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1. Introduction.

Let I': U—-V be a flat holomorphic map, where U and V are open domains
in C™ and C* respectively. Let C (or D) be the critical set (resp. the discrimi-
nant (=the set of critical values)) of F. Assume that F|o: C—V be finite. Then
it is known that D is a hypersurface in V.

Our aim here is to study the discriminant D through the logarithmic vector
fields along D, which are holomorphic vector fields tangent to D. Their defini-
tion is in general as follows; for a (reduced) hypersurface H defined by an
equation 4=0 in an open domain W in C”, define

Dery(log H),= {0 ; germs at p in C" of holomorphic vector
fields such that 8-h,Eh, O ),

where h, is the germ at p of & and Oy, , is the ring of germs at p of holomor-
phic functions. We can introduce the structure of coherent sheaf of Op-Module
into
Dery(log H)=\_J Derw(log H),.
DPEW

An element of I'(W, Derw(log H)) is called a logarithmic vector field along H.
K. Saito studied this sheaf in [5].

Assume that F is finite and m=%. Let 6 be a holomorphic vector field on
V. Then 6 is said to be liftable by F if there is a holomorphic vector field ¢
on U with (Fy)y¢(p)=0(F(p)) for any peU, where (Fu)p:Tv > Tv rp 18 a
C-linear map induced from F. Note that ¢ is uniquely determined for each
liftable @, because F is finite. Thus we shall write ¢=F"f from now on.

By (M, p) we denote a germ at p of a complex space M. Let

0™ )=X— (C*, 0)=Y
be a flat holomorphic map germ with f(0)=0, where 0 is the origin. We can

define the germ of critical set (C, 0) and the germ of discriminant (D, 0). Assume
that f|. o is finite. We fix this situation in the rest of this section. We can
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define the notion of a liftable germ of holomorphic vector field by localizing the
definition above when f is finite.

In Sect. 2, we shall prove the following Theorems A, B and C.
THEOREM A. When [:(C™, 0)=X—(C™, 0)=Y is finite,
Dery (log D), = {germs of holomorphic vector fields on Y liftable by f}.

Although V.1 Arnold [1] proved this only when the situation is induced
from the inclusion

Oc™, ¢ D(Ocm, )™ (Sp-invariant subring),

where S, is the symmetric group, our proof of Theorem A is similar to his.

In [9], [13], the author studied a germ of hypersurface (H, 0)C(C*, 0) such
that Derca(log H), is a free O¢» o-module. Such a germ of hypersurface is called
a germ of free divisor (or a germ of Saito divisor according to Cartier [2]). The
beautiful Shephard-Todd-Brieskorn formula for a free divisor consisting of hyper-
planes, which generalizes the formula by Orlik-Solomon [3], was proved in [10],
[11]. (For this topic, see Cartier’s exposition [2].)

THEOREM B. Assume that f:(C™, 0)=X—(C™, 0)=Y is finite. Then
i) f-'Dery(log D),CDerx(log f~(D)),CDer x(log C)o,
ii) if (D, 0) 7s free, then

Der x(log f~X(D))o= f'Dery(log D), @ Ox.o
fT0
and thus (f-XD), 0) is also free. e

Assume that f: (€™, 0)=X—(C™, 0)=Y comes from the inclusion
OX,OD(OX,O)GEOY,D

such that a finite subgroup G of GL(m; C) acts on Oy, linearly with respect to

some parameter system of Oy, (It is known that such a G must be a complex

reflection group.) Then G naturally acts on Dery ¢=0x.¢&7T x.0 (Tx.o is the
c

tangent space of X at 0, on which G naturally acts.). Denote the invariant part
of Dery,, by (Dery ,)°. Then we have

THEOREM C.
i) (Dery, )%= f"Dery «log D),
i) (D, 0) is free (thus so is (C, 0)=(f~YD), 0) thanks to Theorem B).

For a finite unitary reflection group G, (C, 0) is nothing other than the germ
of the union of the reflecting hyperplanes. Then the part that (C, 0) is free has
been already proved by Terao [12] and Cartier [2] independently.

In Sect. 3, f is a deformation of a germ of a hypersurface with isolated
singularity. In this case we shall give a sufficient condition for the freeness of
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the germ of the discriminant (D, 0) (Theorem D). To state Theorem D, we
need the concept of the free deformation (3.1) introduced by T. Yano [14]. k
follows from Theorem D that the discriminant of semiuniversal deformation of a
hypersurface isolated singularity is a free divisor, which was proved by K. Saito

[61.

2. Discriminant of a finite map.
In this section let
0" 0=X—(C™, 0)=Y

be a finite holomorphic map germ.

DEFINITION 2.1. We say that f is a folding map germ if f is expressed by
Fryi=at
f*yi:xi (Z:2y 3) )

with respect to appropriate coordinates (x;, ==+, x,) for X and (yy, ++, ya) for
Y for some integer n=2.

LEMMA 2.2. Let f be a folding map germ. Then

1) Theorem A holds true (i.e., Dery(log D),= {germs of holomorphic vector
fields on Y liftable by f}).

iy If {84, -+, 0.} is a free Oy o-base for Dery(log D), then {f~26,, -+, [0}
makes a free Oy, -base for Derx(log C),.

ProOOF. We can assume that
ffyi=xF (n=2)
f*y’L:xz (i:z’ 3; .“)'

Then (C, 0) and (D, 0) are defined by x;=0 and y,=0 respectively. The set
{9:(0/0y1), /0y, -+, 0/0yn} is a free Oy o-base for Dery{log D),. Since

{ I (91(0/0y:)=n""x.(0/0x1)

*

fH0/0y)=0/0x; (i=2,3, ),

any element of Dery(log D), is liftable by f. Conversely if §<Dery,, is liftable,

then
FHO-9)=(f"10)-(xD)=nx?*((f710)-x1) .
This implies §-y,€y,-Oy,, and thus #<Dery(log D),. Therefore i) is proved.
As for ii), it is sufficient to prove it for some specific base {4, -, @n}.
Since {n'x,(0/0xy), 0/0x,, ---, 8/0xn} is a free Oy ,-base for Dery(og C)s, (x)
proves ii). O
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Let U and V be open domains in C™. Let F: U=V be a finite holomorphic
map. - . . , ] B

. DEFINITION 2.3. A point p€U is called a folding point if the map germ at
p of F is a folding map germ. o '
Define
2 =Sing CUF~Sing D),

where Sing C (or Sing D) is the singular locus of‘ the critical set C (resp. the
discriminant D) of F. Then X is an analytic subset of U with ‘codimy2=2.

PROPOSITION 2.4.
{folding point of F}DC\Z.
Proor. Take peC\X. Choose the coordinates (xj, -, ¥m) (Or (¥5, =+, Ym))
near p (resp. F(p)) as follows:

i) p (resp. F(p)) is the origin,
iiy C (resp. D) is defined by x,=0 (resp. y;=0) near p (resp. F(p)).

We shall consider only the local situation near p. Denote the germ at p of F
by f:f=F,. Put f*y;=f(x)e€C{xy, -, Xn} =0x,, (=1, -+, m), then f*y,=
f1€x,-0x., because f(C)=D. Denote (x,, -+, ¥n) by x’ for simplicity. Define

n>0 and gi(xy, -, ¥n)E0x,, satisfying fi=x7g, and g,{0, x)+#0. We can
assume that

(%) uxf=0(fy, -, fu)/0(xs, =, Xm)
nxl g+ x10g:/0xy), x10g1/0%y), -, x7(0g:1/0% )

* * *

(>0, u:a unit). Thus we have k=n—1. If k>n—1, then from (*) we have
(%) x1-0x, p2uxf ™!
ng1+x1(3g1/3x1), x;(agl/axz), Tty xl(ag1/axm)

* *

Put x,=0 in this equality, then
Ozng1(0; x,)(a(f2> Tty f’m)/a(xb DY xm>1x1=0)
=ngi(0, x)O(fo, -+, Fm)/0(xs, -+, Xm)),

where fi(x')=f40, x)&C{x'} G=2,---,m). Since f=(fs, -, n): (C, p)=(D, f(p))
is finite and dim,C=dim; D, we obtain

a(fZ; ;fm)/a(xz, Tty xm)io-

This contradicts that g,(0, x")#0. Thus we have k=n—1. From (), we deduce
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u=ngi(0, x)O(fq, -, fm)/0(x,, Tty xm)lx1=0)-

Therefore both g, and 8(f, -+, fu)/0(xs, -+, xn) aré units in Ox,p- This proves
that p is a folding point. O

PROOF OF THEOREM A. Let F:U-—V be a representative for a finite holo-
morphic map germ f:(C™, 0)=(C™, 0). Assume that F is finite and surjective.
Let @ be a holomorphic vector field on V. If @ is logarithmic along the dis-
criminant D of F, then § is liftable by F at any point outside F (2) owing to
2.2 i) and 2.4. Since c0d1mUF WF(2)z=2, 4 is liftable anywhere in the light of
Hartog’s theorem. '

Conversely if ¢ is a holomorphic vector field on V liftable by F, then @ is
logarithmic at each point outside F(X) again by 2.2 i) and 2.4. Let Jp is a
reduced local defining equation for D near peV. Then 6,-, vanishes on
D\F(Z), thus on D near p. This implies that 0,-0,€8,-0y ,. O

For the proof of Theorem B, we need the following

PROPOSITION 2.5. (K. Saito [5]) Let H be a (reduced) hypersurface defined
by an equation: h=0 in an open domain WCC™. The logarithmic vector fields

0= 3 £:i0/02) (=1, -, n)

make a I'W, Ow)-free base for I'W, Dery(log H)) if and only if
[01, ry 0‘n]:det(fij)1§i,jgn
def

vanishes at the ovder one along D.

PrROOF OF THEOREM B. Let F: U—V be a representative for a finite holo-
morphic map germ f:(C™, 0)—(C™, 0) and {f;, -+, 0.} be a I'(V, ©y)-free base
for I'(V, Dery(log D)). Assume that F is finite and surjective. Put C= f~YD).
By Theorem A, F-if,, ---, F6,, are holomorphic vector fields on I/. Thanks
to 2.2 ii), {F~0,, ---, F7'0,} determines an Oy, ,-free base for Dery(log C), for
each peU\NF(F(2)). Thus we know that F-'4,, -, FF71@,, are logarithmic
along C and that |F -0y, ---, FF'0,|, by applying 2.5, vanishes at the order one
along C\F~YF(X)), thus along C. This proves that {F8,, -, F8,} makes
a I'(U, Oy)-free base for I'(U, Dery(log C)) in the light of 2.5 again. O

Next we shall prove Theorem C. We will deal with a specific situation
originating from a finite subgroup G of GL(m; C). Denote O¢c™ , simply by ©.
Naturally G acts C-linearly on © with respect to a parameter system of O.
Denote the invariant subring by ©¢ Suppose that ©F is a regular local ring.
These induce a finite map germ

f(C", 0)=X—(C™, 0)=Y.



384 Hiroaki TErRAO

Let f=(fy, -+, fm) With f;€C{xy, -+, xn} @=1, -+, m). Then
C{fy, -, fu}=Clxy, -, xm}%
By Theorem A, any element of Dery(log D), is liftable by f. Thus
fDery(log D), (Derx, ).

Conversely let #=Dery )¢ Then 8-f,€Clxy, -, xu}*=C{f1, -+, fn} because

fi is invariant under G. Write 0-fi=gd{fs, =, fu) with g;€C{ys, -, yn}
(=1, ---, m). Define

o= ;)lgi(y)(a/ayi)EDery.o ,
then @ is liftable and
o=71"0.
This shows that @ =Dery(log D), because of Theorem A. This proves

fDery(log D);D(Dery, )¢
and thus Theorem C i).

Since © is a finite ©%module, we have (EGA 0 IV 16.4.8)
depthge(Der x o)=depthegDerx o
= k—(homolog. dimeDerx,o)=k.

This implies that Dery,, is O%free because ©F is a regular local ring. Thus the
proof of Theorem C ii) reduces to

LEMMA 2.6. Let R be a local ving and M an R-free module. Assume that
a finite group G acts R-linearly on M:

g rimi)=2rig(mq)
with r,€R, m;eM and g=G. Then the invariant submodule M is also R-free.

Proor. It suffices to prove that M¢ is a direct summand of M. A map

7 M—> M®
defined by
(m)=@G)"' X glmn)
£EC
is an R-homomorphism and identity on M¢ Thus M=M%Dker 7). O

3. Discriminant of a deformation.

In this section we shall deal with a deformation of a germ of a hypersurface
with isolated singularity: Let the coordinates of X=(C™, 0) and Y =(C*, 0) be

(x1, -+, xm) and (y, -, ¥) (m=k) respectively. Put n=m—rk+1. A flat holo-
morphic map germ
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f: X—Y
is given by
F*3i=r1xy, =, xp)EC{xy, -, Xn}
f*yizxn+i~1 (=2, -, k).
Identify (x,41, -+, xn) With (v, -+, y:) by f*. Define
x=(x1, ***, %)
y/:(y2) ) yk)
y=(5, -, Y=, ¥
for simplicity. Then (xy, -, xn)=(x, ') and f,Cl{x, y'}.

Assume that the radical of an ideal (fi, vs, ==+, ¥&, 0f1/0%y, -, 0f1/0x3) is
the maximal ideal of Oy,, (i.e., CNf0)={0}, or equivalently f-'(0) has an
isolated singularity at 0). Define

Oc.o:OX,o/(afx/axx, ey, afl/axn) .

The germ of the critical set (C, 0) (as a set) is the support of ©g,, The direct
image f.«Oc¢,, is an Oy module and the germ of the discriminant (D, 0) is defined
by the 0-th fitting ideal of f4O¢,, [8].

Fix f, (x, ') and (y) as above. Call these coordinates the original coordi-
nates.

DEFINITION 3.1. The coordinates (£, 9" )=(&y, -, £a, P2, -+, $2) of X and
(9)=(9;, $0)=(y, --, §,) of ¥V are said to be admissible if $;=y; (=2, ---, k).
The original coordinates are of course admissible.

Let (£, v") and (9, v') be admissible. Put f*,=fi(%, y'). Notice that

(afl/axly ey afl/axn>@X,o:(af1/a£1, ty, afl/afen)@x,o .

Define a C-algebra homomorphism

s: C{%, 3} —> C{%, y'} =0x,0
by

s(H=%, sG)=fn s)=y"
Then s does not depend upon the choice of admissible coordinates. Define a
C-linear map

$o: Dery.o — fx0c,0
by
o N)=Ls{0-(f*9:— 90} ],

where #<Dery,, and [] denotes the residue class in O¢, =0y, /(0f:/0xy, -+,
0f1/0x,). This definition of @, may depend upon the choice of admissible
coordinates. In case that the above admissible coordinates happen to be the
original ones, we denote @, by ¢,.
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LEMMA 3.2.
@o: I:'U:kﬂo

for some unit vE0x . Thus neither ker ¢, nor im ¢, depends upon the choice of
admissible coovdinates. ‘

ProOOF. Since we have
FE9—=9=1*5:(3s, =, ye) =55, =+, V&)
= 9:(f*y,, ¥ =5y, 97,

f¥9;,—9: is a multiple of f*y,—y,in C{x, y}. Similarly, we know that /¥y, —y,
is a multiple of f*$,—#, also. Thus - o :

[E 9= d=ulx, y)(f*3:1— 1)
with a unit u(x, y)eC{x, y}. Then
P @)=Ls {0 (f*51— I} ]
=Ls{0-u(/*y:—y:)}] '
=Ls{u-0-(f*y1— 30+ (FFy1—y1)-0-u}]
=Cs(wlpo0). I =
Define
Jo=ker g, My=im g, .
Then M, is an Oy, -submodule of f+O¢ . generated by {{g.], -, [gr]}, where
g1=—1
2:=(0/1/0y)€0x,0 (=2, -, k). ‘
Let Z=(C*, 0) with its coordinate =z =, Vi) bLet 7 (Y, 0)—(Z, 0) be

the natural projection induced from the inclusion C{y’}CCl{y;, y’}. Assume that

[g:d, -, [gx] are independent over Oz, in wx M, The following definition is
due to T. Yano [13].

DEFINITION 3.1. f is said to be free if ms M, is Oz ,free with its base

{Lg:], -, Lagsd}.

Examples of free deformations.
1. A semi-universal deformation (in this case HMy=/[+0¢, o [6]),
2. the “ G-invariant subdeformation” of a free deformation, where G is a finite
subgroup of GL(m; C) (see Yano [151),
3. the subdeformation of a semi-universal deformation of a rational double point
obtained through a “folding ” of the corresponding Coxeter graph, which was
studied by P. Slodowy [7] and Yano [14], [15].
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DEFINITION 3.4, We say that f is (T Q) (trivial family of quasi-homogeneous
singularity) if

"f*ﬁFu(f, y’)g(fc)eC{ﬁ, ¥’}

fFyi=y; G=2, -, k)
with respect to some admissible coordinates (£, ¥") and (¥, y’) with a quas1-
homogeneous geCi{z} (.e., gs(0g/o%,, - ag/axmx o)

LEMMA 3.5. Let f be (TQ). Take the admissible coordinates as above. Then
Annoy, o(f*@c, o):AnnOY, 0(-%0):5/1 *Oy,q- ‘ »

PrOOF. Since H,=[1], the first equality is obvious.
It is clear that the discriminant is defined by y,=0 as a set. Thus

'\/AHDOY' O(j’lo): 91°0x,0.

Since g is quasi-homogeneous with an isolated singularity, we can transform
g into a weighted homogeneous polynomial [4]. Thus we know that
ge(’eb Tty fn)(ag/aﬁl, Tty ag/aﬁn) .
Assume that
| g=3 pd£)0g/0%)

with p;e(£y, -+, £,). Then by an easy computation we obtain

(w43 p£)0u/020)g= 2 p{#)0(ug)/0%:)

and thus g€(@(ug)/0%,, -+, 0(ug)/0%,). This implies that 9, €Anne, (f+Oc,0). O

Notice that f is (TQ) if and only if 1) (64/3y)0)+£0 (4 is a reduced defining
equation of the discriminant) and 2) f is represented by a deformation which
gives a trivial family of a quasi- homogeneous singularity along the critical set
near the origin.

Let

F.U—V
be a representative for f with the fixed coordinates (x, y’) and (y) of U and V
respectively.

DEFINITION 3.5. A point peU is called a (TQ)-pornt if the map germ F,
is (TQ). (Here F, is identified with a map germ (C™**-%, 0)—(C*, 0) with the
original coordinates given by a translation of the coordinates (x, ") and (y).)

DEFINITION 3.6. We say that I is (GTQ) (generically (T°Q)) if there is an
analytic subset A of U with CDADSing C and codimyA=2 such that each point
of C\A is a (T'Q)-point.
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Examples of (GTQ) deformations.

1. Since a rational double point is quasi-homogeneous and has no parameter, a
deformation whose generic singularities are rational double points is (GTQ),

2. a semi-universal deformation is (GT'Q), because its generic singularity is an
ordinary double point,

3. from 1, any deformation of a rational double point is (GT Q).

DEFINITION 3.7. f is said to be (GTQ) if it is represented by a (GTQ)
deformation.

The rest of this article is devoted to the proof of the following

THEOREM D. For a free and (GTQ) deformation
f : (Cm, 0) —— (Ck’ O)
the germ of the discriminant (D, 0) is free.

COROLLARY 3.8. For a free deformation f whose generic fibers are rational
double points, (D, Q) is free.

COROLLARY 3.9. (cf. K. Saito [6]) For a semi-universal deformation f, (D, 0)
s free.

LEMMA 3.10. Assume that f is (TQ). Then the sequence

14
0 — Dery(log D)y — Dery o RAN My —> 0
is exact. :

ProOF. Because of 3.2, we can replace ¢, by @, which is obtained from
the admissible coordinates (£, y") and (#,, ¥") given in 3.4. Thus
0(f*90)/0y,=0(ug)/dy;=g-@u/dy:) (=2, -, k).
Because [g]=[0] in H, (3.5),

SN=[/¥O 91 M, .
‘Therefore

ker(go)={# Dery,,; 0+ Anne, (f+0¢,0)}
={0<=Dery,o; 0-9:€91-Or, ¢}
=Dery(log D), . [
PrOPOSITION 3.11. Assume that f is free. Then

homolog. dimoy, (Ho)=1

PrOOF. By the assumption,
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depthe,, (7« Ho)=k—1—homolog. dimo, (T o)
=k—1
Put [ =Annoy, K¢ f%0¢.0). Then
¥ Qg0 —> Or,o/1

is finite because 1) the locus of I is (D, 0) and 2) (D, 0) is defined by yi+do(y)
=0 (1=0) with 4,&(y,, ---, y4)Or,o. Notice that

I :AnnoY. 0(‘%0)
because Hy=>[1]=[—g,]. Thus we have (EGA 0 IV 16.4.8)
k——l:depthoz’o(ﬂ'*j’lo)
:depthﬂy, of 1(Mo)
:depthgy’ o(jio) .
This implies our assertion. a
Assume that f is free and (GTQ). Choose a sufficiently small representative
F.U—YV
of f such that 1) F is surjective and flat, 2) F is (GTQ) and 3) each germ of
Fis free. Put Fy;=F*y, Then (F),=f.. A coherent sheaf ., of Oy-Module
is similarly defined to be an Op-submodule of FyO; generated by Gy=—1,
G:=@F./8y)(x, y)eI'(U, Oy) (=2, -, k). Then My ,= M, Define an Oy-

homomorphism
Oy DerV —> My

compatibly with the definition of ¢, :

k k ,
o 2 h»0/030)=] £ hax, y)6x, 3]
Then ©Dv,0—Po. Put
K=ker(py) .
By 3.11, X is a free ©p-Module. Let peV\D. Then My, »=0 and thus
KX ,=Dery, ,=Dery(log D), .

Next let peD\F(A) (A is as in 3.6). Define (P, -, P}=C~\Fp), then C is
smooth at each P;. Denote the component of C containing P; by Ci. Put D=
F(C) (=1, ---, ). Then we have

(D, P)Z\I_J (Ds, D).
Since the germ at P; of F is (T'Q),
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Kp=[\Dery(log D;),

=Der(log D),

by applying 3.10. Therefore each element of X is logarithmic along D\F(A)
and thus along D. This shows that

, ‘ K CDery(log D). ,
Next consider the 0-th fitting ideal of ;. Then its generator is given by
4=18,, -+, 6,] (see 2.5
=det(h,)el(V, ),
where {#,, ---, 04} is a free base for I'(V, %) with

0= i e ()@/9y;) (=1, -, B).

We easily know that 4, is a unit for peV\D. Moreover 4, is reduced for
pED\F(A) because Dery(log D),=X, is free (see 2.5). Therefore 4 is reduced
on V\F(A) and thus is a reduced defining equation for D entirely on V. . Again
by 2.5, Theorem D is proved.

ReEMARK. In the proof above, we have already showed that a generator of
the 0-th fitting ideal of M, gives a reduced defining equation of the discriminant.

NOTE ADDED IN PROOF. Recently we found that the essential part of
Theorem D is proved by K. Saito in [16, 4.3)]. Our (GTQ)-condition is his
(2.3.6) and (2.3.7).
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