Gromov invariant and S1-actions

By Koichi YANO*)

Introduction.

Recently, Gromov introduced the notion of so called the Gromov invariant and proved that it is positive for any hyperbolic manifold. (See [1] and Section 6 of [7].) Thurston, on the other hand, showed that Gromov invariants of three dimensional manifolds with non-trivial S^1 -actions are zero (Proposition 6.5.2 and Corollary 6.5.3 of [7]). The purpose of this paper is to generalize Thurston's result to higher dimensions.

After the first draft of this paper, the author received a preprint [1] from Professor M. Gromov and found that the same result was also obtained in it. The methods, however, are quite different.

Theorem. Let M be a closed connected smooth manifold which admits a non-trivial smooth S^1 -action. Then the Gromov invariant of M is equal to zero.

COROLLARY. Let M be an orientable closed connected smooth manifold of dimension grater than one. Suppose that there exists a continuous map f from M to some closed Riemannian manifold N of negative sectional curvature such that $f_*[M] \neq 0$ in $H_*(N; \mathbf{R})$. Here [M] denotes the fundamental homology class of M. Then M does not admit non-trivial smooth S^1 -actions.

The corollary is a special case of Corollary 5 of Schoen-Yau [6], while our result reveals an obstruction to the existence of S^1 -actions in such a manifold.

The plan is as follows: In Section 1, we give necessary definitions and lemmas. In Section 2, we introduce the notion of hollowings and apply this to manifolds with S^1 -actions. Finally we prove the theorem and the corollary in Section 3.

The author wishes to thank Professors A. Hattori, Y. Matsumoto and T. Matumoto for their helpful comments.

1. Preliminaries.

Let X be a metric space and Y a subspace of X. We put $S_*(X) = \bigoplus_{k=0}^{\infty} S_k(X)$ to be the real coefficient singular chain complex of X i.e., an element $c \in S_k(X)$

^{*)} Partially supported by Grant-in-Aid for Scientific Research (No. 574013), Ministry of Education, and by the Sakkokai Foundation.

is a finite sum $c = \sum_i a_i \sigma_i$, where $a_i \in \mathbb{R}$ and $\sigma_i : \Delta^k \to X$ is a continuous map. We define the *norm*, the *diameter* and the *restriction* to Y of c, denoted by ||c||, diam c and $c|_Y$ respectively as follows:

$$||c|| = \sum_i |a_i|,$$

diam $c = \sup_{i} \operatorname{diam} \sigma_{i}(\Delta^{k})$,

$$c|_{Y} = \sum_{\sigma_{i}(\Delta k) \subset Y} a_{i}\sigma_{i}$$
.

Now recall the definition of the Gromov invariant. Let M be a closed connected manifold. When M is orientable, the *Gromov invariant* of M is defined by

$$\Gamma(M) = \inf\{\|c\|; c \in S_*(M) \text{ represents } \lceil M \rceil\}$$

where $[M] \in H_*(M; \mathbb{R})$ is the fundamental homology class of M. When M is non-orientable,

$$\Gamma(M) = \frac{1}{2} \Gamma(\widetilde{M})$$

where \widetilde{M} is the orientable double covering of M.

The following two lemmas are based on Proposition 6.5.1 of Thurston [7].

LEMMA 1. Let X be a compact metrized polyhedron, m a non-negative integer and ε a positive number. Then there exist positive constants δ and C satisfying the following condition (*).

(*) If a cycle $z \in S_m(X)$ is homologous to zero and satisfies diam $z \le \delta$, then there exists a chain $w \in S_{m+1}(X)$ such that $\partial w = z$, diam $w \le \varepsilon$ and $||w|| \le C||z||$.

PROOF. Let K be a subdivision of X with mesh $K \le \varepsilon/2$ and $\{v_j\}$ be the set of vertices of K. For m+1 vertices v_{j_0}, \cdots, v_{j_m} satisfying $\langle v_{j_0}, \cdots, v_{j_m} \rangle \in K$ (may be degenerate), $\sigma_{j_0 \cdots j_m}$ denotes the affine singular simplex with $\sigma_{j_0 \cdots j_m}(0, 0)$

 \cdots , $\overset{\circ}{1}$, \cdots , 0)= $v_{j_{\delta}}$ and $K_m(X)$ denotes the linear subspace of $S_m(X)$ spaned by these singular simplices. Since $K_m(X)$ is finite dimensional and consists of chains of diameter not greater than $\varepsilon/2$, there is a positive constant C' such that if a cycle $z' \in K_m(X)$ is homologous to zero, there exists a chain $w' \in S_{m+1}(X)$ satisfying $\partial w' = z'$, diam $w' \leq \varepsilon$ and $\|w'\| \leq C' \|z'\|$.

Let K' be the first barycentric subdivision of K and $\{U_j\}$ be a family of mutually disjoint subsets of X such that Int $\operatorname{Star}(v_j, K') \subset U_j \subset \operatorname{Star}(v_j, K')$ and $X = \bigcup U_j$. Let δ be a Lebesgue number with respect to the open covering $\{\operatorname{Int} \operatorname{Star}(v_j', K'); v_j' \text{ is a vertex of } K'\}$ of X. For any singular m-simplex σ with $\operatorname{diam} \sigma \leq \delta$, we let $\bar{\sigma}$ denote $\sigma_{j_0 \cdots j_m} \in K_m(X)$, where j_s is determined by $\sigma(0, \cdots, 1, \cdots, 0) \in U_{j_s}$. The assumption that $\operatorname{diam} \sigma \leq \delta$ guarantees the existence

of $\bar{\sigma}$ and implies that for any $x \in \Delta^m$, corresponding points $\sigma(x)$ and $\bar{\sigma}(x)$ lie in a same simplex of K. Thus there is a homotopy $\hat{\sigma}: \Delta^m \times [0, 1] \to X$ connecting σ and $\bar{\sigma}$, defined by $\hat{\sigma}(x, t) = t\sigma(x) + (1-t)\bar{\sigma}(x)$. By using the prism decomposition of $\Delta^m \times [0, 1]$, we regard $\hat{\sigma}$ as an element of $S_{m+1}(X)$ with $\|\hat{\sigma}\| = m+1$ and diam $\hat{\sigma} \leq \text{diam Star}(v_j', K') \leq \varepsilon$. Now let $z = \sum_i a_i \sigma_i \in S_m(X)$ be a homologically trivial cycle with diam $z \leq \delta$. Put $\bar{z} = \sum_i a_i \bar{\sigma}_i$ and $\hat{w} = \sum_i a_i \hat{\sigma}_i$, where $\bar{\sigma}_i$ and $\hat{\sigma}_i$ are as above. Then we have $\partial \hat{w} = z - \bar{z}$, diam $\hat{w} \leq \varepsilon$, $\|\hat{w}\| \leq (m+1)\|z\|$ and $\|\bar{z}\| \leq \|z\|$. Since \bar{z} belongs to $K_m(X)$ and is a homologically trivial cycle, this, together with the observation in the first half of this proof, implies the required result. \square

LEMMA 2. Let X, m and ε be as in Lemma 1. Then there exist positive constants δ and C satisfying the following condition (**).

(**) If a cycle $z \in S_m(X \times S^1)$ is homologous to zero and satisfies diam $\pi_* z \leq \delta$, then there exists a chain $w \in S_{m+1}(X \times S^1)$ such that $\partial w = z$, diam $\pi_* w \leq \varepsilon$ and $\|w\| \leq C\|z\|$. Here $\pi: X \times S^1 \to X$ denotes the projection to the first factor.

PROOF. For any positive integer N, there is an N-fold covering $\rho_N: X \times S^1 \to X \times S^1$ defined by $\rho_N(x, t) = (x, Nt)$, where S^1 is regarded as R/Z. Let τ_N be the linear map from $S_*(X \times S^1)$ to itself, defined by

$$au_N \sigma = rac{1}{N} \sum_{
ho_N \circ ilde{\sigma} = \sigma} ilde{\sigma}$$

for each singular simplex σ . Then τ_N satisfies $\rho_{N*} \circ \tau_N = \operatorname{id}_{S*(X \times S^1)}$, $\partial \circ \tau_N = \tau_N \circ \partial$ and $\|\tau_N z\| = \|z\|$. Now consider a metric d on $X \times S^1$ defined by $d((x_1, t_1), (x_2, t_2)) = \max\{d_X(x_1, x_2), d_{S^1}(t_1, t_2)\}$ for $x_i \in X$ and $t_i \in S^1$, where d_X and d_{S^1} are the metrics on X and S^1 , respectively. Take positive numbers δ and C as in Lemma 1 for $X \times S^1$. Suppose that a cycle $z \in S_m(X \times S^1)$ is homologous to zero and satisfies diam $\pi_* z \leq \delta$. For a large integer N, we have $\dim(\tau_N z) \leq \delta$, hence, by Lemma 1, there exists a chain \tilde{w} with $\partial \tilde{w} = \tau_N z$, diam $\tilde{w} \leq \varepsilon$ and $\|\tilde{w}\| \leq C \|\tau_N z\|$. It is easy to see that the chain $w = \rho_{N*} \tilde{w}$ satisfies the required conditions. \square

2. Hollowings and Manifolds with S1-actions.

We use the following notation.

$$\begin{split} & R_{+}^{n} = \{(x_{1}, \cdots, x_{n}); \ x_{i} \geq 0\} \\ & \partial R_{+}^{n} = \angle^{(1)} R_{+}^{n} = \{(x_{i}) \in R_{+}^{n}; \ ^{3}j, \ x_{j} = 0\} \\ & \angle^{(k)} R_{+}^{n} = \{(x_{i}) \in R_{+}^{n}; \ ^{3}j_{1} < \cdots < j_{k}, \ x_{j_{1}} = \cdots = x_{j_{k}} = 0\}. \end{split}$$

We say that a space M is an n-dimensional manifold with corner or simply a manifold in case of no confusion, if for each point of M, there is a neighborhood homeomorphic to some open set in \mathbb{R}^n_+ and associated coordinate transformations

are smooth. For such an M, we define the subsets $\partial M = \angle^{(1)}M \supset \cdots \supset \angle^{(n)}M$ by an obvious way.

Let M be a manifold with corner and N a submanifold with corner of M such that N is transverse to each $\angle^{(k)}M-\angle^{(k+1)}M$ and $\angle^{(k)}N=N\cap\angle^{(k)}M$. Then the tubular neighborhood $\nu(N)$ of N in M has a structure as a disk bundle over N. Let $\psi:\nu_S(N)\times[0,1]\to\nu(N)$ be the polar coordinate i.e., $\nu_S(N)$ is the total space of the associated sphere bundle, $\psi|_{\nu_S(N)\times(1)}=\mathrm{id}_{\nu_S(N)}$ and $\psi|_{\nu_S(N)\times(0)}$ is the projection of the bundle. Let M' be the space (Closure of $(M-\nu(N))$) $\cup_{\phi|_{\nu_S(N)\times(1)}}\nu_S(N)\times[0,1]$. Then there is a natural map $p:M'\to M$ defined by $p|_{M-\nu(N)}=\mathrm{id}_{M-\nu(N)}$ and $p|_{\nu_S(N)\times(0,1)}=\psi$. It is clear that M' has a canonical structure as a manifold with corner which makes p differentiable. We call this map p the hollowing of M at N. (When $N=\phi$, we define M'=M and $p=\mathrm{id}_M$.) The submanifolds N of M and $p^{-1}(N)$ of M' are called the trace and the hollow wall of p respectively and for a subspace L of M, the closure of $p^{-1}(L-(L\cap N))$ in M' is denoted by p*L.

The following lemma is immediate and the proof is omitted.

LEMMA 3. Let M be a manifold with a smooth S^1 -action, N an invariant submanifold and $p: M' \rightarrow M$ the hollowing at N. Then M' has a smooth S^1 -action such that p is equivariant.

We are now in a position to dissect manifolds with S^1 -actions. Hereafter, for a space X with an S^1 -action, \overline{X} denotes the orbit space and $\pi: X \to \overline{X}$ the natural projection. Suppose that M is an n-dimensional closed connected smooth manifold with an effective smooth S^1 -action. Let F be the fixed point set, L_r be the set of points whose isotropy groups contain $\{0, 1/r, \cdots, (r-1)/r\} \subset S^1 \cong R/Z$ for r=2, 3, \cdots , and $L=\bigcup_{r=2}^\infty L_r$. Note that since M is compact, L_r-F is empty for

large r. Then there exists a triangulation of the orbit space \overline{M} compatible to its structure. (See, for example, Matumoto [3] or Verona [8].) More precisely,

- (i) \bar{F} and each \bar{L}_r are subpolyhedra, and
- (ii) for any l-dimensional simplex Δ of this triangulation, there is a smooth embedding $\sigma: \Delta^l \to \pi^{-1}(\Delta) \subset M$ such that $\pi \circ \sigma: \Delta^l \to \Delta$ is a simplicial isomorphism.

We fix such a triangulation and define the sequence of hollowings

$$M_{2n-3} \xrightarrow{p_{2n-4}} M_{2n-4} \xrightarrow{} \cdots \xrightarrow{} M_1 \xrightarrow{p_0} M_0 = M$$

as follows. Let $\overline{M}^{(l)}$ denote the l-skeleton of this triangulation. For $k=0,\cdots,n-2$, we define inductively that $p_k:M_{k+1}\to M_k$ is the hollowing at $p_{k-1}^*\cdots p_0^*(\pi^{-1}(\overline{M}^{(k)}\cap \overline{F}))$ and, for $k=n-1,\cdots,2n-4$, also inductively that $p_k:M_{k+1}\to M_k$ is the hollowing at $p_{k-1}^*\cdots p_0^*(\pi^{-1}(\overline{M}^{(k-n+1)}))$. Then, by Lemma 3, M_k 's have smooth S^1 -actions such that p_k 's are equivariant.

In the rest of this section, we give information about this sequence. For simplicity, we put $p_{j,j'}=p_{j'}\circ\cdots\circ p_{j-1}\colon M_j{\to}M_{j'}$ and $p_{j,j'}*=p_{j-1}*\cdots p_{j'}*$. Then $p_{j,0}*F$ and $p_{j,0}*L$ are the set of fixed points and the set of points with non-trivial isotropy groups, respectively, of the S^1 -action on M_j . Let X_j denote the trace of p_j i. e., $X_j=p_{j,0}*(\pi^{-1}(\overline{M}^{(j)}\cap\overline{F}))$ when $0\leq j\leq n-2$ and $X_j=p_{j,0}*(\pi^{-1}(\overline{M}^{(j-n+1)}))$ when $n-1\leq j\leq 2n-4$. Let N_j be the hollow wall of p_j , $\widetilde{N}_j=p_{2n-3,j+1}*N_j$, $\widetilde{N}_{j_1\cdots j_k}=\widetilde{N}_{j_1}\cap\cdots\cap\widetilde{N}_{j_k}$ and $X_{j_1\cdots j_k}=p_{2n-3,j_1}(\widetilde{N}_{j_1\cdots j_k})\subset X_{j_1}$ for mutually distinct j_1,\cdots,j_k . Then we have $\angle^{(k)}M_{2n-3}=\bigcup\widetilde{N}_{j_1\cdots j_k}$ and in particular $\partial M_{2n-3}=\bigcup\widetilde{N}_j$.

LEMMA 4. Each connected component of $\overline{X}_{j_1\cdots j_k}$ is contractible.

PROOF. Let \mathcal{A}^l be an *l*-simplex with the standard triangulation and let

$$\Delta_{l}^{l} \xrightarrow{q_{l-1}} \Delta_{l-1}^{l} \rightarrow \cdots \rightarrow \Delta_{1}^{l} \xrightarrow{q_{0}} \Delta_{0}^{l} = \Delta^{l}$$

be the sequence of hollowings defined inductively by the following: $q_k \colon \varDelta_{k+1}^l \to \varDelta_k^l$ is the hollowing at $q_{k-1} \ast \cdots q_0 \ast \varDelta^{(k)}$, where $\varDelta^{(k)}$ is the k-skeleton of \varDelta^l . Then, by the construction, each connected component of \overline{X}_{j_1} is diffeomorphic to \varDelta^l_l for $l\!=\!j_1$ when $0\!\leq\! j_1\!\leq\! n\!-\!2$ and for $l\!=\!j_1\!-\!n\!+\!1$ when $n\!-\!1\!\leq\! j_1\!\leq\! 2n\!-\!4$. Under this identification, every connected component of $\overline{X}_{j_1\cdots j_k}$ for $k\!\geq\! 2$ is one of the closures of connected components of $\angle^{(k-1)}\varDelta^l_l-\angle^{(k)}\varDelta^l_l$, and thus it is diffeomorphic to $\varDelta^{l-k+1}_{l-k+1}$. This proves Lemma 4. \square

Lemma 5.
$$X_{j_1\cdots j_k} \cong \overline{X}_{j_1\cdots j_k}$$
 for $0 \leq j_1 \leq n-2$.

PROOF. If $0 \le j_1 \le n-2$, we have $X_{j_1 \cdots j_k} \subset X_{j_1} \subset p_{j_1,0} *F$. Thus the result fol-

lows.

LEMMA 6.
$$X_{j_1\cdots j_h} \cong \overline{X}_{j_1\cdots j_h} \times S^1$$
 for $n-1 \leq j_1 \leq 2n-4$.

PROOF. In the case that $n-1 \le j_1 \le 2n-4$, $X_{j_1 \cdots j_k}$ is a total space of a principal S^1 -bundle over $\overline{X}_{j_1 \cdots j_k}$. Thus Lemma 4 implies the required result. \square

LEMMA 7. When M is orientable, $M_{2n-3} \cong \overline{M}_{2n-3} \times S^1$.

PROOF. Since dim $\overline{F} \leq n-2$ and dim $(\overline{L}-\overline{F}) \leq n-3$, we have $p_{2n-3,0}*F = p_{2n-3,0}*L = \phi$ and thus the S^1 -action on M_{2n-3} is free. On the other hand, since \overline{M}_{2n-3} is homotopy equivalent to $\overline{M}-(\overline{M}^{(n-3)}\cup\overline{F})$, it has a homotopy type of a 1-complex. Therefore the result follows from the fact that every principal S^1 -bundle over a 1-complex is trivial. \square

3. Proofs of Theorem and Corollary.

It suffices to prove the theorem in the case that the manifold is orientable and the S^1 -action is effective, and thus we assume that. We use the notation in the previous section.

Metrize \overline{M}_j $j=0, \dots, 2n-3$ such that each $\overline{p}_j: \overline{M}_{j+1} \to \overline{M}_j$ does not increase the distance, i.e. \bar{p}_j is Lipschitz with the Lipschitz constant ≤ 1 . First, we define positive numbers δ_i $i=1, \dots, n$ and C as follows: We put $\delta_i=1$. When δ_k is defined, for $j_1 > \cdots > j_k$, we let $\delta_{(j_1 \cdots j_k)}$ and $C_{(j_1 \cdots j_k)}$ be as in Lemma 1 if $0 \le j_1 \le n-2$ and as in Lemma 2 if $n-1 \le j_1 \le 2n-4$, for $X = \overline{X}_{j_1 \cdots j_k}$, m=n-k and $\varepsilon = \delta_k$. We put δ_{k+1} to be a positive number which is not greater than δ_k and any $\delta_{(i_1\cdots i_k)}$. When all of δ_i 's are defined, we put C to be greater than the maximum of $C_{(j_1\cdots j_k)}$'s. Now let \overline{K} be a triangulation of \overline{M}_{2n-3} such that mesh $\overline{K} \leq \delta_n$ and each $\angle^{(k)} \overline{M}_{2n-3}$ is a subpolyhedron. Then we have a triangulation K of $M_{2n-3} \cong \overline{M}_{2n-3} \times S^1$ cannonically induced from \overline{K} with each $\angle^{(h)} M_{2n-3}$ a subpolyhedron. Take a positive integer N and let z denote the singular chain $\rho_{N*}K \in S_n(M_{2n-3})$, where $\rho_N: M_{2n-3} \cong \overline{M}_{2n-3} \times S^1 \to M_{2n-3}$ is defined by $\rho_N(x, t) =$ (x, Nt) and K is naturally considered as an element of $S_n(M_{2n-3})$ which represents the fundamental homology class $[M_{2n-3}, \partial M_{2n-3}]$. Then z represents the N times multiple of $[M_{2n-3}, \partial M_{2n-3}]$ and diam $\pi_*z \leq \delta_n$. We define a chain $z_{j_1\cdots j_k} \in$ $S_{n-k}(\widetilde{N}_{j_1\cdots j_k})$ for $j_i=0,$ \cdots , 2n-4 as follows. We put $z_j=(\partial z)|_{\tilde{N}_j}$ and inductively $z_{j_1\cdots j_k} = (\partial z_{j_1\cdots j_{k-1}})|_{\tilde{N}_{j_k}} = (\partial z_{j_1\cdots j_{k-1}})|_{\tilde{N}_{j_1\cdots j_k}} \text{ for mutually distinct } j_1, \cdots, j_k. \quad \text{If there}$ are $l \neq l'$ with $j_l = \tilde{j}_{l'}$, we put $z_{j_1 \cdots j_k} = 0$. Then, since each $\angle^{(k)} M_{2n-3} = \bigcup \tilde{N}_{j_1 \cdots j_k}$ is a subpolyhedron of K and $\partial \widetilde{N}_{j_1\cdots j_k} = \bigcup_{j \neq j_1, \cdots, j_k} \widetilde{N}_{j_1\cdots j_k j}$, we have $\partial z_{j_1\cdots j_k} = \bigcup_{j \neq j_1, \cdots, j_k} \widetilde{N}_{j_1\cdots j_k j}$ $\sum_{j} z_{j_1 \cdots j_k j}$. The following lemma is immediate and the proof is omitted.

LEMMA 8. The chain $z_{j_1\cdots j_k}$ is alternating with respect to the suffix i.e., if

 τ is a permutation of $\{1, \dots, k\}$, then

$$z_{j_{\tau(1)}\cdots j_{\tau(k)}} = \operatorname{sign}(\tau) z_{j_1\cdots j_k}$$
.

Let $A=(n+1)!\|K\|=(n+1)!\|z\|$ and B=1+(2n-3)C. Then A and B do not depend on N, and $\|z_{j_1\cdots j_k}\|\leq A$ for every j_1,\cdots,j_k .

LEMMA 9. There exists a family of chains $\{w_{j_1\cdots j_k}\}$ $j_i=0,\cdots,2n-4,\ k=1,\cdots,n-1$, satisfying the following conditions.

- (1) $w_{j_1\cdots j_k} \in S_{n-k+1}(X_{j_1\cdots j_k}).$
- (2) $w_{j_1\cdots j_k}$ is alternating with respect to the suffix i.e., if τ is a permutation of $\{1, \dots, k\}$, then

$$\begin{aligned} w_{j_{\tau(1)}\cdots j_{\tau(k)}} = & \operatorname{sign}(\tau) p_{j_1, j_{\tau(1)}} * w_{j_1\cdots j_k} \ \text{when} \ j_{\tau(1)} \leq j_1, \ \text{and} \\ p_{j_{\tau(1)}, j_1} * w_{j_{\tau(1)}\cdots j_{\tau(k)}} = & \operatorname{sign}(\tau) w_{j_1\cdots j_k} \ \text{when} \ j_{\tau(1)} \geq j_1. \end{aligned}$$

- (3) diam $\pi_* w_{j_1 \cdots j_k} \leq \delta_k$.
- $(4) \quad ||w_{j_1\dots j_k}|| \leq ACB^{n-k-1}.$
- (5) $\partial w_{j_1\cdots j_{n-1}} = p_{2n-3, j_1*} z_{j_1\cdots j_{n-1}}$, and $\partial w_{j_1\cdots j_k} = p_{2n-3, j_1*} z_{j_1\cdots j_k} \sum_j w_{j_1\cdots j_k j}$ for $k=1, \dots, n-2$.

PROOF. We prove this lemma by downward induction on the length k of the suffix. Let k=n-1. First, we construct $w_{n-2\cdots 0}$ as follows. Since $\angle^{(n)}M_{2n-3}=\phi$ by Lemma 7, the 1-chain $z_{n-2\cdots 0}$ is a cycle and since $H_1(X_{n-2\cdots 0};R)=0$ by Lemmas 4 and 5, it is homologous to zero. Thus, by the definition of δ_n , we can apply Lemma 1 to $z_{n-2\cdots 0}$ and get a chain $w_{n-2\cdots 0}\in S_2(X_{n-2\cdots 0})$ satisfying $\partial w_{n-2\cdots 0}=z_{n-2\cdots 0}$, diam $\pi_*w_{n-2\cdots 0}\leqq\delta_{n-1}$ and $\|w_{n-2\cdots 0}\|\leqq C\|z_{n-2\cdots 0}\|\leqq AC$. Now, for a permutation τ of $\{0,\cdots,n-2\}$, we put $w_{\tau(n-2)\cdots\tau(0)}=\mathrm{sign}(\tau)p_{n-2,\tau(n-2)*}w_{n-2\cdots 0}$ and put $w_{j_1\cdots j_{n-1}}=0$ if $\{j_1,\cdots,j_{n-1}\}\neq\{0,\cdots,n-2\}$. Since $X_j\cap\angle^{(j-n+2)}M_j=\phi$ for $j=n-1,\cdots,2n-4$, we have $\angle^{(n-1)}M_{2n-3}=\widetilde{N}_{0\cdots n-2}$ i. e. $\widetilde{N}_{j_1\cdots j_{n-1}}=\phi$ for $\{j_1,\cdots,j_{n-1}\}\neq\{0,\cdots,n-2\}$, and thus $z_{j_1\cdots j_{n-1}}=0$ if $\{j_1,\cdots,j_{n-1}\}\neq\{0,\cdots,n-2\}$. Therefore, by Lemma 8, the $w_{j_1\cdots j_{n-1}}$'s above satisfy the required conditions.

Suppose that there has already been such a family for suffixes of length greater than k with $k \leq n-2$. For a suffix $j_1 \cdots j_k$ satisfying $j_1 > \cdots > j_k$, consider the (n-k)-chain $\hat{z}_{j_1 \cdots j_k} = p_{2n-3,j_1*} z_{j_1 \cdots j_k} - \sum_j w_{j_1 \cdots j_k} \leq S_{n-k}(X_{j_1 \cdots j_k})$. Then, by the induction assumption, we have $\partial \hat{z}_{j_1 \cdots j_k} = 0$. Recall that, by Lemmas 5 and 6, $X_{j_1 \cdots j_k} \cong \overline{X}_{j_1 \cdots j_k}$ when $0 \leq j_1 \leq n-2$ and $X_{j_1 \cdots j_k} \cong \overline{X}_{j_1 \cdots j_k} \times S^1$ when $n-1 \leq j_1 \leq 2n-4$. Hence, by Lemma 4, $H_l(X_{j_1 \cdots j_k}; R) = 0$ for $l \geq 2$ and thus the cycle $\hat{z}_{j_1 \cdots j_k}$ is homologous to zero. Therefore, by the definition of δ_{k+1} , we can apply Lemma 1 when $0 \leq j_1 \leq n-2$ and Lemma 2 when $n-1 \leq j_1 \leq 2n-4$ to $\hat{z}_{j_1 \cdots j_k}$ and get a chain $w_{j_1 \cdots j_k} \in S_{n-k+1}(X_{j_1 \cdots j_k})$ satisfying $\partial w_{j_1 \cdots j_k} = \hat{z}_{j_1 \cdots j_k}$, diam $\pi_* w_{j_1 \cdots j_k} \leq \delta_k$ and $\|w_{j_1 \cdots j_k}\| \leq C\|\hat{z}_{j_1 \cdots j_k}\| \leq ACB^{n-k-1}$. For a general suffix $j_1 \cdots j_k$, $w_{j_1 \cdots j_k}$ is defined as follows. If there are $l \neq l'$ with $j_l = j_{l'}$, we put $w_{j_1 \cdots j_k} = 0$. For mutually distinct j_1, \cdots, j_k , we let τ be a permutation of $\{1, \cdots, k\}$ with $j_{\tau(1)} > \cdots > j_{\tau(k)}$ and put $w_{j_1 \cdots j_k} = 0$.

 $\operatorname{sign}(\tau)p_{j_{\tau(1)},j_1*}w_{j_{\tau(1)}\cdots j_{\tau(k)}}$. Then these $w_{j_1\cdots j_k}$'s satisfy the conditions (1), (2), (3) and (4), and Lemma 8 implies that they also satisfy (5). \square

PROOF OF THEOREM. Let $\hat{z}=p_{2n-3.0*}z-\sum_{j}p_{j,0*}w_{j}\in S_{n}(M)$ where w_{j} is as in Lemma 9. Then the chain \hat{z} is closed and covers a general point of M exactly N times and thus it represents the N times multiple of the fundamental homology class of M. On the other hand, we have $\|\hat{z}\| \leq \|z\| + \sum_{j} \|w_{j}\| \leq AB^{n-1}$. Therefore the Gromov invariant of M is estimated as follows:

$$\Gamma(M) \leq \frac{1}{N} A B^{n-1}$$
.

Since N is arbitrary and A and B do not depend on N, we have proved the theorem. \square

REMARK 1. If one considers the relative Gromov invariant, the theorem is valid also for manifolds with boundaries by a slightly modified proof. (See Section 6.5 of Thurston [7] for such a notion.)

REMARK 2. The converse of the theorem does not hold even in the three dimensional case. The following example was informed by A. Hattori. Let $\alpha: T^2 \rightarrow T^2$ be a hyperbolic toral automorphism (for example, $\alpha = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$) and M_{α} the suspension of α i.e., $M_{\alpha} = T^2 \times [0, 1]/\sim$, where $(x, 0) \sim (\alpha x, 1)$. Then, since M_{α} is a total space of a T^2 -bundle over S^1 , Proposition 6.5.2 of Thurston [7] implies $\Gamma(M_{\alpha}) = 0$. (This is also obtained in Gromov [1] and Morita [4].) On the other hand, since M_{α} is aspherical and the center of $\pi_1(M_{\alpha})$ is trivial, a result of Orlik-Raymond [5] says that there are no non-trivial S^1 -actions on M_{α} .

PROOF OF COROLLARY. In fact, it is proved in Inoue-Yano [2] (see also Gromov [1]) that the Gromov invariant of a manifold as in this corollary is positive and thus the result follows.

References

- [1] Gromov, M., Volume and bounded cohomology, to appear in Publ. Math. Inst. HES.
- [2] Inoue, H. and K. Yano, The Gromov invariant of negatively curved manifolds, Topology 21 (1981), 83-89.
- [3] Matumoto, T., Equivariant stratification of a compact differentiable transformation group, preprint.
- [4] Morita, S., A topology for the homology of a topological group, preprint.
- [5] Orlik, P. and F. Raymond, Actions of SO(2) on 3-manifolds, Proc. Conf. on Transformation groups, New Orleans 1967, Springer-Verlag, Berlin, 1968, 297-318.
- [6] Schoen, R. and S.T. Yau, Compact group actions and the topology of manifolds with non-positive curvature, Topology 18 (1979), 361-380.

- [7] Thurston, W., The geometry and topology of 3-manifolds, Princeton mimeographed note, 1977-1978.
- [8] Verona, A., Triangulation of stratified fibre bundles, Manuscripta Math. 30 (1980), 425-445.

(Received April 24, 1981)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan