Kodaira dimension of certain algebraic fiber spaces
By Yujiro KAWAMATA®

The purpose of this paper is to give lower bounds of the Kodaira dimension
of certain algebraic fiber spaces. Concerning this, there is the following conjecture

by S. litaka [T] (everything in this paper is considefred over the complex number
field C):

CONJECTURE. Let f: X—Y be an algebraic fiber space, i.e., X and Y are
non-singular projective algebraic varieties and f is a surjective morphism with

a connected general fiber X,. Then £(X)>r(Y)+x(X]Y) where & denotes the Kodaira
dimension and &(X/ Y)&——f/c(X,,).
(=
For the notation and the definitions see [15], [7], [21] or [8].
cases, it is known that the conjecture is true:
(1) X, is a curve (Viehweg [18]).

In the following

(2) X, is an abelian variety (Ueno [16]).

(3) dim X=3 (Viehweg [19]).

(4) &(Y)=dim Y and £(X)>0, or £(Y)=dim Y and p,(X,)>1 (Kawamata [8]).
(5) dim Y=1, (Kawamata [9]).

In this paper we shall prove that it is also true in the following cases:

(6) x(X/Y)=0 and X, has a finite covering which is birationally equivalent
to a non-singular projective algebraic variety with trivial canonieal bundle.

(7) X, is a surface and «(X/Y)=1.

We can say something stronger in case (6), and it contains the case (2). From
the cases (1) and (5) follows the case (3). Also something more is proved in case
X, is a surface, but the general conjecture is still open.

We have two methods to attack the conjecture: the theory of variations of
Hodge structures to prove (6), and the decomposition of the given algebraic fiber
space into several algebraic fiber spaces with smaller relative dimensions to prove
(7). The construction of this paper is as follows: In Section 1 we collect some
results concerning the variations of Hodge structures. The main point is that
the so-called canonical extension of some Hodge bundles are semi-positive vector

* This work was partly supported by the Sakkokai Foundation.
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bundles. In Section 2 we collect some basic results on the Kodaira dimension. A
base change theorem (Theorem 9) is proved. In Section 3 we shall construct
algebraic fiber spaces by modifying the period mappings which are originally
defined by an analytic method. In Section 4 we prove (6). In Section 5 we prove
(7) and some other related results. A generalized canonical bundle formula
(Theorem 20) is proved.

Standard notation

For a non-singular projective algebraic variety X of dimension #,

Q%: the sheaf of holomorphic 1-forms on X

Tx: the tangent bundle on X

K,=0%: the canonical bundle on X

¢(X)=dim H*X, 2%): the irregularity of X

P, (X)=dim H"(X, K$™: the m-genus of X for me N

p,(X)=P(X): the geometric genus of X

(X, L): the L-dimension of X, where L is a line bundle on X

(X, VY=k(P(V), Ly), where V is a vector bundle on X and L, is the tauto-
logical line bundle on P(V)

£(X)=x(X, Ky): the Kodaira dimension of X.
For an inclusion morphism ¢: XY,

Nyjy=1t*Ty/Tx: the normal bundle

red: the reduced part.
For a surjective morphism f: X—Y of non-singular projective algebraic varieties,

X,=f"Yy): the fiber of f over yeY

Xg: an irreducible component of X,

dim X/Y=dim X—dim Y=dim X for a general y

Kyxir=KxQf*K$": the relative canonical bundle

q(X/Y)=q(X?) for a general y

P, (X]Y)=P,(X:) for a general y

P X/ Y)=P,(X]Y)

k(XY )=r(X3) for a general y.
The above f is called an algebraic fiber space, if X, for a general y is irreducible.
For other standard notation and definitions we refer the reader to [15] or [8].

1. Period mapping

(1) Let us recall briefly the theory of variation of Hodge structures. We
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refer the reader to Griffiths [4] and Sehmid [13]. Let = and r be fixed integers.
A wariation of Hodge structures consists of the following data (i) to (iv) with
the conditions (v) and (vi):

(i) A base space S, which is assumed to be a non-singular algebraic variety
in this paper.

(ii) A local system Hj; of free abelian groups of rank 7.

(iii) A non-degenerate bilinear form @ on Hy, which is symmetric or alternate
if n is even or odd, respectively.

(iv) A descending filtration {F'*}¢<,<, on H:sz@)Os by vector subbundles F»
such that F"-q;fGr’} Grp(H)=0 if p+g+n, where F denotes the complex conjugate.

This filtration is called the Hodge filtration. It follows that Frr—r=F»n Fn»
and H= éﬂF% np,
o

(V) Qs> Frnv)=0 if pp’, and (v'=T)*(~1)5Q(F»»=s, F»%~5)>0 (posi-
tive definite).

(vi) The flat connection on H defined by the lattice H; induces a homomor-
phism D: F*—F»'®Qs. This is called the infinitesimal period relation.

The bilinear form @ induces a positive definite hermitian metric k on Fr=Fn»¢
by h(v, v )= —1)"(—1)*Q(v, 7). Let ®=373logh be its curvature form. By (v)
and (vi), (v —1/2r)@ is positive semi-definite. Moreover, if the homomorphism
Ts,,—~Hom (F#°, F#=%') induced by D is injective at a point s of S, then (v —1/2z) Tr @
is positive definite at s.

(2) Let S be a non-singular projective algebraic variety which contains S as
a Zariski open dense subset and such that DdffS\S is a divisor of normal ecrossing
on S. For a variation of Hodge structure H on S, we define a vector bundle I
on S which is an extension of H. This is called the canonical extension of H:
Let .U be an arbitrary open subset of S with coordinate funetions 21, **+, 23 such
that DNU={z, -+ 2,=0} for some 0<e<d. Let 7; (i=1,---,¢) be local mono-
dromies of Hj; corresponding to loops around the z;-axes. We assume that the 7;
are all quasi-unipotent, i.e., the eigenvalues of them are roots of unity. Let
, +-+, v, be multivalued flat sections of H; on U\D which make a basis of H,
at each point. Then the expressions '

1 e .
sjzexp<—mi;lloghlogzi)'vj, J=1, .07

give single valued holomorphic sections of H, where the branches of the log7;
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are chosen so that their eigenvalues afe in an interval v —1 [0, 27). Let H|y
be a holomorphic vector bundle on U generated by the s;. Then it can be easily
checked that this construction does not depend on the choice of the z; and the
v;, and gives a vector bundle H on S. Note that H has no flat connections nor
bilinear forms. If the local monodromies y; are all wnipotent, then the F* can
also be extended to vector subbundles 7 of H on S (p. 235 of Schmid [13)). In
this case the canonical extension is compatible with the base change:

ProOPOSITION 1. Let f: X—Y be a morphism of non-singular projective
algebraic varieties and let C and D be divisors of normal crossing on X and Y,
respectively, such that f(X,)CY,, where X;=X\C and Y,=Y\D. Put fo=flx,
Let H, be a variation of Hodge structures on Y,. We assume that all the local
monodromies of H, around D are unipotent. Let H and H' be the canownical
extensions of H, and ffH, on Y and X, respectively. Then there is an isomor-
phism f*H=~H' which is compatible with the filtrations {F*}.

. PROOF. Let (U; 2y, ---, 25 and (V; wy, ---,w4) be local coordinate neighbor-
hoods on X and Y as above, respectively. If w,= 1l zii*, then r,.= II 74, where
the 7., and the 7,, are local monodromies corresponding to the z; and the w,.
Since all the local monodromies are unipotent, log II 7ut¢= ¥ @ logr,,. Thus
2 log 1., log z,= 3 log 1, log w,. Therefore, the two canonical extensions coincide.

Q.E.D.

(3) By the differential caleculus on the Hodge bundies, we obtain the following
results:

DEFINITION. Let X be a complete algebraic variety and let L be a line
bundle on X. L is said to be semi-positive, if for any curve C on X the inter-
section number (L-C) is non-negative. Let V be a vector bundle on X. V is
said to be semi-positive, if the tautological line bundle on P(V) is semi-positive.

THEOREM 2. Let X be a non-singular projective algebraic variety and let D
be a divisor of normal crossing on X. Let H, be a variation of Hodge struc-
tures on X.,d=fX \D with unipotent local monodromies and let H be the canonical

S .

extension of Hy, on X. Then Fr=F"(H) is a semi-positive vector bundle on X.

This theorem is nothing but Theorem 5 of Kawamata [8]. For the proof we
use (i) the semi-positivity of the curvature form . explained in (1), and ({ii) the
weight filtrations and the theory of mixed Hodge structures at the boundary D.
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THEOREM 3. Under the conditions in Theorem 2, we moreover assume that
the homomorphism Tyx,,—~Hom(F»°, F*Y) is injective at a point x of X,. Then
¢ (F")4>0, where d=dim X.

PROOF. Let U; be mutually disjoint open subsets of X such that (1) the
union of their closures is X, (2) there are coordinate systems {zf, ---,z,'}} on the
closures of the U, such that DN Uz={ef --- zfx=0} for some e;<d, and (3) there
are nowhere vanishing sections siA -+ As} of det F* defined on the closures of
the U,. Using the partition of unity, we define a metric on X, and let V. be
the tubular neighborhood of D of radius ¢>0 with respect to this metrie. The
bilinear form @ induces a hermitian metric 2 on F2. Let h. be a hermitian metric on
F» which coincides with 2 on X\V.. We define T |U1=(V71/2n)56 log(det k.(s}, s3)).
Then they do not depend on the choice of the s and can be patched together to
define a (1,1)-form 7. on X. T. represents the first Chern class of F*. Hence

X 14

cl(F")"=S (Ts)d=5 (T;)‘*+S (T,

X \VE £

The first integral is positive by the remark at the end of (1). We shall show that
the second integral converges to zero, if ¢—~0. By Stokes’ theorem,

7 2n

SVS (T)i= % § 22t=( V-1 Yz S) 207 A (BagD,

where g?=log (det h.(s},sD)). a(V.NU, is the union of 3V.N U, and the common
boundaries with the neighboring V.N U, On the latter, the difference agﬁ—agf.is
an innocent holomorphic 1-form. Hence the term which comes from the latter
part of the boundary converges to zero, if we apply the following argument to
the dimension d—1 case instead of d. On aV.NU, g¢? coincides with g'=
log(det h(sf, s3)). We may assume that aV.N U is of the form

°2
U flafl=e, e<l2fI<l, [2{I<1; 1<jy<es j#i, e:<k},
since we are taking the limit. Thus we have to show that the integral
S 6gl/\(56g2)d—1
w

converges to zero, where W is the first term of the above union by symmetry.
By the expression defining the canonical extension, we can write s{= X Pjv,,
=1

where the P are polynomials in the log 2} (1<k<e;) with coefficients of holomorphic
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functions. Since Q(v,, v,) are constants, the h(sf,s)=(v—1)"(—1)"Q(s}, s} are
polynomials in the logz{ and the log Z{ with coefficients of combinations of holomor-
phic and anti-holomorphic functions. Thus g? is the logarithm of a polynomial in
the log 2{ and the log z} with coefficients of combinations of holomorphic and anti-
holomorphic functions. Hence the coefficient of ag*A(8ogd)¢? is 1/zizizs - zflﬁﬁx
times a function which goes to zero at the boundary on W. Hence the limit is

ZEro. Q.E.D.

(4) Let V; be a free abelian group of rank = with a non-degenerate bilinear
form @. We have the classifying space §) of Hodge structures (or the Hodge
filtrations) on Vdff V.QC. Then szffAut (Vz, @) acts on g) properly discontinuously.
Let H be a variation of Hodge structures on S and we fix a base point s of S
and an isomorphism V,XH,, Then we obtain a complex analytic morphism P:
S—4)|I', where I" is the image of the homomorphism =,(S,s)—>Gz. This map P
is called the period mapping. Griffiths (Theorem 9.6 of [4]) showed that if all
the local monodromies of H; around the boundary are unipotent, then P turns

out to be a proper morphism, when we extend H across the part of the boundary
where the local monodromy is trivial.

(5) Now, we shall apply the above abstract theory to the geometric situations.
Let f: X—Y be an algebraic fiber space and let L be a fixed relatively ample line
bundle on X. Let D be a divisor of normal crossing on Y and put Y,=Y\D,
Xo=f"YY,) and fo=fly,- We assume that f; is smooth. Let N=dim X/Y and
let # be an integer between 1 and N. Let H,, ; be the torsion free part of the
kernel of the homomorphism

/\ LN—n»-H : RnfO*ZXo —_ RzN_”+Zf0*ZX0-

Let Q(,v )=+ =1)"L¥™*A v A v for v,v' € Hy 5. Since there is a quasi-isomor-
phism f,Or,—2%,v, the stupid filiration {2%}y}o<,<. on the complex 2%y, gives a
filiration {F§} on H,=H, &)y, Then the system (Y, Hy, 2 @, {F3}) gives a
variation of Hodge structures. In this paper » will be 1 or N.

The monodromy theorem says that the local monodromies of H, ; in this case

are always quasi-unipotent. Hence we can construct the canonical extension H
on Y,

THEOREM 4 (Lemma 1 of [9)). Let n=N in the above construction and let i:
Y=Y be the inclusion morphism. Then we have a natural isomorphism



Kodaira dimension 7

JaKxiy — tFtNH.

PROOF. This is a consequence of the following proposition by Sakai and a
deep result by Schmid which gives an estimation of the metric of the Hodge
bundle at the boundary.

PrOPOSITION 5 (Lemma 1.1 of [12)). Let X be a compact complex mamwifold
and let D be a divisor of mormal crossing on X. Put X,=X\D. Let wo€
H(X,, K?;") for a positive integer m. Then the integral

S | woA@ "]
Xy

converges, if and only if w, has a meromorphic extemsion w on X such that
0 € H'(X, K¥"QROx((m—1)D)).

2. Kodaira dimension

For the definition and elementary properties of the Kodaira dimension we
refer the reader to Iitaka [21] or Ueno [15]. What are the most important for
our purpose will be the following theorems:

(i) (Theorem 8.1 of [15]) The Kodaira dimension measures the growth of
the pluri-genera.

(ii) (Theorem 5.10) The litaka’s fibering theorem.

(iii) (Theorem 5.11) The easy addition theorem by Ilitaka.

As a consequence of the easy addition theorem, we have the following:

PROPOSITION 6. Let X, Y and Z be non-singular projective algebraic varie-
ties, and let f: X—Y and g: X—Z be surjective morphisms. Then for a generic
point z of Z,

dim Y—£(Y)>dim(f1X3)) —£(f(X2)),

where fIX?) is considered as an irreducible algebraic variety and  is defined as
the Kodaira dimension of its mon-singular model.

Proor. If dim f(X?) +dim Z>dim Y, then we may replace Z resp. X by its
general hyperplane section H (resp. g '(H)), because the restrietion of f to g '(H)
is a surjective morphism onto Y. Thus we may assume that dim f(X) +dim Z=
dimY. Let Y’ be the image of X in YXZ by (f,¢)- Thus, dim ¥'=dim ¥,
£(Y")>k(Y) and Ye=£(X?), where we considered the surjective morphism Y'—Z
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induced by the second projection.. Then by the easy addition theorem, dim Y’—
&(Y)>dim Y —x(Y7). Combinig the above inequalities, we obtain the desired
inequality. Q.E.D.

A use of Grothendieck’s duality theorem ([6]) gives the following:

PROPOSITION 7. Let X and Y be Gorenstein algebraic varieties, let §: Y'—Y
be the normalization, and let f': X—Y' be a proper and birational morphism.

Then for any positive integer m, there is a natural injective homomorphism
Fro(X)®™ — ¥ (Y)8m,
where o denotes the dualizing sheaf.

PROOF. Let f=f"oj. We choose a closed subvariety E of ¥ such that

(i) ecodimy E>2, and

(i) f induces a finite morphism f, from X,=X\f~YE) onto Y,=Y\E.
The duality theorem by Grothendieck says that

foR Hom(o(X,), F(Yy)=R Hom(fro(Xy), o(Yy)),

where we note that f; is finite. Since the left side is just foOx, we obtain a
non-zero homomorphism fyw(Xy)—(Y,) which induces the identity homomorphism
on an open subset of Y. Since f, is an affine morphism, we obtain injective
homomorphisms f{w(X,)@"—>j*w(Y)®™ for positive integers m, where f} is the
restriction of f* on X,. Since codimy E>2 and o(Y) is invertible, we can extend
these to the desired homomorphisms f4o(X)®"—j*w(Y)®™ by Krull's theorem.

Q.E.D.

DEFINITION. Let Y be a non-singular projective algebraic variety and let D
be a divisor of normal crossing on Y. A finite and surjective morphism h: Y'—»Y
is called a nice covering of Y with respect to D, if

(i) Y’ is a non-singular and projective algebraic variety and D’dffred h YD)
is a divisor of normal crossing on Y’, and

(i) There is a divisor of normal crossing D* on Y which contains both D
and the branch locus of ». '

THEOREM 8 (Theorem 17 of Kawamata [8]). Let Y be a non-singular pro-
Jective algebraic variety, let D be a divisor of mormal crossing on Y, and let K
be a finite extension of the field C(Y) such that the normalization Y, of Y in
K ramifies only possibly over D. Then there ewists a finite extension L of K
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such that the normalization h: Y'—Y of Y in L gives a wice covering of Y withv
respect to D.

" THEOREM 9. Let f: X—Y be an algebraic fiber space, let h: Y'—Y be a nice
covering, let p: X'—>XXY' be a resolution of singularities, and let f': X'—Y’
be the algebraic fiber space induced by f: ‘

x -t xx, v -2ox
AN
SN S
\ A4 Y
Yy — Y.
3

Then (X, Kxy) 2e(X, Kx'1y).

PROOF. X Xy Y'={(x,¥') € XX Y’; flx)=h(y'})} is locally complete intersection
and hence Gorensten. Since h is flat, o(X Xy Y//Y)=¢*(Kxy) by p.191 of
Hartshorne [6]. Let j: X”—X Xy Y’ be the normalization. Then by Proposition
7, (X, Kyjy) <elX", 7*o(X X, YY) =X, Kx/y). " Q.E.D.

3. Algebraic preparation

THEOREM 10. Let X be a non-singular and projective algebraic variety and
let D be a divisor of mormal crossing on X. Let H, be a variation of Hodge
structures on X"dffX\D' Then there exist a non-singular projective algebraic
vartety X' and a finite surjective morphism h: X'—X satisfying the following
conditions:

(i) D’;fred h=Y(D) is a divisor of normal crossing on X'.

(ii) Let X}=X"\D’, hozhlxé and let Hi=hiH, be the variation of Hodge
structures on Xj induced from H, Fix a base point z' of X} and let M be a
subgroup of C* generated by all eigenvalues of the elements of the image of the
monodromy representation (X}, x')>GL(HY 2, ). Then M ts torsion free.

In particular, if all the local monodromies of H, around D are quasi-unipotent,
then all the local monodromies of H} around D' are unipotent.

PrOOF. Fix a base point x of X, and we consider the monodromy representa-
tion (X, 2)>GL(H,, z,,). By Borel [1] 17.1, there is a congruence subgroup
Gy of GL(H,, z,,) such that the group generated by the eigenvalues of the elements
of G, is torsion free. Let = be the subgroup of =,(X,,z) obtained by the pull-
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back of Gy. Since the index of G, in GL(H,,z,.) is finite, we get an etale cover-
ing X” of X, corresponding to =. By Theorem 8, there is a finite extension L
of the field C(X”) such that the normalization X’ of X in L is non-singular and
that the pull-back D’ of D is a divisor of normal crossing. Then X’ is the desired
variety. Q.E.D.

THEOREM 11. Let X be an algebraic variety, let Y be an irreducible and
reduced complex space and let f: X—Y be a proper and surjective morphism of
complex spaces with connected fibers. Then there exist algebraic varieties X’ and
Y’, a proper and birational morphism p: X'—X, a proper and bimeromorphic
morphism of complex spaces v: Y'—Y, and a proper and surjective morphism
of algebraic varieties f': X'—Y' such that fleyv=pof.

PrOOF. We may assume that X is non-singular and quasi-projective, and Y is

normal. Let X be a non-singular and projective compactification of X. Put D=
X\X. '

CLAIM 1. There is a reduced closed analytic subset E of Y, which is dif-
ferent from Y, such that Y\E is smooth and that f is smooth over Y\E.

ProoF. This is an easy consequence of the proper mapping theorem. See
Corollary 1.8, Chapter I of Ueno [15]. Q.E.D.

Let % be a point on Y\E and let Z be an irreducible component of the Hilbert
scheme of X which contains a point corresponding to X,=f"'(y). Let p: X7
be the universal family and let g be the projection from XCXxZ to X. Since
the restriction of f from X\fYE)CXX(Y\E) to Y\E is proper and flat, we have
a complex analytic morphism j: Y\E—Z which sends y, € Y\E to the point of Z
corresponding to X,. Sinece N Xu/xzé‘fa@xy for r=dim Y,7 is an open immersion
and hence Z is generically reduced. Let Z,={z¢€ Z; Z is reduced at 2, p7'(2) is
smooth and p~ )¢ DUFUE)} and Z,={zcred Z; p(2)NX+}. Then Z; is an
open dense subset of red Z with respect to the transcendental topology and Z, is
a Zariski open dense subset of red Z which contains Z,.

CLAIM 2. 7 is an isomorphism from Y\E onto Z,.

PRrROOF. Suppose that j(Y\E)#Z, and let z be a point in the closure of j(Y\E)
in Z,. If 2¢ jJ(Y\E), then fip~'(z) NX)N Y\E contains at least two distinet points
9, and ¥,. Let U; and U, be disjoint open neighborhoods of y, and y, in Y\E,
respectively. Then there is an open neighborhood V of z in Z, such that for any
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z; in V, flot ey NX)NU;#2 for i=1,2. Thus 2,¢jY\E), a contradiction.
Therefore, J(Y\E)=2Z,. Q.E.D.

Let X¢=(red p)~}(Z,).

CLAIM 3. ¢ induces a proper and birational morphism p: Xj—X.

Proor. By the same argument as above, we deduce that if z¢ Z,, then
S z)NX) contains only one point. Hence p~(z) is contained in X. Thus X{
coincides with (red ¢)~1(X), and hence g, is proper. Since Z, is open and dense,
2o is birational. Q.E.D.

Let X’ and Y be the normalizations of X} and Z,, respectively, and let f/: X’—Y”’
and g#: X’—X be the morphisms induced by p and g, respectively.

CLAIM 4. There is a proper and bimeromorphic morphism »: Y'—7Y of com-
plex spaces inducing 57! on Z,.

PROOF. Assigning z€ Z, to fp~'(2)) € Y, we obtain a set theoretic map v,:
Zy—Y, which is an extension of j*. Let v: Y=Y be the map induced by »,.
Thus we have the following commutative diagram

x ?.x
f’J{ lf
v 2.y .

Since f,f’ and g are proper, v is proper. Let £ be a germ of complex analytic
functions on Y. Since fip*f*t is a germ of complex analytic funetions on Y/, v
is ecomplex analytic. Q.E.D.

Combining the above arguments, we conclude the proof of the theorem.
Q.E.D.

Let X/, D’ and Hj be as in Theorem 10. We assume that all the local mono-
dromies are unipotent. Let H’ be the canonical extension of H{on X’. As in
{4) of Section 1, we have a period mapping P: X|—¢)/I", which is a proper
morphism of complex spaces. By the Stein factorization, we obtain a proper
morphism Pj: X{—Y}j. Then by Theorem 11, there are an algebraic fiber space
Pr. XYY" divisors of normal crossing D” and E” on X” and Y”, respectively,
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a proper birational morphism p: X¢—X¢, and a proper bimeromorphiec morphism
v: Yo—Y4, where X¢=X"\D" and Yi{=Y"\E”, such that the following diagram

X o Xi —E—>X6

e

Y O Yi—Y¢
]

is commutative, where Pj=P" lx;. Let Hq be a variation of Hodge structures
on Xg obtained by the pull-back of H} by g Let z¢ X{ and y=P”(z)c Y3 and
we shall consider the local system Hy, zlp;~1q. Since the stabilizer subgroup G,
of Aut(g)) at a point of ¢) corresponding to y is compact and Aut(H z.., @) is
a discrete subgroup of Aut({), the monodromy group of Hs zlp;-1( is of finite
order, and hence is a trivial group by the condition (ii) of Theorem 10. There-
fore, Hy ; on Xi induces a local system H{ ; on Yg such that P{*H} ,= Hy, 5,
and we obtain a variation of Hodge structures Hf on Yy;. Let H” and H?
be the canonical extensions of Hs and H$ on X” and Y”, respectively. By Propo-
sition 1, PPH¥*=H"=p*H’. Thus, in particular, £(Y”, F*(H¥))=¢(X’, F*(H")).

4. Parabolic fiber spaces

An algebraic variety X is said to be parabolic, if the Kodaira dimension x(X)
is zero. In this section we shall study algebraic fiber spaces whose general fibers
are parabolic. Let X be a non-singular projective parabolic algebraic variety.
Thus n"}gi( P,(X)=1. Let m be the smallest positive integer such that P,(X)=0.

We have a non-zero homomorphism ¢: K§ ™—®x. Let X* be the closed sub-
variety of Spec( @ K‘%"‘), the total space of the line bundle Ky, defined by the
k>0

ideal generated by u—o¢(u) for u e K% ™ Then X*is an irreducible finite covering
of X of degree m which ramifies only possibly along {¢=0}. We can easily show
that «(X# =0 and p,(X#% =1, where » and p, of a singular variety are defined as
those of its non-singular model (see [8] Sect. 3, Claim 2). We call X* the canonical
covering of X. Let n: X#—-X be the canonical projection.

PROPOSITION 12. Let 7: X#—>X be as above and let X’ be another non-singular
projective algebraic variety such that £(X')=0 and p,(X')=1. Suppose that there
18 a generically finite and surjective morphism p: X'—X. Then p s factored
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through by = and a morphism pt: X'— X4,

PROOF. Let w and s be non-zero global sections of K¥™ and Ky, respectively.
Since £{ X’} =0, p*w=cs® for some ¢€ C*. Thus X* X y X’ breaks into m irreducible
components, and the projection from one of its components to X* gives p*.

Q.E.D.

'The main theorem in this section is the following:

THEOREM 13. Let f: X—Y be an algebraic fiber space with parabolic general
Sfibers. We assume that the canonical covering of the gemeral fiber is birationally
equivalent to a non-singular projective algebraic wvariety with trivial canonical
bundle. . Then there is an algebraic fiber space fi: Xi— Y, which is birationally
equivalent to the given f: X—Y such that £(X,, Kx,jv,) >p-dim(f), where p-dim(f)
18 a non-negative integer called the period dimension of f, which is defined as
the dimension of the image of the period mapping associated to f (for the precise
definition see the proof).

COROLLARY 14. Under the above conditions, if £(Y)>0, then «(X)>
max(x(Y), p-dim(f)). For examnple, if the general fibers are birationally equiv-

alent to abelian varieties, or to surfaces with £=0, then the above inequality
holds.

PrROOF. We remark the following. First, (X, Kyy) does not depend on the
choice of birational models of X, but of Y. Second, if we replace Y by a nice
covering Y’ and f by the induced fiber space f/: X'—»Y’ as in Section 2, then
(X, Ky 1y) <w(X, Kxiy).

Step 1. We assume first that the general fiher X, has itself a birational
model with trivial canonical bundle. Then there is a surjective morphism Y'—Y
such that the major ecomponent of the pull-back X Xy Y’ is birationally equivalent
to some algebraic fiber space X'—Y’ whose general fiber has a trivial canonical
bundle. If dim Y’>dim Y, then we may replace Y’ by its general hyperplane
section using Bertini’s theorem. Thus we may assume that dim Y'=dim Y.
Replacing Y by its suitable birational model, we obtain a nice covering Y’'—Y
by Theorem 8. Therefore, we may assume from the first that nyE@Xy. For
this type of fiber spaces, the local Torelli theorem holds, i.e., the homomorphism

HU(X,, Tx,) — Hom(H'(X,, Kx,), H'(X,, 2%,")

is an isomorphism, where n=dim X,. Let Y, be a Zariski open dense subset of
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Y over whiceh f is smooth. Put X,=s/"4Y,). The variation of Hodge structures
in R"fCx, gives a period mapping from Y, as in Section 1. After replacing Y
by a nice covering of a suitable birational model, we may moreover assume that
this period mapping gives a new algebraic fiber space P: Y—Z as in Section 3.
We have (the canonical extension of) a variation of Hodge structures H on Z
whose pull-back to Y by P is just the given one (see the argument at the end
of Section 3). The dimension of the image of P does not depend on the choice
of the birational models of Y nor that of coverings, but only on the birational
equivalence class of f. We shall call it the period dimension of f and denote it
by p-dim(f).

Let z be a general point of Z and let ¥ be a general point of Y lying over
2. Suppose that there is a tangent vector ¢ in T , such that the homomorphism
Fr—Fr1/F" given by the connection D on H and ¢ is trivial. Then a tangent
vector ¢’ in Ty, , lying over ¢ is sent to zero by the composition of homomorphisms

Ty,, — H'(X,, Tx,) —> Hom(H"(X,, Kx,), H'(X,, 2%"),

where p denotes the Kodaira-Spencer map. By the local Torelli theorem, we
deduce that p(t’) is itself zero, and hence all the homomorphisms Fr—F*1/F?
given by t are trivial for 0<p<n. This means that the Hodge structure does
not move along the direction of ¢, a contradiction. Therefore, we proved that
the assumption of Theorem 3 holds for H. By Theorem 2 and the following
theorem, we conclude that

o(X, Kypy) 26(Y, F*)=x(Z, F*)=dim Z=p-dim(f). Q.E.D. for Step 1.

THEOREM 15. Let L be o semi-positive line bundle on a proper algebraic
variety X of dimension d. Then the self-intersection number (L) 1s positive,
if and only if s(X, Ly=d, i.e., dim HYX, L&")>cm? for some positive number c
and for m>0. (¢ denotes the L-dimension of X.)

PROOF (due to A. Sommese). We may assume that X is non-singular and
projective. Let H be an ample line bundle on X such that HQKy is very ample.
TLet Y be a divisor on X corresponding to a general section of HRKy. We
consider the following short exact sequence:

0 — L®" — LO"QHRKy —> L¥QHQK:Q0y —> 0

for any positive integer m. Since L®*QH is ample, H (X, L®QHRKx)=0 for
1>0, by the Kodaira vanishing theorem. Thus
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dim HYX, Le"*QHRKy) =y (X, LE"QHRQK) :&l'— (L%m?+lower terms.
Since dim Y=d—1,
dim HY(Y, L®"Q@HRQ K zR()y) <bmi1
for some positive number b. Thus by the following exact sequence
0 — H'(X, L®) — H°(X, L®*QHQKy) — H(Y, LE"QHQK xQ0)),
we complete the proof. " Q.E.D.

Step 2. We shall treat the general case. After changing birational models
of X and Y and after a base change by a nice covering of Y, we come to the
following situation:

{i) There is an algebraic fiber space f%: X#—Y which is factored through
by f and which satisfies the first assumption in Step 1:

Xt
7
X
f
Y

(ii) There are divisors of normal crossing C,C* and D on X, X* and Y,
respectively, such that C=red /(D) and Ct=red f (D). Put X,=X\C and Xi=
X#CH,

(iii) f and f* are smooth on X, and X}, respectively, and the fibers of I
over Y, are birationally equivalent to the canonical coverings of those of /.

It is easily shown that p-dim(f¥) depends only on f, and we shall denote it
by p-dim(f). Let F" be the line bundle f%Kysy considered in Step 1. We showed
that (Y, F'")=p-dim(f). Let V be an open subset of ¥ with a coordinate system
{1, -+, ya} such that DA V={y, --- y,=0} for some e<d. Put U=f"V) and Ut=
S¥1V). Let s be a local section of F™on V and let m be the covering degree of

7. Then ¥ |/#¢# is a pull-back by = of some section o of f, K" on U\C. Since

I 1

e e 1/m
( 1 vion fL 7o) =—j
k=1 k=1

m Jpt

_LS
= |

is integrable, kﬂlyk‘”w has poles on CNU of order at most m—1. Hence w ean

e e i/m
(L vmss=n fraems)"|

e

II (7)™ sAS

k=1
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be extended to a holomorphic section of f4K$¥ on U. Thus we obtained an
injective homomorphism (F nem_sf, KS%. Therefore, (X, Kyy)=£(Y,F")=
p-dim(f), and we complete the proof of Theorem 13. “ Q.E.D.

REMARK. By the above proof the same theorem holds, if (i) p,(X/Y)=1, and
(ii) the loeal Torelli theorem holds or dim(X/Y)=2. For the related topics to (ii),
we refer the reader to [2] and [17].

5. Surface case
In this section web shall prove the following theorems:

THEOREM 16. Let f: X—Y be an algebraic fiber space. If dim X/Y=2 and
f(X)Y)=1, then £(X)>w(Y)+1.

THEOREM 17. Let f: X—Y be an algebraic fiber space and let a,: X,—~A(X,)
be the Albanese mapping of the general fiber X, of f. If dim X/Y=2, £(X/Y)=2
and dim(Im a,)=1, then £(X)>x(Y)+2.

In the curve case we have the following theorem by Viehweg [18]:

THEOREM 18. Let f: X—Y be an algebraic fiber space such that dim X/¥Y=1.
Then £(X)=>k(Y)+u(X]Y). Moreover, if x(Y)=0, then s(X)> dim ¢(Y), where ¢
denotes the rational map from Y to the coarse moduli space of curves of given
genus induced by f. ‘

In both cases of Theorems 16 and 17, we have a decomposition of f into two
algebraic fiber spaces g and h such that f=heg,

where g: X—Z is obtained by the Iitaka fibering of the general fiber X, of f in
the case of Theorem 16, and by the Stein factorization of «, in the case of

Theorem 17. Thus we can use the above Viehweg’s theorem in the proof as
follows.

LEMMA 19 (Induction lemma). To prove Theorems 16 and 17, it is enough to
prove that x(X)>0 if £(Y)>0.
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Proor. If £(Y)=—co, then there is nothing to prove. Suppose x(Y)>0.
Let @¢: X—W be the litaka fibering of X. By assumption, dim W>0 and hence
X,+X, where X, is the general fiber of @. By Proposition 6, dim Y—x(Y)>
dim f(X,)—«(f(X,)). By the Stein factorization of X,—f(X,), we obtain an alge-
braic fiber space f,: X,—Y,. Since £(Y)>0, £(f(X,))>0, and hence x(Y,)>0.
Then since «£(X,)=0, dim X,/Y,<1 by the assumption. If dim X,/Y,=1, then
£(Y,)=0 and the general fiber of f, is an elliptic curve by the Viehweg’s theorem.
If dim X,/Y,=0, then #(f(X,))<#(Y,)<#(X,)=0. Thus in any case, &(f(X,))=0
Therefore, dim Y—«(Y)>dim X,—1=dim X—«(X)—1, which proves Theorem 16.
If #(X/Y)=2, then X, cannot be an elliptic fiber space and hence dim X,/ Y,=0.
Thus, dim ¥Y—#(Y)>dim X,=dim X—«(X), which proves Theorem 17. Q.E.D,

Proor oF THEOREM 17. Since x(X,)=2, the general fiber of g must be a
curve of genus greater than 1. Therefore, using the Viehweg's theorem twice,
s(X)>k(Z)+1>6(Y)+1. Q.E.D.

PrOOF OF THEOREM 16. Let g be the genus of the general fiber of 1. If q=2,
then using Theorem 18 twice, £(X)>«(Z)>«(Y)-+1 and we are done. By the same
way, if ¢=1 and if the fibers of either g or kh have non-constant moduli, then
£(X)>0. Also, if g=1 and £(Y)>0, then £(X)>0. Thus, what are remaining are
the following two cases:

(i) g¢=1, and g and h have constant moduli, or

(ii) ¢=0.

To treat these cases, we need the following generalization of Kodaira’s canonical
bundle formula for elliptic surfaces (In case there are no multiple fibers, this was
obtained by Ueno [14] Theorem 6.1.). ' ‘

First we recall Kodaira’s theory of elliptic surfaces. An elliptic surface f:
X—Y is an algebraic fiber space whose general fiber is an elliptic curve such that
dim X=2. It is called minimal, if any fiber contains no exceptional curves of
the first kind. Kodaira classified all the singular fibers @ which can appear in
minimal elliptic surfaces ([10, II] Theorem 6.2): namely, there are fibers of types
kL, Ty, II, 1%, III, III*, IV and IV*, where &I, is a multiple fiber of multiplicity
k and b is any non-negative integer. We attach to these fibers rational numbers
a=a(@)=:0, 1/2, 1/6, 5/6, 1/4, 3/4, 1/3 and 2/3, respectively (see Table I in [10,
II] P.604, Table II in [10, III] p.14, and [11] Theorem 12). Then Kodaira’s
canonical bundle formula says that
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KR =*K$"Q0r (X 12¢(Q P)QJ *@pl(l))®@x<12 %;’, (k— 1)Q’>,

where the P are the points of Y corresponding to the singular fibers @, the
second summation is taken over all the multiple fibers @=kQ’, and J: Y—P* is
the J-invariant function. Since there is no concept of minimality in higher dimen-
sional cases, we shall state the following theorem only in terms of the direct
image sheaves.

THEOREM 20. Let f: X—Y be an algebraic fiber space whose general fiber is
an elliptic curve. Let Y, be the Zariski-open subset of Y over which [ is smooth.
Put Xy=f"1Y,) and fo=Flx,- We assume that D&—;fY\Y(, is a divisor of normal
crossing on Y. Let D=3 D, be the decomposition into irreducible components.
Then

(1) The J-invariants of the fibers of f, give a morphism J: Y—P*.

(2) fuKxiy 98 @ line bundle on Y.

(8) We have the following isomorphism

([ Kx17)®2=Op(X 120, D) QJ*Op1(1),

where the o, are the rational numbers corresponding to the types of the singulari-
ties over the general points of the D; given before the theorem. v
Moreover, if D'=3'D; is a sum of disjoint irreducible components of D,
then
(4) The isomorphism in (3) induces an inclusion

Fo B2 Or (! ma.Di+ X mk;— 1)k D)QT*Opr(m/12),

where the k; are the multiplicities of the fibers over the gemeral points of the D;,
if they are of types kl,, and m is a positive common multiple of the k; and 12.

PROOF. The statement (1) follows from Schmid [13] Theorem 4.12. By
Theorem 4, f.Kx/y is a reflexive sheaf. Thus we have (2) by Hartshorne [20]
Proposition 1.9. Now we shall prove (8). We shall give an explicit description
of the variation of Hodge structures given by the algebraic fiber space f.

The local system H, z=RfZx, gives a variation of Hodge structures on Y,
ag in Section 1. Let Hy=H, ,®(), and let H be the canonical extension of H,
on Y. The period domain §) in this case is the upper half plane {z€ C; Im z>0}.
Let V,=2Z®Z and let {v,, v} be a basis of V;. The alternate hilinear form @
is given by Q(vy, v,)=1. The arithmetic group Gz=Aut(V, Q)=SL(2, Z) acts in
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the following way:

(i) For a basis {vy, v} of Vg, g( U >=t( e b >—l< U1 >, and
Vg c d Vg
(ii) for ze (), g(z)=(az-+b)/(cz+d), where

g:<z 2)€Gz.

The quotient space J)/Gz has a one point compactification P'=G)/GzU{co}.

A Hodge structure on V=V,QC is given by a 1-dimensional linear subspace
F=F" of V such that —(v —1)Q(F,F)>0. Then Q(F,v)#0. Let w=wy be an
element of F' such that Qlw,v;)=—1 and let 2=Q(w, v;). Thus w=zv,+v; and
Imz=—1/2(v —1)Q{w, ) >0. The period mapping is given by (F; v, vo)—2. Let
g=( Z 2)6 Gz and let {v],vj} be another basis of V, such that;g( U )=< vt )

Vg %
According to this basis, we define o'=o0k¢F and 2’€ () as above. Then w=

(cz+d)e’ and 2’ =(az+b)/(cz+d). Thus we obtain the period mapping P given by
F—zmod Gg.

An automorphic form g=q(z) of weight d is, by definition, a holomorphic
funetion on ¢§) such that ¢{(g(2))=/(cz+d)%(z), for g=<z Z)e Gz. Then the

formula ¢(2)o®™ is invariant under the action of Gz. Hence pulling it back, we
obtain a section of (f*KXO,YO)‘@"‘:f*K?;'i v,- It is known that there is an automor-
phic form 4 of weight 12 which has the only simple zero at infinity. Thus the
automorphic factor (cz+d)!* defines a line bundle on P'=¢)/GzU{co} which is
isomorphie to p1(1).

Therefore, we have an injective homomorphism J*©)pi(1)—(fKxv)®?, because
|Q(w, @) |=2Im 2z has a logarithmic growth at the boundary. Since it is also sur-
jective on Y,, we have an isomorphism (f4Kxz/¥)®?=J*Op{L)Q@Ox (T b.D;) for some
non-negative integers b;. The b; are determined by estimating the growth of the
metrie h(s;, s;) of generating sections s; of f.Kx;y at general points of the D,.
The eigenvalues of the local monodromies around the D; corresponding to the
subbundle f.Kx/y of the canonical extension H are given in Table 1 in {10, II]:
they are 1, —1, e5il3, 5ni/3, griiZ @37i/2 @21if3 gnd %3, if the types of the singu-
larities at the general points of the D; are kI, If, II, IT*, III, III* IV and IV%,
respectively. Hence the growth is logarithmic function times |z[™%%, where z=0
is the loeal equation of D;. Therefore, our b; coincides with a; for each <.

Finally, we shall prove (4). Since f.K$% does not depend on the choice of
the birational models of X, we may assume that Cd=fred SUD) is a divisor of
C .
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normal crossing on X. By the above argument, F*ESY contains J*(Opi(m(12).
What we have to show is thus the following: Let D, be an irreducible component
of D such that the fiber of f over the general point of D, is of type k,I;,, and
let f*D,=3r,C; be the decomposition into irreducible components. Then any
holomorphic local section of J*(©)p1(m/12) gives a holomorphic section of K& which
has zeros at the C; of order at least mr;(k,—1)/k,.

Let ¥, be a general point of the image f(C;), let V be an open neighborhood
of 9, in Y with a coordinate system {yi, ---,%s such that D;NV={y;=0} and
fC)NV={y,= --- =y,=0} for some e¢<d, and let s be a generating local section

of J *@Pl(m/IZj on V. Since S ) | (s A8)Y/™| has only logarithmic poles as a fune-
bt}

tion of ¥ on V, the integral ) | (6.0 AB )t ™ | converges, where 6, = Hly}c“’””’s@’"’
ST k=

for a positive integer m’. Hence by Proposition 5, 6, has a pole of order at

most mm’—1 on C;. If f(C;)=D; and e=1, then »;>k; and hence yrmikg, =

Ltmm! (k) —mm’

W

yr*~*0/fg ig holomorphic at C;. Thus we are done in this case. If f(C;)#D, and

¢>2, then y#™ 0, is holomorphic at C,, and hence yi~"™s® is holomorphic at

s® is holomorphic at C;. Since m’ is arbitrary, we conclude that

C;. Thus y1™s is holomorphic at C; and we are done also in this case. There-
fore, we complete the proof of Theorem 20. Q.E.D.

PROOF OF THEOREM 16 CONTINUED.

Case (i). We shall prove that (X, Kx/v)>0 for a suitable birational model
of f: X—Y. Using Theorems 8 and 9, we reduce it to the case where Z is
birationally equivalent to a product Yx E for an elliptic curve E. Thus we come
" to the following situation:

where

(a) E is an elliptic curve,

(b) fis the given fiber space, g is an elliptic fiber space with constant
moduli, %, is the projection, and v is a proper birational morphism,
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(¢) there is a divisor of normal crossing D on Z such that g is smooth
outside of D, and

(d) if D’ is the collection of all the irreducible components of D which
project onto Y, then I is smooth.

By (4) of Theorem 20, we have an inclusion 9:K8002(> maiD;), for any
common multiple m of 12 and the k;, where a/=max{a;, (k;—1)/k;). In particular
H°(Z, 9. K%%+0. Kodaira’s canonical bundle formula applied to an elliptic surface
X,—Z, for a general point y of Y says that the above inclusion is an isomorphism
when restricted on Z,. Since £(X,)=1, we conclude that there is an irreducible
component D; of D’ such that a{+0.

Let D! be the image of D, on YXE. Then «(YXE,D})>0. On the other
hand, since any irreducible component of v*Di—D; is exceptional with respect to
v, HYZ, O z(ma,(D,—v*DY))QKF¥)#0 for some positive integer k, where we note
that Kyxp=h*Ky. Combining the above, H°(Z, 9+ KSR z(—maw* DY) 0. Thus,

©(X, Kyiy)>k(Z, v* DY) =x(Y X E, D} >0. Q.E.D.
Case (ii). By the same argument as in case (i), we reduce it to the following
situation:
X
g
AW
zZ
f l”
Yxpt
/
I
Y )
where

(a) fis the given algebraic fiber space, g is an elliptic fibexr space, h; is the
projection, and v is a proper birational morphism,

(b) there is a divisor of normal crossing D on Z such that g is smooth
outside of D, and

te) if D’ is the collection of all the irreducible components of D which
project onto Y, then I’ is smooth.

By Theorem 20 (4), we have an inclusion g, K85D0;(%’ maiD)QJ*Opt(m/12)
as above. Let D” be a general divisor on Z corresponding to J*(Dp1{l), which
can be chosen to be reduced. Let D’=Y Dj be the decomposition into irreducible
components. We may assume that D’ and D” have no common irreducible com-
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ponents. Using Theorems 8 and 9 again, we may assume that degy D,<1 and
degy Dj <1 for all ¢ and j. Since £(X,)=1, we have degz, Oz, (L maiD;+mf12 5 D}y
>2m, for a general point ¥ of Y. Since mal<m and mf12<m, we can maké a
sequence (C,, C;, Cs), (C, Cs), +++, (Com, Camst) of divisors on Z such that

(1) C, is an irreducible component of either D’ or D”, and degy C,.=1, for
1<k<2m+1,

(2) C1#C,#Cy#C, and C,pr#Cyyeq for 2<k <m, and

(3) % C<T/maiDi+mii2 ¥ D,

We shall show that dim H*Z, K;;yQRO)z(C;+C,+Cy)}>2 and dim HYZ, Kz;yQ
Oz(Cor+Carey))=>1 for 2<k’<m. If these are shown, then since f K$v=
b9 KSHQKSY), it follows that dim HY(X, K€% >2 and we are done.

Replacing the birational models of ¥ and Z, if necessary, and using Theorems
8 and 9 again, we may assume the following conditions:

(i) There is a divisor of normal crossing E on Y such that, if we put Y,=
Y\E and Z,=h'(Y,), then h is smooth on Z,.

(ii) Any pair out of {C,, ---, Csnsi} are disjoint if not coincide, and U CLU
(Z\Z,) is a divisor of normal crossing on Z. Since H°(P!, Kp®()pi( {0}+{00}))
isomorphic to C with a generator dz/z for some inhomogeneous coordinate z on P‘,
giving the residues +1 and —1 on C; and C,, respectively, we obtain a global
section w; of Kz,/y, @0z, (C:+Cs).

CLAIM. w; can be extended to a section of K ;y®(z(C,+C,).

PROOF. Let V be an open subset of ¥ with a coordinate system {yy, -~ -, ¥4}
suchthat VNE={y, - - - ¥,=0} for some e<d. Put Vo=VNY,, U=hHV), U=h"*V,),
and p=dy A -+ Adys. Then 6=w,; Ay gives a section of Ky &Oy,(C:1+Cs). The
form w; gives an isomorphism a: U;—Vyx P! which sends C;NU, and C,NU, to
Vox{0} and V,X{co}, respectively. We can choose positive real-valued C=-func-
tions 7, and #; on V, with algebraic growth at E such that r;<7, and that the
closure W of the set {ze€ Uy; |prova(z)) |<rih(z)) or prei(a(2))[>7sh(z)) in U
becomes a neighborhood of (C,UC.)NU which contains no divisors in A 1(V\V,).
Then,

| w/\m=§ 25 log 72 [7A7)
Uo\w Vo
converges. Therefore, by Proposition 5, 0 can be extended to a section of Ky&Q

Ou(Cy+Cy) on (U\W)UU,, and hence on U by Hartogs’ theorem. Thus »; can
be extended on U and we complete the proof. Q.E.D. for the Claim.
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By the same way, giving residues +1 and —1 on C; and C,, respectively, we
obtain another section of Ky;y®)(C1+Cs). Hence dim H*(Z, K, 17 ROZ(CL+Co+Cy))
>2. Similarly, dim H%Z, Kzy@Oz(Ca+Caus1)) =1 for 2<k' <m. Thus we com-
plete the proof of Theorem 16. Q.E.D.
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