Gromov invariant and S'-actions
By Koichi Yano®

Introduction.

Recently, Gromov introduced the notion of so called the Gromov invariant
and proved that it is positive for any hyperbolic manifold. (See [17 and Section
6 of [7]) Thurston, on the other hand, showed that Gromov invariants of
three dimensional manifolds with non-trivial S*-actions are zero (Proposition 6.5.2
and Corollary 6.5.3 of [7]). The purpose of this paper is to generalize Thurston’s
result to higher dimensions.

After the first draft of this paper, the author received a preprint [1] from
Professor M. Gromov and found that the same result was also obtained in it.
The methods, however, are quite different.

THEOREM. Let M be a closed connected smooth manifold which admits a
non-trivial smooth S'-action. Then the Gromov invariant of M is equal to zero.

COROLLARY. Let M be an orientable closed connected smooth manifold of
dimension grater than one. Suppose that there exists a continuous map f from
M to some closed Riemannian manifold N of negative sectional curvature such
that f+«[M1#0 in He(N; R). Here [M] denotes the fundamental homology class
of M. Then M does not admit non-trivial smooth S*-actions.

The corollary is a special case of Corollary 5 of Schoen-Yau [6], while our
result reveals an obstruction to the existence of S'-actions in such a manifold.

The plan is as follows: In Section 1, we give necessary definitions and
lemmas. In Section 2, we introduce the notion of hollowings and apply this to
manifolds with S'-actions. Finally we prove the theorem and the corollary in
Section 3.

The author wishes to thank Professors A. Hattori, Y. Matsumoto and T.
Matumoto for their helpful comments.

1. Preliminaries.

Let X be a metric space and Y a subspace of X. We put Sx(X)=@50 Sx(X)
to be the real coefficient singular chain complex of X i.e., an element c&S,(X)
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is a finite sum ¢=3;a;0:,, where a;=R and ¢;: 4*—X is a continuous map.
We define the norm, the diameter and the restriction to Y of ¢, denoted by |cl,
diam ¢ and c|y respectively as follows:

lel==:1al,

diam c=sup diam ¢,(4*%),

Clyzzai(Alch a:G;.

Now recall the definition of the Gromov invariant. Let M be a closed connected
manifold. When M is orientable, the Gromov invariant of M is defined by

I'(M)=inf{|c|; ceS«(M) represents [M1}

where [MJeH«(M; R) is the fundamental homology class of M. When M is
non-orientable,

F(M)—_—%F(JVI)

where M is the orientable double covering of M.
The following two lemmas are based on Proposition 6.5.1 of Thurston [7].

LEMMA 1. Let X be a compact metrized polyhedron, m a non-negative
integer and ¢ a positive number. Then there exist positive constants & and C
satisfying the following condition (%).

(%) If a cycle zeSn(X) is homologous to zero and satisfies diam z=<3, then
there exists a chain weSys(X) such that dw=z, diam w=e and |w|=Clzl.

PrROOF. Let K be a subdivision of X with mesh K<¢/2 and {v,} be the set
of vertices of K. For m+1 vertices vy, -, v;, satisfying <v;, -, v;, Y€K

(may be degenerate), Oj-in denotes the affine singular simplex with Cigim 0
s

-, i, <, 0)=v;, and K,(X) denotes the linear subspace of S,(X) spaned by
these singular simplices. Since K, (X) is finite dimensional and consists of chains
of diameter not greater than ¢/2, there is a positive constant C’ such that
if a cycle z€Kn,(X) is homologous to zero, there exists a chain w’&Sn.(X)
satisfying dw’=z’, diam w’<¢ and |w’|<C"}7’|.

Let K’ be the first barycentric subdivision of K and {U,} be a family of
mutually disjoint subsets of X such that IntStar(v;, K')CU;CStar(v;, K’) and
X=UU; Let 6 be a Lebesgue number with respect to the open covering
{Int Star(vj, K’); vj is a vertex of K’} of X. For any singular m-simplex ¢
with diagna =4, we let & denote o;,.;, EK.(X), where j; is determined by

a0, -, i, -, 0)el;,. The assumption that diames <§ guarantees the existence
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of & and implies that for any x&4™, corresponding points ¢(x) and &(x) lie in
a same simplex of K. Thus there is a homotopy &: 4™X[0, 1]—X connecting ¢
and , defined by 8(x, f)=to(x)+(1—1)5(x). By using the prism decomposition
of 4™x[0,1], we regard 6 as an element of S,..(X) with ||§]|=m+1 and
diam ¢ < diam Star(v}, K")<e. Now let z=3; a;0;=Sx(X) be a homologically
trivial cycle with diam 2<8. Put 2=3); a;6; and ©#=3; a;5;, where &, and &;
are as above. Then we have 0 =z—2, diam #=e, |@[|=(n-+Dlz| and |z]|=]iz].
Since Z belongs to K,(X) and is a homologically trivial cycle, this, together with
the observation in the first half of this proof, implies the required result. []

LEMMA 2. Let X, m and ¢ be as in Lemma 1. Then there exist positive
constants 0 and C satisfying the following condition (%%).

(x%) If a cycle z2€S(XXSY) is homologous to zero and satisfies diam m42=96,
then there exists a chain WESn+i(XXSY such that dw=z, diam zyw=e¢ and
lwlZClz)l. Here m: XX S'—X denotes the projection to the first factor.

Proor., For any positive integer N, there is an N-fold covering py: XX S*
—XxS* defined by py(x, )=(x, Nt), where S' is regarded as R/Z. Let zy be
the linear map from S.(XXS') to itself, defined by

TNO = N ZpNot;=0 g

for each singular simplex ¢. Then 7y satisfies pysxety=ids.cxwsn, QoTy=1Tye0
and |rxzl=|z]. Now consider a metric d on XX S* defined by d((x1, t1), (x2, f2))
=max{dx(x1, x2), ds:(ts, t)} for x,€X and t,€S", where dy and dg are the
metrics on X and S, respectively. Take positive numbers ¢ and C as in Lemma 1
for Xx S'. Suppose that a cycle z& S,(Xx S*) is homologous to zero and satisfies
diam 742=<0. For a large integer N, we have diam(ryz)=9, hence, by Lemma 1,
there exists a chain @ with 0@ =7yz, diam @#=<e and |B|=Clzyz|l. It is easy
to see that the chain w=pys satisfles the required conditions. S

2. Hoellowings and Manifolds with S'-actions.

We use the following notation.
Ri={(xy, -+, xa); 220}
OR}=/L PRi={(x)ERE; *j, x;=0}
LPRY={(x)eRE; 2j1 <<, 5= = 25,=0}.

We say that a space M is an n-dimensional manifold with corner or simply a
manifold in case of no confusion, if for each point of M, there is a neighborhood
homeomorphic to some open set in R7 and associated coordinate transformations
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are smooth. For such an M, we define the subsets M=/ O MD--DL ™M by
an obvious way.

Let M be a manifold with corner and N a submanifold with corner of A
such that N is transverse to each /®M—/ **DM and £ ON=N~/ DM,
Then the tubular neighborhood v(N) of N in M has a structure as a disk bundle
over N. Let ¢:vs(N)X[0, 17-u(N) be the polar coordinate i.e., vg(N) is the
total space of the associated sphere bundle, Pluganxw=idigewr and ¢lgarxm is
the projection of the bundle. Let M’ be the space (Closure of (M—u(N)))
U(ﬁ;yS(N)xmuS(N)x[O, 1]. Then there is a natural map p: M’—M defined by
Plu—van=idyva» and pliganxwn=¢. It is clear that M’ has a canonical
structure as a manifold with corner which makes p differentiable. We call
this map p the hollowing of M at N. (When N=¢, we define M’'=M and
p=idy.) The submanifolds N of M and p~YN) of M’ are called the frace and
the hollow wall of p respectively and for a subspace L of M, the closure of
pL—(LNN)) in M’ is denoted by p*L.

LOM LM oM

L

()

M

The following lemma is immediate and the proof is omitted.

LEMMA 3. Let M be a manifold with a smooth S%-action, N an invariant
submanifold and p: M’'—M the hollowing at N. Then M’ has a smooth S'-action
such that p is equivariant.

We are now in a position to dissect manifolds with S'-actions. Hereafter,
for a space X with an S'-action, X denotes the orbit space and 7 : X—X the
natural projection. Suppose that M is an n-dimensional closed connected smooth
manifold with an effective smooth S*-action. Let F be the fixed point set, L,
be the set of points whose isotropy groups contain {0, 1/7, -+, (r—1)/#} =S'=R/Z
for r=2, 3, ---,and L=\Uz,L,. Note that since M is compact, L,—F is empty for
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large ». Then there exists a triangulation of the orbit space M compatible to
its structure. (See, for example, Matumoto [3] or Verona [8]) More precisely,

(i) F and each L, are subpolyhedra, and

(if) for any [-dimensional simplex 4 of this triangulation, there is a smooth
embedding ¢: 4'—>z"Y4)CM such that zeo: 4*—4 is a simplicial iso-
morphism,

We fix such a triangulation and define the sequence of hollowings

Dan-4 Do
Moy ——— Mop_y— o = M, ——— M=M
as follows. Let M® denote the /-skeleton of this triangulation. For k=0, ---,
n—2, we define inductively that p,: M,,—M, 1is the hollowing at
D=1 P (M P AF) and, for k=n—1, -, 2n—4, also inductively that
Pr: Me—M, is the hollowing at Py, poHm {(M*-7+D)). Then, by Lemma
3, My’s have smooth S'-actions such that p,’s are equivariant.

In the rest of this section, we give information about this sequence. For
simplicity, we put pjjs=pje-epja: M—M; and p; ,*=p; *ps*. Then
Ps.o*F and p;*L are the set of fixed points and the set of points with non-trivial
isotropy groups, respectively, of the Sl-action on M, Let X; denote the trace
of p;ie, Xj=p; Mz (MPNF)) when 0=7<n—2 and X,=p, Mz (MI-m+D))
when n—1=;7=<2n—4. Let N; be the hollow wall of p,, N;=pan-s.j+*N; Ny,
= ~,»lm---mﬁjk and le...jkzpm_3,jl(ﬁ,-l...jk)Cle for mutually distinct 7,, -+, 7.
Then we have / ®M,, ,="UN, ;, and in particular dM,, ;=K.

LEMMA 4. Each connected component of le...,-k s contractible.

ProOF. Let 4 be an [-simplex with the standard triangulation and let

%LMI%-I—“--»A%—E; [T

be the sequence of hollowings defined inductively by the following: g¢,: di.,—4%
is the hollowing at g, ,*--g,*4‘®, where 4¢® is the k-skeleton of 4! Then, by
the construction, each connected component of X j, is diffeomorphic to 4} for
[=j, when 0=/,=n—2 and for /[=j,—n-+1 when n—1=;,=2n—4. Under this
identification, every connected component of X,-l...,-k for k=2 is one of the
closures of connected components of £ ¢*~24i—/ ¢® 4} and thus it is diffeomorphic
to 4izktl. This proves Lemma 4. []

LEMMA 5. X;.;, =Xy, for 0=/,=n—2.

Proor. If 0=j,=n—2, we have X;.; CX; Cp; *F. Thus the result fol-



- 498 Koichi Yaro
lows. [
LEMMA 6. Xj.;,=X;.;,XS" for n—1=7,=2n—4.

PROOF. In the case that n—1=;,=2n—4, X;_.; is a total space of a
principal S!-bundle over X jip-  Thus Lemma 4 implies the required result. []

LEMMA 7. When M is orientable, Myy_s=M,,_s X S

PRrOOF. Since dim F<n—2 and dim(L—F)=n—3, we have pop-s o F=
Pen-s.0*L=¢ and thus the S'-action on M,,_, is free. On the other hand, since
M;,-; is homotopy equivalent to M—(M®»\UF), it has a homotopy type of a
l-complex. Therefore the result follows from the fact that every principal S'-
bundle over a l-complex is trivial. [J

3. Proofs of Theorem and Corollary.

It suffices to prove the theorem in the case that the manifold is orientable
and the S'-action is effective, and thus we assume that. We use the notation
in the previous section.

Metrize M; j=0, ---, 2n—3 such that each p;: Mj—M; does not increase
the distance, i.e. p; is Lipschitz with the Lipschitz constant<1. First, we
define positive numbers d; 7=1, ---, n and C as follows: We put J,=1. When
0r is defined, for ji>-->j; we let 6¢,.jp and Cgpyp be as in Lemma 1 if
0=;,=n—2 and as in Lemma 2 if n—1=;,<2n—4, for X=X, .;,, m=n—k and
e=0;. We put 0z4+; to be a positive number which is not greater than §, and
any 0¢,.;». When all of d;'s are defined, we put C to be greater than the
maximum of Cg,.yp’s. Now let K be a triangulation of M,,_, such that
mesh K=, and each £ ®M,,_, is a subpolyhedron. Then we have a triangu-
lation K of My_3=M,, ;X S* cannonically induced from K with each £ P M,, ,
a subpolyhedron. Take a positive integer N and let z denote the singular chain
Py KESn(Msn-s), Where oy : My 3= Myn_yXS'—M,,_, is defined by py(x, f)=
(x, Nt) and K is naturally considered as an element of S,(M,,_;) which represents
the fundamental homology class [M,y-s, 0My,-5]. Then z represents the N times
multiple of [M,-s, O0Moy_s] and diam 742<§,. We define a chain Zjiy &
Sn_k(ﬁjl...jk) for j;=0, ---, 2n—4 as follows. We put zj:(az)lﬁj and inductively
Zjl...jk:(aZji...jk_1>[j\'ljk:(aZjl...jk_l){ﬁj;mjk for mutually distinct 7y, -+, 7, If Ehere
are [+’ with j,=ju., we put zj,..;,=0. Then, since each £ ® M., =IN; _;,
is a subpolyhedron of K and Nj.,,=Vj.s. ..;,Ns.;,, We have 025,5,=
i Zjpip- The following lemma is immediate and the proof is omitted.

LEMMA 8. The chain zj,..;, is alternating with respect to the suffix i.e., if
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t is a permutation of {1, -, k}, then
er(l)...jf(k)=Slgn(z')zj1‘.‘.jk .

Let A=(n+D1|K|=(n+D!lzl| and B=1+2n—3)C. Then A and B do not
depend on N, and |z;,..;,1=A for every ji, -, Tk

LEMMA 9. There exists a family of chains {le...jk} 7:=0, -+, 2n—4, k=1,
-, n—1, satisfying the following conditions.

(1) wjl...jkESn_k+1(Xj1...jk).

(2) Wiy, is alternating with respect to the suffix i.e., if T is a permutation
of {1, -, k}, then

Wiy dzcm
Diecry ik Wi crydecny =SB W gy when Jrw=J1e

:Sign(f)p]’l,jr(l)*wjl---jk when j:n=Jji, and

(3) diam wswj,.;, =04

@) Nwji | SACBP L

(5)  OWjpjyoy="Don-s,jZipmin-p N4
aw]'l...jk:pzn—S.jl*Zjl“'fk_Ej Wigegps f0r k=1, o, n—2

Proor. We prove this lemma by downward induction on the length & of
the suffix. Let k=n—1. First, we construct wy-s.., as follows. Since £ ™ Mzn_¢
=¢ by Lemma 7, the 1-chain zp-s.o is a cycle and since Hy(Xn_s.0; £)=0 by
Lemmas 4 and 5, it is homologous to zero. Thus, by the definition of 4, we
can apply Lemma 1 t0o 2p-».o and get a chain wp-s.0=So(Xu-2-0) satisfying
Wm0 =2n -0, dIAM T4Wp-p.0=0p-, and 1 pezeoll ECl2n-2ol SAC. Now, for a
permutation z of {0, ---, n—2}, we put Wetn-29mr0> =SIENT) Pr-s.c - Wn-2-0o and
put wj,.;,-,=0 if {1, ooy Jaob #2140, -+, n—2}. Since XN 9 M=¢ for
j=n—1, -+, 2n—4, we have 2 DM, =Nyqis i €. 1\7;-1.‘.]-”_1:95 for {7y, -+, Ja-1}
10, -, n—2}, and thus zj.;,_,=0 if {js, =, fu-a}# {0, -, n—2}. Therefore,
by Lemma 8, the wj,..;,_'s above satisfy the required conditions.

Suppose that there has already been such a family for suffixes of length
greater than k with 2<n—2. For a suffix ji--j« satisfying 71> > J, consider
the (n—k)-chain 2;..;,= Pen-s jZip-ip— 204 Wi 1€ Sn-1(Xjy,). Then, by the
induction assumption, we have 0%;,.;,=0. Recall that, by Lemmas 5 and 6,
X;,1,= Xjp5, When 0=7,=n—2 and Xipip = Xjpegy X St when n—157,=2n—4.
Hence, by Lemma 4, H(X;.;,; R)=0 for (=2 and thus the cycle 2;.;, Is
homologous to zero. Therefore, by the definition of §,.+1, we can apply Lemma 1
when 0=j,=n—2 and Lemma 2 when n—1=7,=2n—4 to ;.5 and get a chain
Wiy €S- w4t Xjpg,) satisfying 0w;..s, =25, diam 74w;,..;,=0% and [lwj,.;,l
=Cl4;,..;,1=ACB™*-1. For a general suffix J1* Jae- Wipes, is defined as follows.
If there are [/ with j,=7,, we put w,..;,=0. For mutually distinct 7y, *, Ja
we let ¢ be a permutation of {1, -, B} With jrewy> > Jew and put wj,.;,=
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SIZN(T) P, cpyr sk Wipcymiecsy- L 1ED these wy..;,'s satisfy the conditions (1), (2), (3)
and (4), and Lemma 8 implies that they also satisfy (5). []

PROOF OF THEOREM. Let 2=psn. 5 052— 205 Pj06W;ES(M) where w; is as
in Lemma 9. Then the chain £ is closed and covers a general point of M
exactly N times and thus it represents the N times multiple of the fundamental
homology class of M. On the other hand, we have |2|=|z]|+2Z;|wiSAB™ 2

Therefore the Gromov invariant of M is estimated as follows:

1
<_ - n-1
My = N AB" 1,
Since N is arbitrary and A and B do not depend on N, we have proved the
theorem. []

REMARK 1. If one considers the relative Gromov invariant, the theorem is
valid also for manifolds with boundaries by a slightly modified proof. (See
Section 6.5 of Thurston [7] for such a notion.)

REMARK 2. The converse of the theorem does not hold even in the three
dimensional case. The following example was informed by A. Hattori. Let

a:T*—T? be a hyperbolic toral automorphism (for example, az(f i)) and

M, the suspension of « i.e., M,=T?x[0, 1]/~, where (x, 0)~(ax, 1). Then,
since M, is a total space of a TZbundle over S', Proposition 6.5.2 of Thurston
{7] implies I'(M,)=0. (This is also obtained in Gromov [1] and Morita [4].)
On the other hand, since M, is aspherical and the center of =, (M,) is trivial, a
result of Orlik-Raymond [5] says that there are no non-trivial S*-actions on M,.

PROOF OF COROLLARY. In fact, it is proved in Inoue-Yano [2] (see also
Gromov [1]) that the Gromov invariant of a manifold as in this corollary is
positive and thus the result follows. []
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