<e(L). Moreover,
the equality holds if f is surjective.

Proor. For any subvariety Y of W with dimY=r>o(Ll), Z=f(Y) is a
subvariety of V. If dimZ=r, then L'Y=L"Zdeg(fy)=0 since L7Z=0. If
dim Z<r, then LY =0 since (Lz)"=0 in the Chow ring of Z. In either case
LY =0, which proves o(Ly)=<o(L).

In order to show the second assertion, let X be a subvariety of ¥V such that
dim X=0(L)=0¢ and L°X>0. By an argument as in (2.3), we find a variety T
together with a morphism g: T—W such that dim T=0 and (f-g¥T)=X. Re-
placing T by g(7T) if necessary, we may assume that g is an inclusion. Then
(L) {T}=L%=L°{X} -deg(T—X)>0. This implies o¢(Lw)=0.

(3.3) THEOREM. Let L be an n-semipositive line bundle on a projective variety
V with n=dim V. Then, for any ample line bundle AonV, LA 7"=0 if r>o(L)
and LTA >0 if r=Zo(L).

PrROOF. Replacing A by mA with m»0 if necessary, we may assume that
A is very ample. Taking general hyperplane sections successively (n—r)-times,
we obtain a subvariety ¥ of V such that dim Y =r and L7A*"=L"Y. So LTA®"
=0 if r>o(L).

We will prove the second assertion by induction on n—r. L*>0 if ¢(L)=n.
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So we may assume »<n. We may further assume that V is normal. Let X be
a subvariety of V such that dim X=¢(L)=¢ and L°X>0. For m>0, we have
a member D of |mA]| such that XCD. Let D; be a prime component of D
containing X. Then o(Lp)=zo. So mL A*"=LrA»"{D}= LTA"*{D;} >0
by the induction hypothesis. Thus we prove LA ">0 for r=¢(L).

(3.4) COROLLARY. Let L and H be n-semipositive line bundles on an algebraic
variety V. Suppose that HXV, mL—H)>x0 for some positive integer m. Then
o(LY=0o(H).

For a proof, use (2.6). Note that we may assume that V is projective by
virtue of Chow’s lemma and (3.2).

(3.5) THEOREM. Let L be a numerically semipositive line bundle on an alge-
braic variety V. Then k(L, F)<o(L) for any coherent sheaf F on V. In partic-
ular, &(L, VY<o(L).

For a proof, we recall the following

- (3.6) THEOREM. Let L be a line bundle on a normal variety V such that t=
(L, V)20, i.e., |sL|x@ for some positive integer s. Then, there are a normal
variety V' together with a birational morphism =:V'—=V, an effective Cartier
divisor E on V' and a linear system A on V' such that

a) z*|mL|=E+A for some positive integer m,

b) Bs A=@ and dim W=&(L, V), where W is the image of the rational
mapping O defined by A,

¢) any generic fiber F of @ is an irreducible space with (Ly, F)=0.

For a proof, see [F3; (3.8) and (3.11)].

(3.7) PrROOF OF (3.5). Similarly as in [F3; (2.5)], we use the Noetherian
induction on Supp(Z). In view of the arguments in Steps 2, 3, 4 of [F3; (2.5)],
we infer that it suffices to consider the case $=0,. Then, we may assume V
to be normal by virtue of (3.2).

Let things be as in (3.6) and set H=[A]=0*04(1). Then H is n-semiposi-
tive and o(H)=dimW=«(L, V) by (3.2). On the other hand o(L)=0o(z*L)=
o(H) by (3.4). So x(L, V)=¢(L) as required.

(3.8) Suppose that L is semiample. Take m>0 such that Bs|mL|=@ and
let W be the image of the rational mapping defined by |[mZL|. Then we have
o(L)y=dimW=«(L, V). However, for a general n-semipositive line bundle L, the
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equality ¢(L)=x(L, V) is not true.

Problem. Find a good sufficient condition in order that o(L)=&(L, V).
Later we will see that #(L, V)=dim V if ¢(L)=dim V.

(3.9). Example. Let P and H be as in Example (1.16). Then H is n-semi-
positive and ¢(H)=1. But x(H, P)=0.

(3.10) Example. Let C be a non-singular elliptic curve and let L be a non-
torsion element in Pic,(C). Then ¢(L)=0 and (L, C)<0.

(3.11) LEMMA. Let L, and L, be n-semipositive line bundles on algebraic
varieties V, and V. respectively. Let w; be the projections from V=V XV, onto
Vi and let L==¥L,+rfL,. Then L is n-semipositive, o(L)=a(L)+0o(Ls) and
&(L, V)=&(L,, Vi)+u(L,, Vs) where we define k=—co if £<0.

Proof is easy.

(3.12) LEMMA. Let L be an n-semipositive line bundle on an algebraic variety
V. Let P=P(L@Oy) and let H be the tautological line bundle on P. Then H is
n-semipositive, o(H)y=o(L)+1 and x(H, P)=x(L, V)1, where we define x=-1 if
£<0.

PROOF. Let D be the divisor on P corresponding to the subbundle ©,. Then
De|H| and (D, Hp)=(V, L). So H is n-semipositive by (2.7) and o(H)=¢(L)+1

by (3.3). Using A%P, tH)=h"(V, S{LEOy)= é h“(V, 7L), we obtain x(H, P)
=g(L, V)+1L

J=0

(3.13) Combining the above examples and lemmas we can construct examples
with various values (o, k) such that r<gs<dim V.

§4. Geometrical semipositivity.

In this section we work in the category of complex analytic spaces. Although
the results here seem to be more or less known to experts, we present outlines
of our proofs for the sake of the convenience of the reader.

(4.1) DEFINITION. Let ¢ be a real differentiable (I, 1)-form on a complex
manifold M. We define a Hermitian form ¢, on the tangent space T# of M at
PEM in the standard way. ¢ is said to be semipositive (resp. positive) if ©p 18
positive semidefinite (resp. definite) at every point p on M. In this case the
number of positive eigenvalues of ¢,, denoted by a(pp), is a lower semicontinuous
function on p. We define a(go)zl\ﬁé}lw(gop). So, there is a non-empty open
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subset U/ of M such that o(p,)=0c(p) for any pel.

(4.2) DEFINITION, A line bundle L on M is said to be geometrically semi-
positive (abbr. g-semipositive) if the real Chern class ¢;(L)z can be represented
by a semipositive real (1, 1)-form in terms of De Rham isomorphism. Note that
L is ample if and only if ¢,(L)r can be represented by a positive (1, 1)-form.

(4.3) LEMMA. Let f: N—M be a holomorphic mapping between complex mani-
folds and let ¢ be a semipositive real (1, 1)-form on M. Then f*p is semipositive
and o(f*p)<a(p). Moreover, the equality holds if f is surjective.

PrOOF. For any x€N, (f*¢), is the pull-back of ¢, by the natural mapping
TY¥—T¥, where y=f(x). Hence this is positive semidefinite since so is ¢,.
Moreover o((f*@))<0o(py). So a(f*p)=alp).

If f is surjective, there is an open dense subset V of M over which f is
smooth. Take a point yeUNV where U is as in (4.1) and take xe fy).
Then T¥—-T¥ is surjective and o(f*@))=0(p,)=0(p). This implies o(f*¢)
=o(p).

(4.4) LEMMA. Let @y, -+, ¢n be semipositive (1, 1)-forms on M as in (4.1),
where n=dim M. Then SM$01/\"'/\SD7'L§O.

PrOOF. For any point y on M, the Hermitian form (p5y on T=T%¥ is posi-
tive semidefinite for each j. So the tensor product of them defines a positive

semidefinite Hermitian form on T€", the restriction of which to 7\TCT®"
corresponds to (g1 A+ A@a)(»). Hence (@iA--A@n)(9)=0 for every yeM. This
implies our assertion.

(4.5) COROLLARY. Let W be a subvariety of M with dimW=r and let
Ly, -, L. be geometrically semipositive line bundles on M. Then L. L. {W}=0.
In particular, any g-semipositive line bundle is n-semipositive.

ProoF. Take a non-singular model N of W. Then L, L, {W}=L,-- L, {N},
the latter is non-negative by (4.4) and (4.3).

(4.6) LEMMA. Let ¢ be a semipositive (1, 1)-form as in (4.1) and let w be a
positive (1, 1)-form on M. Then I:SMgo’/\a)(""”ZO if r>olp) and I>0if r=o(p).

PROOF. Similarly as in (4.4), we prove this lemma by techniques of linear
algebra at each point of M.

(4.7) COROLLARY. Let ¢ and ¢’ be semipositive (1, D-forms as in 4.1) on a
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Kdhler manifold M. Then o(p)=0le’) if ¢ and ¢’ are cohomologous to each
other. '

(4.8) DEFINITION. A complex analytic space S is called a Fujiki space if
there exists a surjective morphism f: M—S from a Kéhler manifold M onto S.
In particular, any algebraic space is a Fujiki space.

For any g-semipositive line bundle L on a Fujiki manifold N, we define (L)
to be o(p) where ¢ is a semipositive real (1, I)-form representing ¢,(L)z. By
(4.3) and (4.7) this is independent of the choice of ¢ and hence o(L) is well-
defined. When N is algebraic, this definition coincides with that in (3.1) by
virtue of (3.3) and (4.6).

(4.9) The highlight of this section is the following

THEOREM. Let L be a g-semipositive line bundle on a Fujiki manifold M.
Then HYM, —L)=0 for any q<o(L).

We outline a proof based on the harmonic theory. Recall first the following

(4.10) THEOREM. Let f:N—M be a surjective morphism between Fujiks
manifolds. Then the natural mapping H? UM, E)-H? YN, f*E) is injective for
any vector bundle E on M and any integers p, q.

Proor. Clearly we may assume that N is Kihler. Let £ be a Kéihler form
on N and fix a Hermitian metric on M and a Hermitian norm of E. Let
AP UM, E) (resp. 7 9M, E)) denote the space of E-valued differentiable (resp.
harmonic) (p, ¢)-forms on M. Note that the dual bundle EY of E becomes a
Hermitian bundle in a natural way, so we have 4™ 2"~ }M, EVYC A™~? "~ M, EV)
for m=dim M. Let w be the positive (1, 1)-form corresponding to the Hermitian
metric on M and let ||| denote the pointwise Hermitian norm induced on
APYM, E) (cf. [KM; p. 93]). Then we have a natural conjugate linear mapping
% 947 M, E)y-g™Pm UM, EV) such that oAQ@e)=|e@@)e™/m! (cf. [KM;
p. 105]). In particular, ¢ A(2¢)>0 on a non-empty open subset I of M if ¢0.

‘Then, by a similar method as in (4.4) and (4.6), we obtain 0<SN]‘*(§0/\(# PHALE™
:SN(f*go)/\(f*(#go))/\Q”“"‘, where n=dim N and we regard f*o&A? YN, f*E),

f*Ep)e Am 27N, f*EY). It suffices to show that f*¢ is not cohomologous to
zero in terms of Dolbeault cohomology. If so, we would have ¢ = A? YN, f*E)
such that f*p=20¢. Then [*¥eA*EE)ANLD"™=d(PN[*EQ)ALQ™) =
dPA f¥Ee) NL™"™) since both f*($¢p) and £ are d-closed and O A f*Ep)AQ* ™™
e A= (N). Hence the integration of this form over N must be zerc by Stokes’
theorem. This contradicts the preceding inequality.
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(4.11) PROOF OF (4.9). Our method is a modification of the argument in
[KM; p. 125, Theorem 7.1]. In fact, we may assume that M is Kéhler by virtue
of (4.10).

By Serre duality it suffices to show HYM, K¥+L)=0 for ¢>n—a(L), where
n=dim M. Take a Hermitian norm of L such that its curvature form 2 is semi-
positive (cf. [KM; p. 128, Theorem 7.4]). Let U be the non-empty open set
such that ¢(2.)=0(L) for every x<U. Following the calculations as in [KM;
p. 126] where 2 corresponds to the Hermitian matrix X.;—R35, we obtain
030 Dty 151 Do Xeo—Re)Garfy Bagorpo @170 P00 /010 for any o€
HOYM, K¥LL). For each xe M, we take a coordinate system (2%, ---, 2") on a
neighborhood of x such that g.z(x)=6d,s and (X:;—R;:)(x)=0,.d, with d,>0 for
0=c(2;) and d,=0 for ¢>0(2;). The volume element integrated above is of
the form ¢I(x)o"/n!, where I(x)ZEAq_I,,,d,,go‘“‘q-l'goT“iFlzo. Hence I(x)=0 for
every x€M. If x<U, this implies p4e(x)=0 unless o(L)<e; for each j=1, ---,
g. Therefore, if ¢>n—a(L), we obtain ¢*e¢(x)=0 for every x €U and A=(ay, -,
ag). This implies ¢#4e=0 on M because ¢ is harmonic.

(4.12) CONJECTURE. Let f: M—V be a surjective morphism from a Fujiki
manifold M onto a space V. Then Rifswy=0 for any ¢>dim M—dim V, where
=0 (K¥) is the dualizing sheaf of M.

(4.13) PROPOSITION. (4.12) 7s true when V is projective.

PROOF. Set 4¢=R!f,wy and take an ample line bundle A on V. For any
sufficiently large integer ¢ we have H?(V, £ tA])=0 for p>0. So, using the
Leray spectral sequence, we infer HY(M, K¥+1Ay)=HV, 4 tAY). By (4.9)
and the Serre duality, this vanishes for ¢>dim M—dim V since f*A is g-semi-
positive and o(f*A)=dim V. Hence #?=0 because A is ample.

(4.14) CONJECTURE. Any n-semipositive line bundle on an algebraic manifold
is g-semipositive.

This would be useful in the study of n-semipositive line bundles because then
we can enjoy the power of differential geometry. One of the strongest evidence

of this conjecture is the following remarkable result of Kawamata [Ka] and
Viehweg [V]:

(4.15) THEOREM. Let L be an n-semipositive line bundle on an algebraic mani-
fold M. Then HYM, —L)=0 for ¢<o(L).

(4.16) CONJECTURE. For any surjective morphism f : M—N of complex mani-
folds and any line bundle L on N, L is g-semipositive if so is f*L.
Of course, this would follow from (4.14) if things are algebraic.
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§5. Cohomological semipositivity.

(5.1) The purpose of this section is to prove the following

THEOREM. For any ample line bundle A and any coherent sheaf F on a
projective scheme S, theve exists an integer k such that H{G[tA+L])=0 for any
g>0, t=k and any n-semipositive line bundle L on S.

Of course, the point is that & can be chosen independently of L.

(6.2) By VY%, A) we denote the assertion that there is an integer % having
the above property. Clearly V&, A) is true if so is VI(F[jA], mA) for every
j=0,1, -+, m—1, where m is a positive integer. Therefore, in order to prove
(5.1), it suffices to prove Vg, A) for any very ample line bundle A.

From now on, we consider the problem for a fixed very ample line bundie
A and write V&) instead of V¥(&, A). We say that V(&) is true if so is V(&)
for any positive integer g.

(5.3) LEMMA. Let 0»F—@—H—0 be an exact sequence of coherent sheaves
on S. Then

1) VYg) follows from VUF) and V(4).

2y VUH) follows from VUG and VIH(F).

3 If ¢=2, VUTF) follows from VUgG) and VI(.4).

Proof is easy.

(5.4) LEMMA. Let ¢: F[—A]—9 be a homomorphism. Then VUF) follows
Jrom Vi'(Coker(¢)) and ViKer(p)) for any ¢=2.

PrROOF. Take an integer & such that H2-*(Coker(p)[t A+L1)=H%Ker(¢)[tA+L])
=0 for any t=%k and any n-semipositive line bundle L. Then we have
AM(GLE—DA+ L) = i (Im{p)[tA+ LT < h2(F[tA+L]) for every t=k. Hence
RFHATFLDERAF DA+ LDZ - S h(FTu A+ L1)=0 for u>0 because A is
ample. This shows V4 ).

(5.5) For a subvariety V of P=PV with dimV=n, we define w,=
Exty " (Oy, wp), where wp is the canonical invertible sheaf =@ (—N—1)of P. It
turns out that w, depends only on the intrinsic structure of ¥V and not on the
embedding VCP. For a proof, see [F3; §1]. Indeed, wy is nothing but 9*(@y)
under the notation in [F3]. For a while wy will be called the “dualizing ”
sheaf of V.

(5.6) LEMMA. 1) For any coherent sheaf ¢ on V, Homp(F, wy)=ExtE~"(F, wp),
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the latter being dual to HM) by the Serre duality on P.
2) There is a surjective homomorphism H™(V, wy)—ExtE(Oy, wp).

PrROOF. We use the spectral sequence with EP9=H?(P, &xt}(F, wp)) con-
verging to ExtB*Y<F, wp). For any g<N—n we have &xt},(F, wp)=0. Hence
ExtF-™g, op)=H(Ext§;™F, wp)). Next we use the spectral sequence of sheaves
with &P 1=¢xt8 (F, Exth(Oy, wp)) converging to ExtfLiF, wp) (compare, e.g.,
[CE: p. 348, Case 4]). We have &xt3,(0y, 0p)=0for g<N—n. So Exth™(F, wp)
=EY V"2 Homo (F, wy). Combining these observations we obtain Ext¥ ™, wp)
~Hom (¥, wy). This proves 1).

To prove 2), we use the spectral sequence with E%%=H?(P, &xt}, (O, wp))
converging to Ext%40y, wp). We have E%7=0 for ¢<N—n similarly as above.
On the other hand, [F3; (1.14)] implies dim(Supp(&xt§;™t (O, wp)))<n—j for
each 7>0. So EZ¥-P=0 unless p=n. Hence ExtE(Op, wp)=EX¥-", which is
a holomorphic image of E¥-"=H™V, wy). Thus we prove 2).

(5.7) COROLLARY. Let f:V—W be a surjective morphism between projective
varieties V, W with dim V=dim W=n. Then there is a homomorphism ¢: fxwy
—ww such that Supp(Coker(p)) is a proper subset of W.

ProoF. By (5.6; 2), we have H™V, wy)x0 because ExtE(Oy, wp) is dual to
HYO,). We consider the Leray spectral sequence with ER?=H>W, Rfwy)
converging to H?*(V, wy). Supp(Rf:wy) is contained in the set X,=
{weW| dim f~Yw)=q}. Since dim f(X)<n if ¢>0, we have dim X,<n—g. So
Ep-2.9=( unless ¢=0. This implies E? °20 because H™(V, wy)*0. So H™W, fswy)
3%0. Hence, by (5.6; 1), Homy(f«wy, @y) contains a non-zero element ¢. Set
J=Im(p). Then Homy(J, wy)0 implies H*(S)=0 by (5.6; 1). Hence dim Supp(9)
=n. Since W is a variety and ey is invertible at any generic point of W, this
implies J=wy on an open dense subset of W. So Coker(p) is supported on a
proper subset of W.

(5.8) LEMMA. Suppose that char(R)=p>0 and let X be a projective variety
in P=P¥. Suppose that V(F) is true for any coherent sheaf & on X such that
Supp(F)xX. Then V(wy) is true.

Proor. Let F: XX be the Frobenius morphism of the abstract scheme X.
So, F induces the identity of the underlying topological space of X and F*:0x
—@y is defined by F*f=f?. F is not a morphism of the &scheme X. Namely,
if 7: X—Spec(R) is the structure morphism, z-F defines a different R-scheme
structure from the original one. This new S-scheme will be denoted by X'
Then F can be viewed as a morphism X’'—X of &-schemes.

Any coherent sheaf & on X determines a unique coherent sheaf ¢’ on X’
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which corresponds to the same ©@x-module on the abstract scheme X. Then we
have F*.£=(.L’)®? for any invertible sheaf .£ on X.

We claim A% X’, ¥)=h%X, ) for any integer ¢ and any coherent sheaf &
on X. Indeed, h%(X’, ¢')=dim(R¥z-F):F’")=dim(RY(Foo7)+F) where F, is the
Frobenius of Spec(®). Since & is perfect, the latter is equal to dim(R%ryF)=
h%(X, F). Thus we prove the claim.

We next claim that w% is the “dualizing ” sheaf wy. of X’. To see this,
we first consider the case X=P. Then X’ is isomorphic to P¥ and F:X'—X
is the mapping defined by taking the p-powers of the homogeneous coordinates.
Since 0x(1)'=0x. (1), the assertion is obvious in this case. In general we have
Wx=Exty;"(Ox, wp). Since wp =wp, the same procedure on the abstract scheme
P gives wy and wy,. Hence wy, =wk.

Now, applying (5.7), we obtain a homomorphism ¢: Fiwy.—wy such that
V(¢) is true for C=Coker(p). We claim that V4{X) is true for any ¢=2, where
H=Ker(p). Indeed, we have an injective homomorphism ¢: X[—A]—X since
A is very ample. Moreover ¢ is bijective at any general point on X and hence
V(Coker(¢)) is true by assumption. Therefore (5.4) applies.

Thus we can find a positive integer & such that A%C[tA+L])=h"" K [tA+L])
=0 for any ¢>0, {=k and any n-semipositive line bundle L on X. Then we have
hwx[tA+L]) £ h(Im(p)FA+ LD S hUX, FroktA+LD=hY(X", ox[F*tA+L)])
=h¥X', o%[pEA+ L) D=h%X, ox[ptA-+pL]) for any ¢, t and L as above.
Since pt=Fk, we can repeat similar arguments to obtain A% wy[tA-FL]S
Mox[pCA+LYD= - Zh%wx[pétA-+L)]). The last term vanishes for ¢»0 since
tA+L is ample. Consequently /% wx[tA+L])=0 for any ¢>0, t=F% and any
n-semipositive line bundle L on X. Thus we prove Vi(wy).

(5.9) LEMMA. Suppose that char(R)=0 and let x: M—S be a morphism from
a Fujiki manifold M to a projective scheme S such that dim z(M)=dim M=n.
Then V(zwwy) 1s true.

Proor. For any positive integer ¢, we have Riz.w;=0 by (4.13). So
h (ot A+L)=hYM, K¥4+tA+L)=h""YM, —tA—L)=0 for t>0 and any
n-semipositive line bundle L on S by virtue of (4.9) and the Serre duality.

(5.10) Now we prove (5.1) by showing V(¢) by the Noetherian induction
on Supp(F). < can be considered to be a sheaf on the subscheme Z of S
defined by the Og-ideal Ker(Os—&nd(%F)). Using (5.3) we reduce the problem to
the case in which Z is irreducible. Let 72 be the sheaf of nilpotent functions
on Z. Set F;=3F/97**F, Then &; is a sheaf on Z..a. If V(F,) is true for
each j, we can prove V(9/%) for every j by the descending induction on j using
(6.3; 1). So it suffices to consider the case in which Z is a variety.
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By virtue of (5.8) and (5.9), there exists a coherent sheaf ¢ on Z such that
V(g) is valid and that g is invertible on an open dense subset of Z. Indeed,
we set I=wy if char(®>0. If char(®)=0, we take a desingularization = : M—Z
and set T=mywy.

Take a sufficiently large integer u such that there is a homomorphism
¢ 9—0z[uA] which is an isomorphism on an open dense subset of Z. Then
V({Ker(¢)) and V(Coker(¢)) are true by the induction hypothesis. Applying (5.3),
we prove V(Oz[uAl]). This implies V(©z).

We complete the proof by showing V(&) by the induction on »=rank(%), the
rank at the generic point of Z. The case »=0 is trivial by the Noetherian
induction hypothesis. So suppose that »>0. Take a sufficiently large integer ¢
such that there is a homomorphism ¢: ©;[—cA]—F which is injective on an
open dense subset of Z. Then V(Coker(¢)) is true by the induction hypothesis
on r. ¢ is injective since Oy is torsion free. Obviously V(©y) implies V(@[ —cA]).
Hence we obtain V() by (5.3; 1).

§ 6. Consequences of cohomological semipositivity.

(6.1) Notation. Given a function A() of teZ, we write AM)SO@™) if
there is a positive constant k£ such that A()<k-t™ for any positive £.

(6.2) THEOREM. Let F be a coherent sheaf on an algebraic space S and let
L be a numerically semipositive line bundle on S. Then h%S, F[tLN=00™),
where m=Min(dim(Supp(F))—q, o(L)).

ProOF. First we consider the case in which S is projective. We use the
induction on ¢ in this case. When ¢=0, the assertion follows from (3.5) and
[F3; (2.5)]. When ¢>0, thanks to (5.1), we have a very ample line bundle A
on S such that A%F[A-+tL])=0 for any t=0. Let D be a general member of
A such that the induced homomorphism F[-—-D]—9 is injective. Then AWF[tL])
SheY(FpLA+tL])=0@™) by the induction hypothesis. Thus we prove the
assertion.

Next we consider the general case. We use the Noetherian induction on
Supp(¥F). By a similar method as in [F3; (2.5)], we reduce the problem to the
case in which Supp(9)=S and S is a variety. By Chow’s lemma there is a
birational morphism f:V—S from a projective variety V. Set ¢=/*d and let
¢ be the natural homomorphism F—f4¢. This is an isomorphism on an open
dense subset of S. Hence, for X=Ker(p) and ¢=Coker(p), we have h{KX[tL])
=0@™) and hTHCXL]=0O@™) by the induction hypothesis. So it suffices to
show AU f.etL7=0@™).

Using the Leray spectral sequence with E{/=H{R/f.¢[tL]) converging to
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H#(V, ¢[tL]), we infer h%fxQ[i L)< 3 h9 I RIfoet LD +hUV, ¢[tL]). We
Jjz1

have AYV, ¢[tL])<0O(t™) since V is projective. On the other hand, we have
dim(Supp(R’f+@))<dim S—j—1 for any j=1 because dim f ' (x)=;j for every
point x on Supp(R’f«@). Therefore A% /"W RIfG[tL]<0(™) by the induction
hypothesis. Combining these observations we prove the assertion.

(6.3) COROLLARY. Let F, L be as above. Then hYF[—tL]=0U™) where
m=Min(q, (L)) and q is any inleger.

ProOF. Using the Noetherian induction on Supp(&) similarly as in (6.2), we
reduce the problem to the case in which Supp(F)=S and S is a variety. More-
over, by the same method as above, we see that S may be assumed to be
projective.

In view of [F3; (L.7)] and using the notation there, we infer AYF[—tL])
g%}) hi(@WI(HHRIEL]). By (6.2) and [F3; (1.8)] we have A/(@(F) [t LD OE™)

for each j=0. Hence AYF[—tLHN=00™).

(6.4) COROLLARY., (F[LD)=x(F) for any coherent sheaf ¥ and any line
bundle L which is numerically equivalent to zero,i.e., LC=0 for any curve Cin S.

PrOOF. x(4[tL]) is a polynomial in ¢. This is bounded since so is A%F[fL])
for each g by (6.2). Hence this is a constant. In particular, y(F[L])=x(Z).

(6.5) COROLLARY. Let L be a numerically semipositive line bundle on an
algebraic variety V with dim V=n. Suppose that L">0. Then &(L, $)=n for
any coherent sheaf ¥ on V such that Supp(F)=V. In particular x(L, V)=n.

Proor. By the Riemann-Roch theorem (or see [K1]) we have x(F[tL])—
rank(F)L™*/n!=<0(@" ). On the other hand AYNF[tLD)—y(F:LNZ0E™Y) by
(6.2). Combining them we obtain the result.

(6.6) COROLLARY. Let L be an n-semipositive line bundle on an algebraic
space S. Then o(L)y=Max(xe(L, F)), where F wruns through all the coherent
sheaves on S.

For a proof, use (3.5) and (6.5).

(6.7) COROLLARY. Let L and V be as in (6.5) and suppose in addition that
V is projective. Then, for any coherent sheaf F on V, one has h"V, F[tLN=
O™ Y for each q=1. This means also h™(V, F[tLH=0 for t>0.

Proor. Take an ample line bundle A such that H(F[A+tL])=0 for any
>0, t=0. Since (L, V)=n by (6.5), there is a positive integer m such that
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|[mL—A|%@®. So we have a homomorphism 6:9[—D]—9 induced by De
|mL—A|. Set c=Coker(), X=Ker(d) and J=Image(d). Then we have h{(F[tL])
ShUCTLIH-hITL]), hUI[tLD)ShYFLAHE—m) LD+HhO KX ELDS AT (K [EL])
for t=m. By virtue of (6.2) we have A KA[(L1=0@" 1! and AYC[LD=Z
O™ 19 since Supp(C)CD. Combining these estimates we obtain the desired one.

(6.8) COROLLARY. Let V, L and & be as above and assume in addition that
F s torsion free. Then hYV, F[—tLN=0@T™") for any g<n.

Proor. This follows from (6.7) by the Serre duality as was formulated in [F3;
(1.7)]. Under the notation in [F3], we have h%(F[—tL]= ﬁ)oh”“l'f(@""j(g)[tL])
=

by [F3; (1.7)]. Since dim(Supp(@*(F))<n—s for any j>0 by [F3; (1.14)], we
have A" (@™ (F)EL]N=Z0@ Y for 7>0. By (6.7), this estimate is valid also
for 7=0. Hence AYF[—tL]N=0(@"Y), as desired.

(6.9) THEOREM. Let F be a coherent sheaf and let A be an ample line bundle
on a projective scheme S. Let m be a positive integer such that Bs|mA|=@.
Then there exists an inleger k such that, for every t=k and any n-semipositive
line bundle L,

1) the natural mapping HYNFA+LDNKQHS, mA)—=H FG[(t+m)A+L]) is
Surjective and

2) F[tA+ L7 is genevated by its global sections.

Proor. Take k so large that HY{F[(t—qgm)A-+ L])=0 for any ¢>0, t=k and
any n-semipositive line bundle L, where (5.1) is applied. Then 1) follows from
the generalized Castelnuovo’s lemma (cf. [Mu; p. 41, Th. 2]). Hence F[tA-+L]
is generated by global sections if so is F[(t+m)A-+L]. So 2) is proved by the
descending induction on .

(6.10) COROLLARY. For any ample line bundle A on a projective scheme S,
there exists an integer k such that tA--L is very ample for any t=k and any
n-semipositive line bundle L on S.

PROOF. Take positive integers b and m such that mA is very ample and
that Bs|tA+L}=@ for any {=b and any n-semipositive line bundle L. Then
k=m-+b has the desired property.

(6.11) COROLLARY. For any n-semipositive line bundle L on a projective
scheme S, there exists an ample line bundle A such that A+tL is very ample for
any t=0.

REMARK. Thus, the approximate ampleness and the cohomological semiposi-
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tivity in the sense of [F2] are equivalent to the numerical semipositivity on
projective schemes.

(6.12) THEOREM. Let L be a numerically semipositive line bundle on a pro-
jective variety V. with dimV=n such that L™>0. Then there exist a positive
integer k and an effective Cartier divisor D on V. such that Bs|tL—D|=@ for
every t=k.

PrROOF. Take an ample line bundle A as in (6.10). Since &(L, V)=n by
(6.5), there is a positive integer %’ such that |2’L—A|>=@ by an argument due
to Kodaira (cf., e.g., [F3; (2.8)]). Then the assertion is true for De|k’'L—A]|.

(6.13) COROLLARY. Any numerically semipositive line bundle L on a normal
algebraic variety V. with o¢(L)=dim V is almost base point free in the sense of
Goodman [Go].

Indeed, using Chow’s lemma, we reduce the problem to the case in which
V is projective, where (6.12) applies.

(6.14) COROLLARY. Let things be as in (6.12). Then the graded algebra
GV, L>:z€=BoHO(V’ tL) is finitely generated if and only if L is semiample.

ProOOF. The “if ” part follows from (1.3). So we consider the “only if”
part. Let &, ---, & be a homogeneous generator system of G(V, L). Assume
that SBs(L)=@. Take a point x on SBs(L) and set m;=p;/deg(§;) for j=
1, .-, », where y; is the order of the zero of &; at x. Note that y;>0 since
xESBs(L). Let M be the multiplicity of D at x and let ¢ be the order of the
zero of & at x, where d is a general element of H%V, dL). Then, by (6.12),
p=M if d=k. On the other hand p=md for m=Min(m;) because J is a poly-
nomial combination of &/s. Hence md=M for any such 4, which is impossible
if d»0. So we infer SBs(L)=¢, hence L is semiample by (1.18).

(6.15) Example (Zariski). Let C be a non-singular cubic curve in P2z=P.
Take twelve points p,, -+, p1» on C in such a way that O4)—[p,+ - +p1z] I8
not a torsion in Pic(C). Let S be the blowing-up of P at these points and let E
be the sum of the twelve exceptional curves over them. Set L=4H—E &Pic(S),
where H is the pull-back of ©p(1). It is easy to see that L is n-semipositive
and L®>0. But L is not semiample because the restriction of L to the proper
transform of C is not so. Therefore the graded algebra G(S, L) is not finitely
generated by (6.14).

(6.16) Example. Let C be a non-singular elliptic curve and let L, be a
non-torsion element in Pice,(C). Then, for any ample line bundle L, on C, the
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tautological line bundle L on P=P(LDL,) is n-semipositive and L?>0. But L

is not semiample because L, is not so. Hence G(P, L) is not finitely generated.
In this way we can construct various examples of n-semipositive line bundles

such that G(S, L) is not finitely generated. Compare also (3.11) and (3.12).

(6.17) Unlike general line bundles, the canonical bundle K¥ of an algebraic
manifold M seems to have special nice properties. So we make the following
conjectures :

1) The canonical ring G(M, K”) is finitely generated.

2) K% is semiample if and only if it is n-semipositive.

Both are true if dim M<2. Moreover, recently, Y. Kawamata proved 2) in
case o(K¥)=0=char(®.

§ 7. Vanishing theerems of Ramanujam type.

(7.1) The motivation of the study in this section is the following

QUESTION. Let L be a numerically semipositive line bundle on an algebraic
manifold M. Then HYM, —tL)=0 for any q<o(L) and t>0°7?

When char(®)=0, this follows from Kawamata’s vanishing theorem (cf. (4.15)).
Ramanujam [Ra] obtained a partial result in case dim M=2. Unfortunately,
however, the answer is No in general (cf. (7.10) below). Here we will give an
affirmative answer in case ¢=1.

(7.2) DEFINITION. A line bundle L on a variety V is said to be numerically
semipositive in codimension one if there exists a closed subset B of V with
dim B=<dim V -2 such that CCB for any curve C in V with LC<O0.

(7.3) LEMMA. Let L be a line bundle on a normal projeciive variety V with
n=dim V=2. Suppose that L*A**>0 for some ample line bundle A on V and
that L is n-semipositive in codimension one. Then h°(D, Op)=1 for any member
D of |LJ.

Proor. We use the induction on n. When n=2, let f: M-V be a
desingularization of V (cf. [Abl). In this case L is n-semipositive and L?>0.
So C=f*D is a numerically connected divisor by the same reason as in [Ra;
Lemma 2]. Hence A°(C, ©;)=1 by [Ra; Lemma 3]. Taking f« of the exact
séquence 0—0[—f*L]—-Oy—0—0, we obtain the exact sequence 0—Oy[—L]
—O@p— f+0¢. This gives an injection OpCf4Qc. S0 A%D, Op) = h(f+0¢) =
h'C, 0¢)=1.

When n=3, take a large integer m such that A}V, —mA—L)=0 and mA is
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very ample. So we have A%D, —mA)=0. LetW be a general member of [mA]l.
Then W is normal by [Sd] and Ly is n-semipositive in codimension one. So
h*(X, Ox)=1 for X=Dy by the induction hypothesis. This implies h°(D, Op)=1
since 0—0p[—mA]—-0p,—0x—0 is exact.

(7.4) THEOREM. Let V and L be as in (7.3). Suppose in addition that
RV, LYy>(g/2*+1, where q=h*V, Oy). Then HXV, —L)=0.

PROOF. Suppose that r=h%V, —L)>0. By (7.3), the mapping HYO,[—D1)
—HY0Oy) is injective for any De|L|. Hence we get a morphism from |[L|=
P(H*V, L)) to the Grassmann variety G parametrizing r-dimensional subspaces
of HY(V, 0y). dim G=r{g—r)<g¢*/4<dim]|L|. So this morphism must be a con-
stant mapping. Hence the image I of ¢(&): H(V, —L)—»H'(V, Oy) is independent
of EcHYV, L) provided £20. Fix basis of I and HYV, —L) and let 6(§) be
the determinant of ¢(€) with respect to these basis. Then 6(f) is a polynomial
function on H°(V, L) which has an isolated zero at the origin. This is impossible.
So »=0.

(7.5) THEOREM. Let V be a normal projective variety with dimV=n=2 and
let L be a line bundle on V which is numerically semipositive in codimension one.
Suppose that there exists a very ample line bundle A such that L*A™*{V}>0.
Then there exists an integer k such that H(V, —tL—E)=0 for any t=k and any
effective divisor E which is numerically semipositive in codimension one. Moreover,
k can be chosen so that it depends only on the polynomial y(V, uA+vLl) in u, v
and on the irregularity ¢'(V, A)=hXS, Og) of a surface S which is obtained from
V by taking general members of |A| (n—2)-times successively.

REMARK. Let¢: V—P¥ be the embedding defined by | A]. Then S=«(V)N\T
for some linear subspace T'=P¥-"*2 in P¥, By the upper-semicontinuity theo-
rem, we infer that the irregularity of «{V)NT is the same for any general
(N—n-+2)-dimensional linear space 7' in P¥. Thus ¢/(V, A) is well-defined.

PROOF OF THE THEOREM. We use the induction on n. When n=2, let g
be the genus of a general member C of |A|. Since AL>0 by (3.3), we can
find an integer 2 such that kLAZ=2g and that »(V, tL)=(h'(V, Oy)/2)*+2 for
any t=k by virtue of the Riemann-Roch Theorem. Then AY(C, tL+sA)=0 and
WAV, tL+-(s—1DAYSKhAV, tL+sA) for any 1=k, s=0. So h¥V, tL)=h¥V, tL+A)
< ZAAV, tL+sA)=0 for s»0 for any t=k. Hence y(V,tL)=h'V,t[)=
ANV, tL+E) for any =k and any effective divisor E. So (7.4) applies if
in addition E is n-semipositive. Moreover the choice of k& depends only on
¥V, vL-+uA) and 'V, Op).

When n=3, we have y(D, uA+vL)=¢(V, uA+vL)—y(V, u—1)A+vL) and
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¢(D, A)=¢'(V, A) for any general member D of |A|, which is a normal variety
by [Sd]. So we have an integer % depending only on ¢’(V, A) and y(V, uA+vL)
such that HYD, —tL—E"=0 for any general member D of |Al, any =k and
any effective divisor E/ on D which is n-semipositive in codimension one. Now,
given any effective divisor £ on V which is n-semipositive in codimension one,
we can find a general member D of |A| such that Ep has the same property.
Then HXD, —tLp—Ep—sAp)=0and AV, —tL—E—sA)<hY(V,—tL—E—(s+1A)
for any t=k, s=0. Hence h'(V, —tL—E)<--<hYV, —tL—E—sA) while the
last term vanishes for s>0. Therefore ANV, —tL—E)=0 for any i=k, as
required.

(7.6) COROLLARY. Let L be a numerically semipositive line bundle on a normal
algebraic variety V with a(L)=2. Then HXV, —tL)=0 for any sufficiently large
integer t.

Indeed, we can easily reduce the problem to the case in which V is projec-
tive, where (7.5) applies.

(7.7 COROLLARY. Let A be a linear system on a normal projective variety
V. Suppose that dimBs A=dimV—2 and that A is not composed of a pencil.
Then HYV, —tL)=0 for t>>0, where L=[A].

Indeed, L is clearly n-semipositive in codimension one and (7.5) applies.

(7.8) THEOREM. Let things be as in (7.3) and suppose that |L|=@. Then
HYV, —L)=0 if char(®)=0 or if char(®)>0 and the Frobenius is injective on
HYV, Op).

PrOOF. When char(®)=0, the assertion follows from Kawamata's vanishing
theorem. So we assume p=char(®)>0. By (7.3), it suffices to show that the
image I of the mapping HXV, —X)—HV, Oy) vanishes for X& |L]. By de-
finition of the Frobenius F on HYV, ©y), F¢I) comes from H'V, —p°X) for
any e=0. Hence F¢(I)=0 for ¢»0 by (7.5). So I=0 because F is injective.

REMARK. This was proved by Ramanujam [Ra] under the assumption in
7.7).

(7.9) COROLLARY. Let things be asin (7.3) and let ¢’ be the dimension of the
maximal subspace of HY(V,©y) on which the Frobenius is nilpotent. Then
HYV, —L)=0 if hV, L)>{g'/2)*+1.

For a proof, use (7.8) and the method in (7.4).
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(7.10) Now we will give a counter example to the question in (7.1). Let S
be a Raynaud surface and let A be an ample line bundle on S such that
HYS, —A)x0 (see [Ry]). Let M be the P!-bundle P(ADOs) over S and let L
be the tautological line bundle ®4(1). Then L is semiample and ¢(L)=dim M=3,
but H*(M, —tL)=0 for any >0.

To see this, let E be the section of = : M—S corresponding to the quotient
bundle ©@s. Then (£, [E1zn=(S, —A), and hence we can contract £ to a point
to obtain a normal variety W from M. We see W=Proj(G(M, L)) and L is the
pull-back of the ample line bundle Ow(1) on W via the morphism M—W. Hence
L is semiample and L*>0. On the other hand, A¥M, —tL)=~h' (M, K¥*4tL)=
(M, (—2)L+r*(A+K5)=hYS, ST ADO)RQLAFKS D= RIS, A+KS)=h'(S,—A)
>0 for any t=2.

(7.11) REMARK. In the above example we have R'fwwy0 for the morphism
[ M—W. So (4.12) is not always true in case char(®) >0 even if f is birational.
However, we can prove the following

(7.12) PROPOSITION. Let f: M—PY be a morphism from a normal projective
locally Gorenstein variety M. Let L be a line bundle on M such that L+tf*H is
effective and wn-semipositive in codimension one on M for some integer t, where
H=01). Suppose that dim f(M)=2. Then R flwy[L])=0 for n=dim M.
In particular, R**fwwy=0 if dim f(M)=2.

PrOOF. As in (4.13), it suffices to show that 0=A""YM, wy[L+tH1)=
AN (M, —L—tH) for t>0. This follows from (7.5).
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