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§0. Introduction

Let B,={(z,, ---, 2, € C*} illzj <1} be the unit ball in the complex euclidean
space C* (n>2), and Aut(B,,;—the holomorphic automorphism group of B,. Let
& be a parabolic subgroup of Aut(B,) and P the corresponding boundary point of
B,. Tor a discrete subgroup I" of locally finite volume of &P, we have the follow-
ing conjecture: “The factor space B,/I"\J{P} added by the point P (the Satake
compactification of B,/I") is non-gingular if and only if I' is generated by quasi-
reflections”. This is true for n=2 (Yoshida-Hattori [11]). In this paper, we give
the following partial answer to the conjecture.

_ MAIN THEOREM. If I' is generated by reflections and if the point group W(I')
of I is a Coxeter group, then the variety B,/I'\U{P} is non-singular.

We list up every conjugacy class of discrete subgroup of &P of locally finite
volume such that it is generated by reflections and that the point group is a
Coxeter group (Table I in Theorem 1). Let A be a generalized Cartan matrix of
EBuclidean type (Table II), W, the Weyl group of A, and @ the root lattice of A.
We put W,=WxQ. A bijective correspondence between the groups in Table I
and the groups {W,} is obtained (Theorem 2). In accordance with Theorems 1
and 2, the main theorem is reduced to the theorem of Looijenga ([8]), which is
reviewed in 5. 3.

Here we want to state the motivation of the conjecture. Picard ([6]) and
Terada ([8]) studied the monodromy groups of Lauricella’s hypergeometric differential
equations Fpla, 81, «+, Ba, 7} %1, -+ -, ,) defined in the n dimentional complex pro-
jective space. They found some conditions for parameters e, 84, - -, 8., 7 such that
the monodromy groups are discrete subgroups of Aut(B,). Roughly speaking, this
implies that the Satake compactification of the quotient space of B, by the
monodromy groups are non-singular. We notice that the monodromy groups in
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question are generated by quasi-reflections. On the fixed points in the interior of
B,, the above statement is a consequence of Chevalley’s theorem. When we

observe the cusps, we naturally arrive at the conjecture. For more details see [10]
and [11].

The author wishes to express his deepest appreciation to the members of

Ropponmatsu Seminar who gave him unceasing encouragement and valuable
comments.
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§ 1. Structure of discrete subgroups of G of locally finite volume

1.1. Let Y be an ({-+1) dimensional vector space over C with a fixed coordinate
system (z, %y, - -+, u;) and

1
D:{(z, Uy, +-, %) € Y [ Imz> leuj["’}
i=

be a domain in Y. The domain D can be regarded as a domain in the ({41}
dimensional complex projective space P*(C) by the natural embedding of Y into
PHYC). If v=t(vy, vy, ---,V;4,) is a homogeneous coordinate of P (C) related
by (@, s, -+, W) BY 2=0o/V0s1, Us=V1/Vis1, * * +, W=0/V141 and if

i
H =( -2I, ), (I,=lx1 identity matrix)
—4

then the domain is expressible as {ve P {(C)|*WHv>0}, where % is the transpose
of the complex conjugate of v. The closure of D in P*(C) meets the hyperplane
at infinity v,.,=0 at the unique point - P=%1,0,.--,0). Remark that the domain
D is projectively equivalent to the unit ball Bﬁlz{(zo, 21, 00, 2) €ECH lléotz,- [2<1},

The complex analytic automorphism group Aut{D) of D is identified with the
quotient group of the subgroup of GL(I+2, C):

{(XeGL(+2,C) ' XHX=kH, for some k>0}

by the multiplicative group C* of C. For the sake of simplicity we express an
element of Aut(D) by a suitable matrix belonging to the corresponding coset. Under
this convention, an element g of Aut(D) keeps the point P fixed in a geodesic sense
(for the definition see [7]) if and only if g is of the form

1 28U  r+iBB
[U, 8,7 =[ 0 U B ]
0 0 1 i

where fe % yeR and U is an Ix!l unitary matrix. The subgroup of Aut(D)
which consists of every element of the form [U, 8, 7] is denoted by G. The group
which consists of every element of the form

1 g 7
0 A «a AcGLI,C), a,tBcC, reC,
0 0 1

is denoted by G. Let us define for N>0 the subdomain D(N):={(z, Uy, * v o, W) €



28 Masaaki YosHIDA
L
D |Im z—leuj]2>N}.
=

DEFINITION. A subgroup I' of G is said to be of locally finite volume (at P)
if the quotient space D{N)/I" has finite volume with respect to the Aut(D)-invariant
measure of D for sufficiently large N>0. '

Let G, be the normal subgroup of G consisting of every element of the form
il,a, 7], @€ C*, y€ R. The center of G, which is also the center of G, is given by

Z:={L,0,71lr € R}.
We prepare some notations:
F:={,0,---,00¢ Y|ze C}CY,
Y’:=Y/F: I dimensional complex vector space with the coordinate (u,, ---,

#%,) with the natural inner product,
w1 Y—Y’: natural projection,

A(Y'):={<A|ﬁ>:=<81 f)

AeGL(, ), B¢ C‘}: affine transformation
group,

U(l): Ix1 unitary group,

E(Y":={{U|p|Uec Ul), pecC: complex motion group on Y/,

ry: G—E(Y’): surjective homomorphism given by [U, 8, 71-(U|8).

DEFINITION. A crystallographic group on Y’ is a discrete subgroup of E(Y”)
with compact quotient.

1.2. Let I’ be a discrete subgroup of G of locally finite volume.

LEMMA 1.1. (1) = (") is a crystallographic group on Y'. (ii) The group
defined by I'\([):=I' NG, is a normal subgroup of ' of fintte index. (ii1) There
exists a positive number q(I"):=Inf{r!||[L,0,71€ (")}, and the center of I" is
giwen by Z(I'):={1,0,71lr € qa(r) Z}.

PrOOF. Same as [11; Proposition 1.11.

By (i) and the Bieberbach’s theorem (cf. [13]), there exists a lattice L(I")C Y’
such that = ([ (M) ={l|a)|a€ L{I")}. We shall identify the group =.(I"1(I")) and
the lattice L(I"). Under this convention, we define the point group of =.(I") by
W) : =z (") L(I"). We shall also call the finite group W(I") the point group of
I'. Then we have the following commutative diagram of exact sequences:
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1 1

1—Z()— 1 ([)—>

(')

|

r Tyl
| ]

—W( — W

I

1 1

i][ l L(lf )—1
|

|

)—1
)—1

In this section, we consider the exact sequence:

1—Z()— I (") —— L") —1.

1.3.

LEMMA 1.2. There exists ¢ function cp: L(I')—R such that [L,a,y16 ') if
and only if « € L(I") and y=cr(a) mod ¢(I')Z. The function cr satisfies, for a,a’ €

L,
erlata’)=crla) terla’)—2Imtaa’ mod q(I") Z.

ProOOF. We have only to recall that

(L, a, 71L&, 7/ 1=1L, a+a', 7 +7' —21m ‘@a’]. Q.E.D.
LEMMA 1.3. We have, for all a,a’ ¢ L(I'),
q—éi Im ‘aa’ € Z.
PrOOF. The definition of q(I") and the identity
U, e, 7115, &, ' 1UL, @, 717, o, 7T =(1, 0, —4 Im f@a’]
Q.E.D.

lead to the conclusion.

COROLLARY 1.1. The correspondence (x, y)aﬁ Im txy gives a non-degener-
ate alternating R-bilinear form Y'X Y'—R which tnduces LI} x L(I')—Z. That

is, Y/|L(I") is a canonically poralized abelian variety.
COROLLARY 1.2. The quotient space Y/I',(I") is the total space of the C*-bundle
(determined by the above Riemann form) over the abelian variety Y'|L(I").
COROLLARY 1.3. The quotient space (Y/T'(IM)U(Y’/L(I")} added by the abelian
variety Y'|L(I") gives a smooth compactification of the quotient Y/I'\(I).
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14.

LEMMA 1.4, There exists a function bp: W{(I')—Y' such that (w|B)€ z(I") of
and only if we W(I') and p=bp(w) mod L(I'). The function by satisfies, for
w,w € W(I),

br(ww’)=bp(w) +wbp(w’) mod L(I").
PROOF. We have only to reeall that
(w]B)(w'| )= (ww'| B+wp’). Q.E.D.

LEMMA 1.5. There exists @ function dr: W(I')—R such that [w,B,71€ " if
and only if we W(I') and B=bpw) mod L(I") and y=dpiw)-+cria)—2Im tabpw)
mod q(IMZ, where a=8—brw) € L(I'). The function dr satisfies, for w,w’ € W(I'),

drww’)=drw) +drw’) —2 Im bpw)wbr(@w') +erle) —2 Im ta@brlww’) mod g Z,
where a=>byww')—bpw)—wbrw’) € L(I').

PrROOF. We have only to recall that

[w, B, 711w, B, r"1=Tww’, B+wph, 7 +7'—2Im *fwp']. Q.E.D.

LEMMA 1.6. We have, for we W'} and ac L(I'),

erlwa)=cr(a)—4Im br(wywa mod q(I")Z.
Proor. Consider the exact sequence
1> (> —->W(I")—1.

Since the group I'y(I") is invariant under the action of W(I") and the lifting of
we W(I) to I' is given by [w,br(w),dr(w)], the following identity leads to the
assertion:
[w, br(w), dr ()11, a, crla)]Tw, br(w), dp(w)1™ =1, wa, cr(e) —4 Im b (wjwal,
Q.E.D.

1.5. On the contrary, starting from a finite subgroup W of U(I"), we shall
construet discrete subgroups of G of locally finite volume:

PrOPOSITION 1. Let W be o finite subgroup of U(l). Assume that there exists
a W-invariant lattice LCY’. Let q be a positive number such that (4/q)Imt@a’ € Z
for all a,a’ € L,b be a function W—Y' satisfying, for w,w € W, blww’)=b(w)-+
wb(w’) mod L, ¢ be a function L—R satisfying, for a,a’ € L and we W,
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clata’)=¢la)tela’)—21Im taa’ modqZ,

and

clwa)=c(a)—4 Im bwywa mod qZ,

and d be a function W—R satisfying, for w,w' € W, dww’)=d(w)+d@’)—2Im bw)
X wh(w') +cla) —2 Im %@ b(ww’) mod qZ, where a=b(ww') —b(w)—wbw’) € L. Then the
group I' defined by

I'={lw, 8, 71lwe W, 8=bw) mod L,
r=dw)+ela)—2Im @ blw) mod qZ, where a=p—bw)}

s a discrete subgroup of G of locally finite volume such that W(I')=W, L(I")=L,
(") =q, er=c, br=b and dr=d.

Proor. Easy.

§2. Conjecture and main theorem

2.1.

DEFINITION. we U(l) is called a quasi-reflection if w is of finite order, w=1,,
and has exactly l—1 eigenvalues equal to 1. The unique nontrivial eigenvalue of
w is denoted by g(w). A root r(w) of w is a base of the eigen space corresponding
to the eigenvalue p(w).

A quasi-reflection we U(l) is represented by

w=L+(pw) —1)r W) 7 @)/ 'r (w)rw).

DEFINITION. An element g of E(Y’) or G is called a quasi-reflection if g is of
finite order, g=identity, and keeps a hyperplane in ¥’ or in D, respectively, point-
wisely fixed.

The following is easy and well-known.

LemMA 2.1, (i) (w|B)e B(Y") is a quasi-reflection if and only if we U(l) is
a quasi-reflection and B is parallel to rw). (ii) [w, 8,71€ G is a quasi-reflection
iof and only if w|B)e E(Y’) is a quasi-reflection and

r=1|81*(nlw) +1)/ (plw) —1).

2.2. CONJECTURE. For a subgroup I" of G of locally finite volume, the quotient
space D/I"U{P} added by the point P is non-singular if and only if I is generated
by quasi-reflections.
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This conjecture is valid if /=1 (Yoshida-Hattori [11]). Here we give another
proof. Mumford’s criterion ([5]) asserts that a point P on a two dimensional normal
variety is a regular point if and only if there exists a neighbourhood U of P such
that U—{P} is simply connected. The variety D/I"U{P} is normal, because it is
the quotient by the finite group W(I') of the variety obtained by blowing down an
elliptic curve, with negative self-intersection number, on a non-singular surface
(Corollary 1.3.). On the other hand, it is known that the quotient of a simply
connected manifold by a properly discontinuous group is also simply connected if
and only if it is generated by transformations with a fixed point ([1}). Remark
that an element of G has a fixed point in D if and only if it is a quasi-reflection.
Thus D/I" J{P} is non-singular if and only if I" is generated by quasi-reflections.

2.3. DEFINITION. A quasi-reflection of order 2 is called a reflection. A finite
group WCGL(, C) is called a Coxeter group if W is generated by [ reflections
wy, ---,w, and the relations are generated by (ww;)™s=1, 1<3,5<l for some
integers {m,;}.

MAIN THEOREM. For a discrete subgroup I' of G of locally finite volume, if
I" is generated by reflections and if the point group W(I') of I' is an irreducible
Coxeter group, then the variety D/’ U{P} is non-singular.

§3. Crystallographic reflection groups whose point groups are Coxeter groups

If I" is generated by (quasi-) reflections, then the crystallographic group z4(I')
and the point group W(I') is generated by (quasi-) reflections. Hereafter, we shall
restrict ourselves to consider a finite Coxeter group as a point group. For a finite
Coxeter group WcU(l), we shall find every W-invariant lattice Lc Y’ such that the
crystallographic group WXL is generated by reflections. »

3.1.

LEMMA 3.1. For an irreducible finite Coxeter group WCGL(I, C), there exists
a W-invariant lattice in C' if and only if W belongs to ome of the Jollowing
types: A, (I=1), B, (1>2), D, (I=4), G®, E, (1=6,17,8) and F,.

PrROOF. It is well-known that if the Coxeter diagram has a subgraph —>—
(m+2,3, 4, 6), then there exists on W-invariant lattice. Q.E.D.

3.2. Since any finite subgroup of GL(l, C) is conjugate to a subgroup of U(l),
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we fix an integral matrix representation of each Coxeter group as follows. Let
W be an irreducible finite Coxeter group in Lemma 8.1 and C the Cartan matrix
of a Lie algebra of which Weyl group is isomorphic to the group W. If Cis
symmetric, then C is uniquely determined by W, up to reordering. If C is not
symmetric, we choose a diagonal matrix D so that DC may be a symmetric positive
definite matrix. (We put D=1, if C is symmetric.) Let ch=1ilcej be a complex
vector space with an inner product DC, and U(DC) be group consists of linear
transformations which preserve DC: U(DC)={we GL(, C)|'w DCw=DC}. Recall
that a reflection we U(DC) with the root r is represented by w=I—P(r), where
(1/2)P(r) is the orthogonal projection of Y, to Cr.

Then the representation W—U(DC) defined by w;—IL—Ple;) gives a faithfull
representation of W. Furthermore we have Ple;)=e;'e,C where we identified ¢;

2
and 0, ---,0,1,0,---,0). The image of this embedding shall be denoted by W(C)
and called the Coxeter group with Cartan matrix C.

3.3.
LEMMA 3.2. If we U(DC) is a reflection with the root v and if LC Yoo is a

w-invariant lattice, then we have P(r)LCCrNL.

PrOOF. Obvious.

LEMMA 8.3. Let L be a W(C)-invariant lattice, and assume that L([\Ce;=
(Z4+<Z)e;. (i) If the Coxeter diagram of WI(C) has a subgraph G—@®), then
LNCe,=(Z+7Z)e,. (i) LIf the Coxeter diagram of W(C) has a subgraph O—@®,
and if Cp=—2, Cpy;=—1, then we have LN Ce,=2(Z+cZ)e, or 2(Z+7Z)e,+ Zwe,
(w=1,7,1+47) or (Z+cZ)e,.

ProOOF. (i) Since C;=C,;=—1, we have Ple,)(Z+cZ)e;=(Z+cZ)e, and
Ple;)(Z+cZ)e,=(Z+1Z)e;. Thus Lemma 3.2 leads to the assertion. To show the
claim (ii), we have only to remark that Ple)(Z+cZ)e;=2(Z+cZ)e, and
Ple)(Z+cZ)er=(Z+1Z)e;. Q.E.D.

34,

PROPOSITION 2. Ewvery crystallographic reflection group on Y’ whose point
group 1s a Coxeter group is congugate in A(Y’) to one of the following groups.
Since every growp is a semi-direct product W(C) XL of the point group W(C) and
the lattice L, we list up C and L.
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Type of W(C) Cartan matrix C
- 2 -1
-1
B cB)=|
(1=2) 9 _1
i -2
2 -1
F, cri=| "1 2,
—1
2 -1
A, (I=1) C(A)
D, (=4 C(D)
E, (1=6,7,8) C(E)

Here L{7)=Z+7Z (Im>0).
which are uniquely determined.

Lattice L
-1
L,(B)= 2__:1 L{z)e;+2L(z)e,
-1
j=

Ly(B)= % L{c)e;

LiF)= 3. Lide;+ X 2Licle,
2| LaFi= 3 Licle,+ 3 (Z+2:2)e,

L,(GP®)=L(z)e;+3L(z)e,
L,(GP)=Lir)e;+(Z+3cZ)e,

We omitted the Cartan matriz of A, D, and E,,

REMARK 3.1. For the types B, F, and G, alternative choise of a Cartan

matrix may be permitted. The corresponding lattices are the followings:

- 9 1 _
' -1
B, .
C’(Bl)z
(>2) o _o
-1 2
2 -1
, -1 2 -2
F, C{F)= 1 9 _1

-1

2 -3

2

Ml
M~

Li(B) (r)e;

~
14
[TRA

(r)ej+<Z+§z )e,
%L(T)e[

L;(By)

e
I

I
™
B

L;(By)

I
™

{r)e;+

.
n
<

Li(Fy) (r)e;

(r)ej+j=§3 <Z+§z )e,.
LGS =L{c)e,+ Liz)e,
LGP =L{z)e;+(Z+(z/3) Z)e,.

.
I
A

I Il
A dllnis
N~

Li(Fy)

.
il
-

We have that the groups W(C(B:)) X L,(B), W(C(F))xLy(Fy) and W(C(G®))x
L,(G{®) are conjugate to the groups W(C'(B))XL{(B), W(C'(F))xLi(F,) and

W(C(G) % L(GP) respectively, by [1 1 2], [1 14 2] and [1

3] respectively.
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REMARK 8.2. The group W(C(B,))X Li(B,) is conjugate to the group W(C(B,))
X Ls(B,). Thus for 1=2, we have five crystallographic groups W(C(B,)) X L.(B,),
WI(C(By)) X La(B,), WIC(G® X Ly(G®), W(IC(GE) X Ly(GP) and W(C(A,) XL which
correspond to the groups (2.1),, (2.1);, (6.6), (6.6); and (3.3), in [9; Theorem 5.1],
respectively.

PROOF OF PROPOSITION 2. It is known that if the point group W of a
crystallographic reflection group I” is a Coxeter group, then I' is the semi-direct
product of W and the lattice of I'.

LEMMA 3.4. Let W be a Coxeter group and L ¢ W-invariant lattice, then the
group I'=WiXL is generated by reflections if and only if

L= ¥ LNCrw),

w€Eyy
where Ry is the set of reflections in W and r(w) is a root of w.
PRrROOF. The set of reflections in I' is given by
R={w|a)|lwe Ry, ac L, ac Crw).
The set of all parallel displacements in the group generated by R is given by
{(1la)lae L, ac rw) for some we Ryl.
Thus we have the lemma. Q.E.D.
Let L be a W(C)-invariant lattice.

LEMMA 3.5. If we transform L by multiplying a suitable constant to L, then
L contains one of the W(C)-invariant lattices stated in the proposition.

ProoF. By Lemma 3.2 we can assume that L Ce,=(Z+<Z)e, for some 7 (Im ¢
>0). We repeatedly apply Lemma 3.3 (i). Since we have

l{(Z-&-z‘Z)ej-l-(ZZ-l-z'Z)ek}=<Z+—?;1—Z)ej-i-(Z—i—————_z_z Z)ek
T
and
1 —1 _2
1+T{<Z+TZ)91+(2Z+27:Z+ (1+T)Z)ek}:<z+ 1+TZ>9,+(Z+ 1+TZ>ek,

we apply Lemma 3.3 (ii) by putting w=1. Then the lemma is proved except for
4

the types F, and G. The group W(C(F))) ><< ZIL(r)e,) is conjugate to W(C’'(Fy))
=

X L{{F,) by [ 11 1 1 ] Thus Remark 3.1 proves the lemma for F,. The analogous
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proof is available for the type G. Q.E.D.

Let L be a lattice in the proposition such that LCL. Notice that we have
H -~
L= ZlLﬂCej and, by the proof of Lemma 3.5, LN Ce;=LNCe;. It is known that
=
every w € Ry Is conjugate to one of the fundamental reflections w; (=1, ---,1).
That is, there exist x€ W and j such that w=xw;x™* and so, we have r{w)=x(e;)
and LN Crw)=«(LNCe;). Suppose that the group W(C)XL is generated by
reflections, then by Lemma 3.4, we have
_ - [
L= ¥ LNCriwC ¥ X x(LNCe)=W(X LNCe;)=WI(L)=L.
w€ By (¢) €W j=1

The proof of the proposition is now complete. Q.E.D.

§4. Reflection group I" in G whose point group is a Coxeter group

The goal of this chapter is to find every discrete subgroup of G of locally
finite volume generated by reflections such that its point group is an irreducible
Coxeter group.

4.1, Let C be a Cartan matrix and D be -a diagonal matrix such-that DC is
symmetric and positive definite. We put

1 2tADCw r+itBDCP
[wy 18) T]DC: 0 w ﬁ :I
0 0 1

and
GDC:{[wr ﬂ, T]DClw € U(D )y ﬁ € Y;)CECly T € R}'

If Kpc is an Ix! matrix such that *KpcKpc=DC, then the correspondence
1 1
[w’ IB’ r]DC = [KDCwKBé’ KDCﬁ? T]:‘ KDC } ['w’ ﬁ’ r]DC[ KB%} ]
1 1

gives the isomorphism Kp¢: Gpe—G. We shall reformulate Proposition 1 for b
identically zero and for W(C)CU(DC) instead of WcU(l).

LEMMA 4.1, Let W(C)CU(DC) be a Coxeter group and LCYy,, a W(C)-

wmvariant lattice. Let q be a positive number such that (4/q)Im'@aDCa’ € Z, a,a’ € L,
¢pec @ function L—R such that

epcla-ta’)=epela)+epela’) —2 Im *‘@DCa’  mod qZ
epc(wa)=cpcla) mod qZ, a,a’ € L, we W(C),
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and dpc o function W(C)—R such that
dpclww’) =dpc(w) +dpcw’) mod qZ,
2d pelw;) =0 mod qZ,
M (dpe(w;) +dpelws) =0 mod qZ.
Then the group defined by
Tpe={w, a, 7lpclwe W(C), a€L, y=cpsla)+dpcw) modqZ}

is transformed by Kpg to a discrete subgroup of G of locally finite volume.

4.2. If the group I'p¢ is a reflection group, so is the crystallographic group
W(C)X L. Thus we shall consider each subgroup I'pe such that the point group
W(C) and the lattice L are in the list of Proposition 2. For a Cartan matrix C,
we choose and fix a diagonal matrix D so that DC is equal to the following sym-

metric matrix:

Type DC
- s 4 _
-1
B, (1>2)
-1 2 -1
_ -1 1_
2 -1 W
7 -1 2 -1
* -1 1 =172
—1/2 1 ]
2 —1
(6)
2 [ % 2]
A,
A, (1=2),D, (=4 c
E, (1=6,7,8)

For a W(C)-invariant lattice L, we define a positive number g, by
¢o=Max { q ‘-’j—lm igDCa’ € Z, for all a,a’c L},
LEMMA 4.2. " For L(B,), we have ¢,=8Im <. For any other lattice in Proposi-
tion 2, we have qo=4Im .
Proor. Easy.

4.3. We shall denote by Ry the set of all reflections in W. For a W((C)-
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invariant lattice L, a natural number p and the functions cpe and dpg, satisfying
the conditions in Proposition 1, we put
I'(C, L, p, epc, dpc) ={[w, @, rIpc|w € W(C),acL,

T=cpela) +dpc(w) mod gz, g=q/p}
and

RB(C, L, p, cpc, dpc) ={[w, a, 0lp¢|w € By ), e € LNCr(w),
¢pc(a) +dpc(w)=0 mod ¢Z, g=q./p}.

LEMMA 4.3. The set R(C, L, p, cpg, dpg) coincides with the set of all reflections
i the group I'(C, L, p, ¢pe, dpo).

PrOOF. Direct consequence of Lemma 2.1 and Lemma 4.1. Q.E.D.

For each pair (W(C), L) in Proposition 2, we seek for functions ¢p and dpc
and a natural number p so that the set R(C,L,p,cpc,dpe) generates the group
F(C, L, P, Cpe, dDC)'

LEMMA 4.4. If the set Ry=R(C, L, p, cpc, dpe) generates the group I'=T(C, L,
D, €pg, dpc), then for every we Ry, there exists a€ L such that {w, @, 0lpc € Rr.

ProOF. If Rp generates I”, then the set {we W(C)|[w,a,0lpc€ Ry, for some

a € L} generates W(C). On the other hand, following is well-known. If {wy, -+ -, w}

is any system of generating reflections of a finite reflection group W, then every
w€ Ry is conjugate to one of w;s. Completion of the proof is now immediate.
Q.E.D.

4.4. Till the end of this chapter, we shall omit the subseript DC if there is
no danger of confusion. e.g. ¢=¢pe, d=dp¢, [w,a, ¥1=[w, a, 71pc, ete.

LemmA 4.5. Let C,DC, L, q=q,/p, c=cp; and d=dpc as above. If the Coxeter
diagram of W(C) has a subdiagram @—®, then (i) diw;)=dw,) mod qZ, (ii) if
Jurthermore we have '

LNCe;=(0,Z+w.Z)e;,
LN Ce,= (w1 Z+wsZ)e;,
then clwse;)=clwse)=0 mod qZ (v=1,2).
PROOF. Since w;= (www;)w,(waww,;), we have
dw;)=d(w,) +2d(waw,w;) mod qZ.
Lemma 4.1 asserts 2d(wmw,w;=0 modqZ. These prove (i). Recall that the
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function ¢ is W(C)-invariant mod ¢Z (Lemma 4.1). We have

clwvez) =clowies) . modqZ
=clws{e;+e) mod ¢Z
=c(wve;) +clwser) mod ¢Z
and so clw.e;)=0 mod ¢qZ. - Q.ED.

LEMMA 4.6. Let (W(C),L) be in the list of Proposition 2. If the Coxeter
group W(C) is of type A, (1=8), D, ({=4) or E (1=6,7,8), then the set Br=
R(C,L,p,c,d) generates the group I'=T'(C,L,p,c,d) if and only if p=1, d=0
mod qZ and cle;)=clce;)=0 mod qZ.

Proor. Put:

Rrw;)={lw, a,0]€ Briw=wj.
Then we have
Rr(w;) ={{w;, (n+mz)e;, 0] c((n-+mzle;) +dlw;) =0 mod gZ, n,me Z}.
By Lemma 4.2 and 4.5 we have
¢((n+mz)e;) =ncle;) +melce;) —2nm Im C;z=0 mod gZ,
because C;;=2and g=4Im¢/p. On the other hand, by Lemma 4.4, the set Rr{w;)
is not empty. Thus we have d(w;)=0 mod ¢Z, 1<j<I. This implies that
RF:{[w3 «, 0]‘w € RW(C) » & € an’r(w)}'

In particular Ry is independent of p (p=1,2,---) and generates the group I” for
p=1. Q.E.D.

LEMMA 4.7. If the Coxeter group W(C) is of type Fy, then the group T'(C(F),
Lu(F),p,¢,d) (v=1,2) is generated by reflections if and only if p=1,d=0
mod qZ and

for v=1, cle;)=clre;) =0 mod qZ  j=1,2,
c{2e)=¢c (Zz-e,) =0 mod qZ  j=3,4,
Jor v=2, clej)=clre) = mod qZ  j=1,2,
cle;)=c(2r )E mod qZ  j=38,4.
PROOF. Analogous to that of Lemma 4.6. Q.E.D.

LEMMA 4.8. If the Coxeter group W(C) is of tyve B, (1=3), then the group
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'(C(B), Ls(B), p,¢c,d) (v=1,2,8) is generated by reflection if and only if
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clej=clre;)=0 modqz, 1<5<l-1,
d(w;)=0 mod qZ, 1<j<i-—1,
and one of the following conditions is satisfied:

1) v=1, p=1, d{w,)=c(2¢)=c(2ce)=0 mod qZ,
) v=2, p=1, dw)=cle)=c(2re,)=0 mod qZ,
(8-1) »=3, p=1, diw)=cle,)=c(re,)=0 mod qZ,
8-2) v»=38, p=2, dw)=cle,)=c(re,)=0 mod qZ,
(8-3) »=8, p=1, dw,)=0, cle)=0, clre;)=q/2 mod qZ,
(3-4) v=38, p=1, dw)=0, cle)=q/2, clce)=0 mod qZ,
(8-5) v=38, p=1, diw)=cle)=clre,)=q/2 mod qZ.

ProoF. By the same reasoning as Lemma 4.6, we conclude that cle)=
d(w;)=0 mod ¢Z, 1<j<i—1.
in fact we have c(we;)

clre;)=
=0 mod ¢Z for we, € L,
=c(wwe)=—cloe;) mod ¢Z. Thus for each lattice L, (v=1,
2,3), we seek for every possible values p (p=1,2, ---), d{w,)=0, ¢/2 and clwe) =0, q/2
mod gZ where we, € L Ce;, so that the group I' is generated by reflections. We
shall study the set Rp(w,). Recall that

Rr(wy) ={[w, we,, 01|we, € LN Cey, clwey) +d(w)=0 mod q2}.

For each lattice L, (v=1,2,8), we calculate the value c(we,):

Moreover we see that 2c(we;)

1) c(n+mr)e;)=nc(2e) +me(2re;) —2nm4(DC);,;, Im =
=nc(2e;) +me(2ce;) modgZ

2)  cl(n42mo)e) =ncle,) +me(2re;)) —2nm2(DC),; Im <
=ncle,) +me(2re;) mod qZ,

3) c((n+m)e) =ncle;) +melre) —2nm(DC), Im =
=ncle) +melze,) —2nmImr mod gZ.

Thus for each lattice L. (v=1,2,3), the set Rp(w,) is represented by

1) {lw, 2(n+mz)ey, 01 d(w,) +nc(2e;) +me2re)=0 mod g2}, for every p,
2)  {lwi, (n+2mcle;, 01| d(w,) +ncle) +me(2ce)=0 mod gZ}, for every p,
3)  {lw;, (n+mz)ey, 01]d(w)) +nele) +melce) — (g/2)nmp=0 mod ¢Z}
={lw,, (n+mr)e, 0]|d(w,) +ncle) +me(ze) —nmig/2)=0 mod ¢z}
if p is odd,
=0mod ¢Z}
if p is even.

{lw,, (n+mz)e;, 01| d{w,) +nele;) +me(ce))
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If I" is generated by reflections, then the set
{we,—w'e; | [w,, wey, 0], [wy, o€, 01 € Br(wy)}

must generate the lattice L\ Ce;. Now we have only to calculate this set to show
the lemma. Q.E.D.

4.5,
LEMMA 4.9. Let % be an element of Y, such that x—wz € L for all we W(C).
If we take conjugate by (I, z,01, the group I'(C,L,p,c,d) is transformed into the
group I'(C,L,p,c',d'), where
¢ (a)=cla)—4ImZDCa mod qZ, ac L
d’ (w)=d(w) —c(x—wz) —4 Im *TDCwxz) mod qZ, we W(C).

PROOF. The definition of the functions ¢ and d with the identities

4, 2,01 LL, &, Y110, 2,01 =1, o, y — 4 Im *%(DC)d]
and

[Il, X, 0] [w; «a, 7’] [Ils x, 0]_1:[1'0) a+x—wx1 7’_2 Im tﬁ(DC)C{“‘Z Im t(x—‘—a)DC(wx)],
lead to the assertion. Q.E.D.

LEMMA 4.10. Among the reflection groups obtained in Lemma 4.8, the groups
corresponding to (3-3), (8-4) and (3-5) are conjugate in G to the group corre-
sponding to (3-1).

PRrROOF. Set w=%<61+262+ vt (-1, +%el )

Remark that we have

0 1<j<i—2,

x“"”'”:{e,. j=1-1, I,

!
Imx(DC)a=0 for all ac _Z‘,lRe,-,
=

Im *%(DC) (w,x) =0,
and
_ 0 1<<l-1
41Im *w(DC)re;= ’
m '%(DC)ze; {ZImr j=Ll.
If we take eonjugate by [, x,0], then the group with the condition (3-1) and (3-4)
are transformed to those with (3-3) and (3-5), respectively. In the same way, we
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Table I
Name Igggf; c Coxeter W(}%%%ram of Lattice L p
r(4) 1 Cl4y) ° Ligle ‘ 1
T'(4g) 1 ClA) ° Lz)es 2
ricg) 2 C(By) 0——0 Ly(By) 1
r(AP) 2 C(Bs) o—o0 Ls(By) 1
r4g) 2 C(By) 0=—0 Ly(By) 2
(o) 2 C(G®) o— o Li(GP) 1
rG{) 2 c(G) oo Ly(G®) 1
r(4P) 1022 Cl4) o—o0——0 2 Lees )
rpw) 1 (=4  CD) o—0—- j_‘l Lize; L
T'(E&) 4 C(Fy) 0—0=0—0 Ly(Fy) 1
r(FP) 4 C(Fy) 0—0—0—0 La(Fy) 1
I(E") 6 C(Ee) o_o<g:z éIL(r)e,- 1
rEP) 7 C(Ey) o—00-3 00 jéL(f)e, 1
r(Ed) 8 C(Ey) 0—0—0—0-0Z0—0 éL(r)ei 1
I'(AfL,) 1 (=8  C(B) 0—0—--—0—0 Ly(By) 1
r(BM=r(Cc®) 1 (=8 C(B) 0—0—--—0—0 Ly(B)) 1
I'(AR) 1 =3  C(B) 00— - —0—=0 La(By) 1
r'(ppy) 1 {i=3) C(By) 0—0—--—0=—0 Ly(B)) 2
take conjugate by [I, zz, 0] to convert (3-1) into (3-4). Q.E.D.

4.6.

THEOREM 1. Let I’ be a discrete subgroup of G of locally finite volume such
that I' is generated by reflections and that the point group W(I') of I' is an
1rreducible Coxeter group. Then I’ is conjugate in G to ome of the groups in
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Table 1. Each low denotes the group I'(C,L,p,c,d) such that the function ¢ and
d satisfy the following conditions: d(w)=0 mod qZ we W(C), and cloe;)=clw:£;)=0
mod gZ, where LN Ce;= (w2 +wyrZ)e;, w1, 02 € R.

REMARK. The reason for these curious naming will be recognized in Theorem

REMARK. The groups I'(A®) and I'(A®) are conjugate to the groups
I11(231,0,0;0) and I';;(7;2,0,0;0) in [11], respectively.

PROOF. We have already completed the proof of the theorem for [>3. A
proof for I=1 is covered in [11]. By Remark 3.2, we can modify Lemma 4.6 and
4.8 so that they are available for the types A, and B,, respectively. Only the
remaining type is G{®, which we treat separately. Since the proof is analogous to

those of another group, we omit if. Q.E.D.

§5. Weyl groups of Euclidean Lie algebras

5.1. In this and the next seetion, we shall review some 'fundamental deﬁnifions
and facts about the generalized Cartan matrices of Euclidean type and their Weyl
groups, and prepare some notations.

DEFINITION. An {I+1)x(l+1) matrix- A=(A;;)o<;, j<; Is called a generalized
Cartan matrix if (i) 4,;€ Z, (i) 4;;=2, 4;<0 for 1% and (iii) 4;;=0 if and only
if Aji=0'

DEFINITION. We say that a generalized Cartan matrix A is of Euelidean type
if (i) it is indecomposable, (il) det A=0, (iii) for each &k (0<k<), the Xl matrix
(A;}i54e 18 a (classical) Cartan matrix.

Complete clagsification of generalized Cartan matrices of Euclidean type is
known. Instead of giving the matrices, we list up their Dynkin diagrams with
the coefficients of the null root (cf. 5.2).

DEFINITION. The Dynkin diagram of a generalized Cartan matrix A is a
graph on the vertices {0,1,---,1} with the following edges:
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if Aiy=Au=-1,

if Ay=-1, 4;=-2,

G
| ]
& &

if Aij=-1, 4=-3,
if Ai=-1, Au=—4,

[

if Aj=A;=-2.

@

The meaning of the notation © will be explained in 5.3.

5.2. Let V be an ({+2) dimensional real vector space with bases {ag, ay,:--,
a;, d}, and V* the dual space of V. For a Euclidean generalized Cartan matrix
A=(A;)o<i, j<1, we define the subset {ay,ay,---,ay} of V* by the following
conditions:

<a2’, a,-> :A,'j 0<'L, j<l,

-1
ay, 0> =
< i > {0

where <, >denotes the dual pairing of V* and V. There exists a unique vector
n:éofn,-a,-e V, called the null root of A, such that (i) <eay,n>=0,0<3<, {ii)
n; is a positive integer and (iii) one of the n,s is equal to 1.

Any a; (0<j<l) determines a fundamental reflection s; in V defined by

s;m)=r—<ay, v>a,

The fundamental reflections generate a subgroup W, of Aut(V), called the Weyl
group of A. The pair (W, {so, 81, - -+, 8;}) is a Coxeter system. Its Coxeter diagram
is obtained from the Dynkin diagram of A by the following operation:

Dynkin diagram of A Coxeter diagram of Wy
o0 —_— Oo——-O0
O—==20 —_— O—0
O=—=0 —> 0._60
o=—=0 } oo

5.3. We shall recall the work of Looijenga ([3]). Put

FB: =RnCV,
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Table II
Type X number of vertices Dynkin diagram
1 2
Aéz) 2 (o) O
1 1
Alm 2 (=
1 2 1
cs 3 10 o —_
1 2 2
Af) 3 ) O O
1 1 1
AP 3 © O O
1 2 1
Df” 3 (o) O O
1 2 3
G 3 © O O
1
L 1 1B 1
Af I+1 (>2) L9~ 1
1
1
D I+1 (1>4) __ 2
10— ‘—O<gl
1 2
B 4 @000
1 2 3 4 2
F 4
2
1 1 2 3
Eg 7
O O
2
1 2 3 40
B 8
3.
1 2 3 4 5 O
E 9
1
©
AP I+1 (1>3) Bl
1
©
B® I+1 (I>3) : —od
O
o 1+1 (1=3) O3 —Bed
AP I+1 (>3) __ 2 2
D I+1 (=3) e d L1

45
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Vi =Ray+Ray+-+-+Ra,CV,
V':=V|Fg,

N:=2Zn,

Q:=Zay+Za;+- - - +Za;: Root lattice.

Since the subspaces Fy and Vy is Wy-invariant, the group W,CGL{V) operates
on Vy/Fs. The consequent group is denoted by W,CGL(Vy/F5). W, is a finite
Coxeter group. We choose a, so that the Coxeter graph of W, is equal to that
of W, which is taked off the vertex a,. In TableII, we marked the corresponding
vertex of the Dynkin diagram of A by @. In particular, the coefficient n, of the
null root % is equal to 1. Thus we have

Q=N+Zay+:+-+Za,.

Put
Q:=QIN
=Zai+- -+ Zay.
In the sequel we fix the bases #, @, ---,a;, 6 of V. Then every element of Wy
has a form

1 b ¢ _
0 w a we Wy, a,theZ', ceZ.
0 0o 1]}

The natural homomorphism p: W,—GL(V’) is an isomorphism into. Let T be the
kernel of the natural homomorphism W,—W, (cf. [8;5.1]). By the correspondence

T—@Q' defined by
' 1 8 7
[0 1 t]l—i—> [1 ;] —t,
0 0 1

we shall identify the group T and the corresponding sublattice of @’ of finite
index. Since g is an isomorphism, the values 8 and 7 are determined by ¢, which
we shall denote them by f=8(t) and r=yr{t).

The group W,CGL(V) acts properly discontinuously on the half space

I:=Rn+Ray+- - +Ra;+RYCV,

where R* denote the set of positive numbers. Consider the domain @=V+4/ =17

in the complexification of V. The lattice @ acts on £ as parallel displacements
and the group W,=W,XQ acts on Q properly discontinuously. We define the
surjection
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S:1Q—-H={re C{Im >0}
by '

1 .
m+ X xatcd -7,
=

and put Q(c)=7"'(c). The action of W, preserves the fibration of f. Let Wy(z)
and W,(z) be the restriction of W, and W, to Q(z), respectively.

THEOREM (Looijenga [8]). The factor space 2(c)/ W,(z) added by a point is non-
singular.

§6. Correspondence hetween A and I

The purpose of this chapter is to establish a correspondence between {A} and
{rx,.

6.1. Let C be a Cartan matrix and L a W(C)-invariant lattice. We shall
transform the group

['(C) L; p, Cpe, dDC) ={[w’ «, T]DC‘w € W(C)y @c Ll
7=c¢pcla) +dpc(w) mod qZ, q=q,/p}.
Let (2, uy, ---, ;) be the coordinate of Y=F+ Y} We introduce new coordinate

@, Uy, -, u) of ¥

’

z/=%{z—i(u1, = W) DCH uy, -« -, uy)}
which is essential in the proof of Theorem 2.

LEMMA 6.1. Under the coordinate (2,4, ---, ), the element [w, a,7lpe 18
represented by

1 (——“mt“ )DCw —7—+<——2I‘;’“ DCe
q /

[w! a: T]f)cz w q a
0 0 1
PROOF. Reeall that
1 2it@ DCw r+itaDCa
[w) «, T]DC = 0 w a
0 0 1

Set u="*(uy, -+, u). Since DC is symmetric and *wDCw=DC, we have
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z+2ita DCwu -+ +itaDCa—it (wu+ o) DC(wu+a)
=z—iutwDCwu+i{2a@—2'a} DCwu+ 7 +i{'a—*ta} DCa
=q2' + (4 Im ta) DCwu+7+(2 Im *a) DCa. Q.ED.

We put [',(C’ L’ s Cpe, dDC) = {[w’ a, T]Dcl [w> a, T]DC € F(Cs L: Ds Cpcs d’DC)}'
6.2. Let the notations be as in §5. We identify the fibre 2(r) and the

complexification (V)¢ of Vg, and fix the bases n,ay, -+, Then the groups
Walz), @ and W,(c) are represented by

1 b e 1 b ¢ 10 z1
WA(r)={lo w af] ' [0 w a]eWA}. Q=[0 1 z']
0 0 1 0 0 1 0 0 1
Wale) =Wal(r) XQ

1 b cct+Z 1 b ¢
={ 0 w ac+Z! ‘ [0 w a]EWA}.
0 0 1 0 0 1

Let §: Wilc)=>A(Vse) and @1 Wu(c)>W, be the homomorphisms defined by

1 ¢ v w
0 v o I—»[() ‘i’],
0 0 1

and

and

respectively, and put

1 B rt)+Z
(TQ)(r)={[0 1 itz ]‘teT}.
0 0 1

If we identify the lattice N with the group

1 0 Z
0 1 0},
0 0 1

then we have the following commutative diagram of exact sequences.
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1 1 1
N

— (TQ){r) —5((TQ) (r)) — 1
I
—N— Wye) 258(Wae) — 1
|oel |
11— W, — W, —1

bt
e

6.3. Let A be a generalized Cartan matrix of Euclidean type. We shall show
that the matrix representation of W,(r) given in 6.2 coincides with the group
I'’(C, L, p, epc, dpg) for suitable C, L, p, epe and dpe. We cut off the first low, cor-
responding to a,, and the first column, corresponding to «,, from the matrix A and
obtain a (classical) Cartan matrix (4;;)i<i, j<i. We let C=(4,j)1<i, ;<;. Reecall that
we chose the root «, in 5.3 so that W, may coincides with W(C). Let T be the
sublattice of @' defined in 5.83. We put L=2Z'4+<T. Then we have g((TQ)(r))=
and g(Wulc))=W(C)XL.

We shall identify the group W, and the image of W,G W,=Wy(c), and denote
the image of the fundamental reflections s, s, ---,8,€ W, by capital letters: S,, S,

-+, S;. Let wy, --+,w, be the fundamental refiections of the Cartan matrix C.
Then the matrices S; {1<j<!) is represented by

Thus we let d(w)=0 for all we W(C)=W,.
For each A, we shall caleulate the matrix S, to determine the lattice L and
find an integer p and a function ¢:L—R such that W,(c) coincides with 7"/(C, L,

p,c 0). First, we work at the type 4A®. We have C=C(4,). Let z=un-+
Zu,a,+ra be an element of V. The fundamental reflection s,€ W, aets on V
=1

as follows:

so@)=r—<ay,r>ay

=zx—{—u—u;—7la,

1
=yt +u; +r)0+ Z‘,l {U;—2y— U — 1)+ 70,
=
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Thus S, € W.(c) is represented by

-1 1 1 T
-1 -t
-1 1 -1 —T
s=|n e
-1 1 —1 —z
-1 -
_ 1 _

Since we have ¢(So)=¢(S;++-Si1 S; Sii- - - Sy), we caleulate S,S,S;, S:S:S6S1Se, - -+

Si1- 8188 -+ S,—1, and conclude that the matrices

1 -2 1 T 1 1 —-é 1 T
""""""" A L e egi<am
""""""""""""""""" 1 I
and
1 1 -2 <«
I .
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, )

N 1 1 v
belong to Wyu(z). Thus we have T:Q’:ZIZa,-, and so L:.Z;L(r)ej, where ¢;
= j=

E)
stands for #(0,---,0,1,0,---,0). By the matrix representation of the root lattice

Q@ in 6.2, we let c(e;) =0,1<4<l. The following system of equations

%Im‘(—rel)DC———(—Z 1,0,---,0),

)

—g—lm’(——z-ej)DC: ©,---,0,1,—~2,1,0,---,0) 2<j<i—1,
—;‘—Im t{(—ze)DC=(0, ---,0,1, —2)

and
%-{—%(Im‘(—tej))DC(—z‘ej):z' 1<j<l

has solutions: ¢g=4Im<z, 7;=0. We put p=1 and ¢p¢lre;) =0. Then Lemma 6.1

asserts that the group W,(r) coincides with I"(C(4,), L, 1, ¢pe, 0).

Similar proof is available for types D{® ({>4) and E® (I=6,7,8). We have

. |1
C=C(D,) and C(E;,) respectively, and L= _ZIL(T)%'- We put p=1 and epele;)=
i=
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epelre;) =0 (1<j<I) and see that Wy(c) is equal to I"'(C(X), L, 1, ¢pg, 0).
For other types we omit the details, and list up C and T;

X C T
AP Cl4y) 4Za;
AW Cl(AY) 2Za,
cg C'(By) 2Zay+ Zoy
Aiz) C(Bg) 2Za'1 +ZZa2
AP C(B,) Zoy+Zay
D® C'(GP)  Zayt+Za,
G C(GP) Za,+3Za;
E® () %, Za
=
i 2 4
o C(F,) 21Z01,- + Z% 2Za;
= i=
i
AP C'(B) JZ=:1Za,~
-1
B C(B)) -21 Zo; 4 2Za;
4=
-1
Cl(l) C/(Bl) 4 1ZZC(j+Za;
i=
t
Af cB) X224,
!
D®, C(By) jé:lZa,-.

For the type AP, we let r—z/4 and for the types AP, CP, AP CO and AP, we
let c—¢/2. We calculate the number ¢ and obtain that ¢=2Im ¢ for A, AP, B2,
and 4Im ¢ for others. Since we know the value ¢, by Lemma 4.2, we have the
number p.

Now we are in the position to state the theorem.
6.4. ’

THEOREM 2. There exists a surjective correspondence from the set of gener-
alized Cartan matrices of Euclidean type into the set of G-conjugate classes of the
discrete subgroup, with parameter © on H, of G of locally finite volume such that
it is generated by reflections and that its point group is an irreducible Coxeter
group. The correspondence ts given as jfollows: Let A be a generalized Cartan
matriz of type X (Table 11), and W,(c) the group defined in §5. Then the group
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W.(z) is transformed, by the inverse operation defined in 6.1, into the group I'(X)
(Table 1).

REMARK. The correspondence X—I'(X) is one to one except for I'(BM)
=I'{CP).

Acknowledgement. The author wishes to express his deepest appreciation to
Professor T. Yokonuma who improved the proof of Proposition 2 of which original

proof was long and complicated.

References

[1] Armstrong, M.A., On the fundamental group of an orbit space, Proc. Cambridge Philos
Soc. 61 (1965), 639-646.

[2] Bourbaki, N., Groupes et Algébres de Lie, Ch. 4, 5 et 6. Hermann, Paris, 1968.

[8] Looijenga, E., Invariant theory for generalized root systems, Invent. Math. 61
(1980), 1-31.

[4] Iwahori, N. and T. Yokonuma, Kac-Moody algebra and Macdonald identity, Stgaku 33
(1981), 193-212.

[57 Mumford, D., The topology of normal singularities of an algebraic surface and a
criterion for simplicity, Inst. Hautes Ttudes Sci. Publ. Math. 9 (1961), 229-246.

[6]1 Picard, E., Sur les fonctions de deux variables indépendantes analogues aux fonctions
modulaires, Acta Math. 2 (1883}, 114-126.

[71 Piatetskii-Shapiro, L.I., Automorphic Funetions and the Geometry of Classical Domains,
Gordon and Breach, New York, 1969.

[8] Terada, T., Probléme de Riemann et fonetions automorphes provenant des fonetions
hypergéométriques de plusieurs variables, J. Math. Kyoto Univ. 13 (1973}, B57-5678.

[9] Tokunaga, S. and M. Yoshida, Complex crystallographic groups I, J. Math. Soc. Japan
34 (1982), 581-593.

[10] Yoshida, M., Local theory of Fuchsian systems with certain diserete monodromy
groups I, Funkeial. Ekvac. 21 (1978), 105-137.

[11] Yoshida, M. and S. Hattori, Local theory of Fuchsian systems with eertain discrete
monodromy groups III, Funkeial. Ekvae. 22 (1979), 1-40.

[12] Yoshida, M., Discrete reflection groups in a parabolic subgroup of Sp(2, R) and
symmetrizable hyperbolic generalized Cartan matrices of rank 3, preprint.

[18] Wolf, J.A., Spaces of Constant Curvature, 1967, McGraw-Hill, New York, 1967.

(Received March 1, 1982)

Department of Mathematies
Faculty of Science

Kyushu University
Hakozaki, Fukuoka

812 Japan



