On the topclogy of non-complete algebraic surfaces
By Takao FujiTa

Introduction.

According to the theory of logarithmic Kodaira dimension £ of algebraic
varieties (cf. [I]), (open) surfaces are classified into four classes by & which
takes the values 2, 1, 0 or —oo. In case i=—oo, the ruling theorem of
Castelnuovo-Miyanishi-Sugie (cf. [MS]) gives us a powerful tool to study the
structure of such surfaces. If #=0 or 1, the theory of Kawamata [Kw 3] is very
useful. As for the case £=2, little is known. However, in this case, many
objects defined by transcendental methods are of algebraic nature (cf. [Sa]).

Recently Miyanishi [My 3] began a more precise study of the structure of
surfaces, especially when they admit an A'ruling or Ak-ruling. Inspired by his
work, we will first study here similar problems from topological viewpoints.
Although many of our results thus obtained are not more than copies of
Miyanishi’s results, we hope that our method helps to understand the meaning
of these results. Thus, among others, we give a topological characterization of
A? which led to an affirmative answer to the following cancellation problem:
SXV=A*XV implies S=xA4% We give also a classification of surfaces dominated
by A% in terms of their fundamental groups.

We will further proceed to study the cases £=0 or 1. For this purpose we
develop a computational theory of Zariski decomposition of K+D, where D is
an effective reduced divisor on a complete surface with canonical bundie K.
Combined with Kawamata’s theory and with a precise study of Ai-rulings, this
method yields various results. Among others we establish a classification theory
of affine surfaces with £==0 and with finite Picard group. In particular, all the
possible fundamental groups of such surfaces can be completely determined (cf.
(8.64) and (8.65-69)). Another sample of results obtained by this method is:
Any algebraic surface S with &S)=1, H¥S; Z)=0 is rational and #,(S)=1 (cf.
(7.13) and (7.15)). As an application we get a new proof of the following
theorem (Morrow): All the compactifications of C? are bimeromorphically equiv-
alent to the standard one. Our proof of this fact is by no means simpler than
his original one, but our method works for many other surfaces with H*S; Z)
=0 in the same way. ' ‘

The author would like to express his hearty thanks to Professor litaka, Pro-
fessor Miyanishi and Dr. Kawamata. He hopes that this article might be of
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some help in order to show the significance of the classification theory originated
and developed by them.

Convention.

Surface means usually a smooth surface. A variety is said to be complete
if it is compact with respect to the Euclidian topology. An exceptional curve
on a complete surface means a rational normal curve F with E?’=—1. “Com-
ponent” of a divisor means its irreducible (or prime) component, and is never
an abbreviation of “connected component”.

§1. Quasi-complete invariants.

(1.1) DEFINITION. An open embedding 7: S—S of an analytic space S ina
compact analytic space S is called a completion of S if S is dense in S and if
X=8—35 is analytically closed, i.e., its germ at each point x on X is the common
zero-set of finitely many holomorphic functions in a neighborhood of x in S.

Two completions 7,: S—3S; and 7,: S—5, are said to be equivalent if there
exist another completion 7: S—S and morphisms f;: S—S; for j=1, 2 such that
i;7=f;°i. An equivalence class of completions of S is called a quasi-complete
structure (abbr.: q.c. structure) of S. An analytic space given a q.c. structure
is called a quasi-complete space (abbr.: g.c. space). A completion of a g.c.
space means a completion of the space which defines the given g.c. structure.

A divisor on a manifold is called an NC-divisor if all the irreducible com-
ponents of it are smooth and if they intersect normally with each other. A
completion of a (g.c.) manifold M is called an NC-completion if M—M is an NC-
divisor on M.

(1.2) THEOREM. Any q.c. manifold has an NC-completion of it.

This is a consequence of the desingularization theory of Hironaka. In this
paper we are chiefly concerned with q.c. manifolds and their NC-completions.

(1.3) DEFINITION. Let S, and S, be q.c. spaces and let i;: S;—S; (j=1, 2)
be their completions. A meromorphic mapping f: S;—S. is said to be rational
if it can be extended to a meromorphic mapping 7: S,—S,. Clearly this notion
is independent of the choice of completions of S;, A morphism S;—S, is called
a q.c. morphism if it is rational. Q.c. spaces together with q.c. morphisms

Remarx. Our q.c. manifold is the same as Kawamata’s compactifiable manifold.
See [Kw 1].
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form a category, which will be denoted by QCS. In particular, q. c. isomorphisms
mean biholomorphisms which can be extended to bimeromorphic mappings of

the completions. Sometimes we mean gq.c. morphisms by saying “morphisms of
g.c. spaces”.

(1.4) THEOREM. The category of algebraic spaces of finite type over C is
naturally isomorphic to a full subcategory of QCS.

This is a consequence of Nagata’s completion theorem (cf. [Ng7).

(1.5) A qg.c. morphism from a q.c. space S into A! (together with the
standard q.c. structure) is called a regular function on S. They form a C-
algebra, which will be denoted by A(S).

A(S) is not finitely generated in general. Suppose that (M, D) is an NC-
completion of a q.c. manifold M=M—D. Let §cH*M, D) be an element defin-
ing the divisor D and let 8%: H*(M, jD)—~H"M, iD) be the mapping defined by
the multiplication of '~/ for each 7=;. Then {H"(M, ;D)} jzo together with
{04} form an inductive system. The limit of this system is isomorphic to A(M).
From this we infer that A(M) is finitely generated if and only if the graded
C-algebra @,.,H(M, jD) is finitely generated.

(1.6) A rational mapping (may not be holomorphic) from a q.c. space S to
A' is called a rational function on S. If S is irreducible and reduced, rational
functions on S form a field, which is denoted by C(S). Of course C(S)=C(S)
for any completion S of S.

(1.7) For any bimeromorphic invariant 7, #(M) is an invariant of a q.c.
manifold M, where M is a completion of M. For example we have:

1) C(M), and its transcendental degree over C, the algebraic dimension of M.

2) HYM, og).

3) HYM, Q°), where p is any polynomial representation of GL(dim M, C)
and £° is the vector bundle induced by p from the cotangent bundle of M. If
in particular p is (det)™ with m>0, then 2¢=mK where K is the canonical
bundle of M.

4) The canonical ring @,.,H°(M, tK) and the Kodaira dimension &(M).

5) The fundamental group =,(M), the homology group H(M; Z) and the
torsion part of H¥M : Z).

6) The Picard variety Pic,(M), the torsion parts of the Picard group Pic(M)
and the Neron-Severi group NS(M).

7) The Albanese torus Alb(M).
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(1.8) Let (M, D) be an NC-completion of M=M—D. Let 2(log D) be the
sheaf of meromorphic 1-forms on M which have only logarithmic poles along
D (hence, in particular, holomorphic on M). Then, for any polynomial repre-
sentation p of GL(dim M, C), H %M, 2(log D)?) turns to be independent of the
choice of the NC-completion (M, D) of M (see [I]). Thus, we get various in-
variants of the q.c. manifold M. Example: q(M)=h°(1\7I, Q(log D)), called the
logarithmic irregularity of M, the logarithmic canonical ring P2 HM, t{K+D)),
and the logarithmic Kodaira dimension #(M)=r(K+D, M).

More generally, H'(M, 2¢® 2(log D)?") is an invariant of M for any poly-
nomial representations p and p’ of GL(dim M, C). In particular, B oHYM, tK
4-(—1)D), which can be identified with an ideal of the logarithmic canonical
ring, is an invariant of M. Furthermore, Sakai [Sa] showed that this ideal is
actually an invariant of the complex structure of M although the logarithmic
canonical ring itself depends on the g.c. structure (cf. (1.24) below). Thus,
#(K+D, ©(K)) is an invariant of the complex manifold M, which is denoted by
r{M).

(1.9) THEOREM. If i(M)=n=dim M, then r(M)=n.
The proof is easy (see [Sal).

(1.10) Notation. Let G be an abelian group and let T be a closed subspace
of a topological space S. Then, by ﬁp(S, T; G) and FI,,(S, T; G) we denote
Coker(H,(T ; G)—H,(S; G))y and Ker(H,- (T ; G)—>H,_4(S; G)) respectively. Note
that the homology exact sequence yields a natural exact sequence 0—H oS, T; G)
—Hy(S, T; G)—=H,(S, T; G)-0.

(1.11) LEMMA. Let f: M,—M, be a bimeromorphic morphism of compact
complex manifolds M, and M, Then fs: Hp(M:; G)—=Hy(M,; G) is surjective,
where G is an abelian group.

PrOOF. We may assume G to be finitely generated because G is an induc-
tive limit of such groups and because the inductive limit is an exact functor.
Then G is a direct sum of infinite and finite cyclic groups. So it suffices to
consider the case in which G=Z or G is a finite fleld Z/pZ, p being prime.

Using Poincaré duality we get H,(My; G)=H** ?(M,; G)—~H**"?(M,; G)
=H,(M,; G)—>H,(M,; G), which gives the identity of H,(M;; G) since f is
bimeromorphic. This implies the surjectivity of fs. Q.E.D.

(1.12) Let (M, D) be a completion of a q.c. manifold M=M—D and suppose
that G is a field or Z. Then H,M, D; G)=H*-4M; G) by Lefschetz duality,
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where n=dim M. So ﬁq(]V[, D; G) and ﬁq(M, D; G) define a subgroup and a
quotient group of H®**~¢M; G) respectively.

THEOREM. These sub- and quotient groups are independent of the choice of
a completion of M.

PrOOF. We should show that H,(M;, D,; G) and H (M, D,; G) define the
same subgroup of H®**~4M; G) for any equivalent completions (M,, D,) and
(M., D,) of M. Let (M, D) be a completion of M such that there are morphisms
fi: M—M, for i=1,2 which induce the identity map of M. Then f; define
mappings ﬁq(ZVI, D; G)—>ﬁq(]\7i, D;; G) for =1, 2. They are injective because
ﬁq’s are identified with subgroups of H®**~9()M; G) in a natural way. On the
other hand, they are surjective by (1.11). Thus they are bijective. Our assertion
follows easily from this.

(1.13) 'The subgroup (resp. quotient group) of H?(M; G) corresponding to
Hon (M, D; G) (resp. Hon-p(M, D; G) will be denoted by H?(M;G) (resp.
H?(M; G)). The rank of the free part of H?(M; Z) (resp. H?(M: Z)) will be
denoted by b,(M) (resp. 5,(M)). Of course we have bp(M)=b,(M)+b ,(M).

(1.14) REMARK. Even if G is an arbitrary abelian group, ﬁq(JVI, D; G)is
independent of the choice of a completion (M, D) of M. However, this does
not define a subgroup of H®"%M; G) in general, because G is not necessarily
a ring. Similar remark applies also to qu(M, D; G).

(1.15) PROPOSITION. Let (M, D) be a completion of M=M—D, where M is
smooth. Then

D) b(M)=0 and b(M)=1. b(M)=bM).

2) by M)y=b(M)—b,(M)=g(M)—q(}).

3) Don-o(M)=(the number of connected components of D)—1.

4) bonM)=0  unless D=@. Bun(M)=0 always.

Proofs are straightforward from the definition. As for 2), see also [Kw 1;
p. 2647

(1.16) DEFINITION. Let D be a reduced divisor on a complete manifold M
and let M be the q.c. manifold M—D. Let &(D) be the free abelian group with
basis consisting of the prime components of D and let p: 2(D)—Pic(M) be the
natural mapping. Then we define Pic(M) to be Coker(p).

Let ¢,: Pic(M)—H*M; Z) be the Chern mapping. Then Pic,(M)=Ker(c,)
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and NS(M)=Im(c,). We define the Neron-Severi group NS(M) (resp. Pico(M))
of M to be the cokernel (resp. kernel) of the natural homomorphism D)—-NS (M)
(resp. Pic(M)—NS(M)).

Apparently these definitions of Pic(M), NS(M) and Pic,(M) depends on the
completion (M, D). However, as a matter of fact, they are invariants of the
q. c.-structure (cf. (1.19)).

(1.17) PROPOSITION. Let M, D and M be as in (1.16), and let A(M)* be
the multiplicative group of invertible elements of A(M) (cf. (15)). Then

1) AM)*/C* is isomorphic to Ker(p).

2)  A(M) is UFD if Pic(M)=0. The converse is true if M is affine.

PrRoOOF. Let fe A(M)*. Then f is a meromorphic function on M, and its
poles lie in D. Its zeros also lie in D, because f “te A(M). So the divisor (f)
is in (D). Thus we get a group homomorphism 4&: AMY*—L(D). Clearly
Im(®)=Ker(p) and Ker(d)=C*. Hence 1) follows.

Suppose that Pic(M)=0. For a meromorphic function f on M, we denote
its pole divisor (resp. zero divisor) by (f)= (resp. (), and we set (f)=(Flo=( e
Now, let g A(M) and let (p)=2p:Z; be the prime decomposition of (¢)o.
Since p is surjective, there is a function ¢; on M for each 7 such that
(p)—Z:=8(D). Then o, AM) and @=cllpit for c=¢llpz#t. ceAM)*
because (c)=®(D). This observation implies that, if ¢ is prime in A(M), then
(¢)o contains at most one prime component off D. So we infer that any other
irreducible decomposition of ¢ is equivalent to the above one. Thus we see that
A(M) is UFD.

The converse of 2) in the affine case is well-known and easily proved.

Q.E.D.

(1.18) PROPOSITION. Let M, D and M be as above. Then we have the
following natural exact sequences.

) 0—AM)*/C*—(D)—Pic(M)—Pic(M)—0.

2) 0—H\(M; Z)-8(D)->NS(M)->NS(M)—0 and 0—-NS(M)—H*M; Z).

3) 0—>A(M)"/CX->H~1(M; Z)—Picy(M)—Pic(M)—0.

Proor. 1) is straightforward from the definition (1.16) and 1.17;1). 2)
follows from the exact sequence 0—H YM; Z)>Hyno(D; Z )—>H2,,_2(Z\7I s Z)
—H*M; Z)—0 and the natural isomorphisms Hepn-o(D ; Z)=8(D) and HynolM: Z)

~H*M; Z). To obtain 3) we use Ker(Pico(M)—Pico(M))= DY NPicy(M)
= p(Ker(ﬁ(D)—>H2(]\71 : Z))) and the above long exact sequence.
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(1.19) COROLLARY. Pic(M), NS(M) and Pico(M) are independent of the
choice of a completion of the q.c. manifold M.

PROOF. By a similar argument as in (1.12), we prove the invariance of
NS(M) as a subgroup of H*(M; Z). The invariance of Pic,(}) follows from
(1.18;3). Combining these one gets the invariance of Pic(M).

(1.20) CorOLLARY. 1) AM)Y*=C* if ﬁl(M;Z):O.
1Yy H(M: Z2)=0 if AM)*=C* and Pics(M)=0.
2) AM) is UFD if H*M; Z)=0 and Picy(M)=0.

Proor. 1) and 1°) follow from (1.18; 3). ﬁZ(M; Z)=0 implies NS(M)=0
by (1.18: 2) and Picy(M)=0 follows from Pic,(M)=0 by 3). Sc the assertion 2)
follows from (1.17; 2).

(1.21) DEeFINITION. Let x be a point on a topological space X. A funda-
mental system of neighborhoods {Uj} j1,... of x in X will be called excellent if
U,CU; for every i>j and the inclusion UFCU¥ is a homotopy equivalence,
where U¥ denotes U;—{x}. If such a system exists, then U¥ is homotopic to
V¥ for any other excellent system {V,}. So the homotopy type of U¥ is
independent of the choice of the excellent system {U;}. This will be called the
punctured local homotopy type of X at x.

Let X be a non-compact topological space. If the punctured local homotopy
type of its one-point-compactification at the infinity is well-defined, then it will
be called the homotopy type of X at the infinity, and is denoted by oo(X). For
any homotopical functor F, F(co(X)) is well-defined too.

Let (M, D) be an NC-completion of a q.c. manifold M=M—D. Following
the recipe of Ramanujam [Ra; p. 72], we can find a distance function p on M
such that D= {x&M|p(x)=0}, D is a deformation retract of Us;={xeM|p(x)<5}
for any sufficiently small >0 and 55=3U5={XEM|p(x)=5} is a deformation
retract of Vi=U;,—D={xeM|0<p(x)<d} for any small 4. Then {c0\UV}}’s
give an excellent system of M at the infinity. - Thus co(M) is well-defined, and
homotopic to S; Obviously this is a homeomorphic invariant of M.

(1.22) Example. co(CPX(C*)9)=oco(R*PHIX (S~ SPPHa-1x T,

(1.23) Before closing this section, we describe several different q.c. struc-
tures of C*XC*. Incidentally, we will see that many invariants of g.c. struc-
tures are not invariants of the complex analytic structures.

1) Let D,, D, and D; be three lines on P?* which do not meet at a common
point. Then one sees easily that P*—D,\JUD,\JD;=C*XC*. On the other hand,
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let Q=P'x P! and let D=p7 O\ pi(00)\VUp7 (0)\ I pz' (o0} @), where p; is the
projection onto the j-th factor. Then Q—D=C*XC*. It is easy to see that
these two completions define the same q.c. structure of C*XC*. By the latter
completion we see that this is the direct product of (4")*s in the category QCS.
This g.c. structure will be called the standard g.c. structure of C*XC™.

2) Let C be an elliptic curve and let 0—[0]—-E—[0]—0 be a non-trivial
extension of vector bundles on C. So, E is an indecomposable vector bundle of
rank two. The sub-bundle [0] defines a divisor D on S=P(E), and D is a
section of S—C. We claim that S=5—D is biholomorphic to C*XC*.

To prove this, we note that S is an A'-bundle over C with structure group
G, by construction. Hence §=5%,C is an A'-bundle over the universal cover-
ing C=C of C. Llet t be a uniformizing parameter on ¢ such that
C=C/(Zw,+Zw,) for some R-linearly independent scalars w, and s, and let z
be a parameter of S along the fiber. Then (¢, z) gives a coordinate system of
S=¢? such that S=8/(Z(w., a)+Z(w,, a.)), where a;’s are some scalars. Since
E is defined by a non-trivial extension, we infer that (v, a,) and (w,, a,) are
C-linearly independent in C2. This implies S=C*XC™.

A q.c. structure of this type will be called an elliptic q.c. structure of
(C*: They form one dimensional moduli, corresponding to that of elliptic
curves. Moreover, such a q.c. manifold can be specialized to CXA!, because

the vector bundle E as above can be specialized to {0J[0].
a
3) Let G be the subgroup of GL(2; C) generated by gz( ) ), where a
a

is a scalar with Jal<l. G acts on C*—{0, 0)} freely, and the quotient
S=C2—{(0, 0)} /G is a compact complex manifold. S is known as a primary
Hopf surface (cf. [Ko 21). Let (x, y) be a coordinate of C* such that g(x, y)
=(ax, x+ay). Then the line {x=0} is G-stable, so this defines a divisor D on
S. D is isomorphic to the elliptic curve C*/G’, where G’ is the group generated
by g’: y—ay. We claim that S=S—D is biholomorphic to C*XC*.

To see this, take a coordinate system (z, y) of the universal covering S=¢
of S such that x=e(z), where e(-) is the function exp (2r7-). Take a scalar «
such that a=e(«x). Then S z§/<g0, gy, where g;’s are the covering transfor-
mations defined by go(z, y)=(z4+1, ¥) and g.(z, y)=(z+«, ay+e(z)). Introduce
another coordinate system (z, u) by setting u=e(—z)y. With respect to this
system g;’s look like go(z, u)=(z+1, u) and g(z, u)=(z+a, u+a*). Since (1, 0)
and («, a™') generate a lattice 4, we infer that S=C?*/A=C*xXC".

A q.c. structure of this type will be called a Hopf g.c. structure of (C*)%
Varying the scalar a, we see that these structures form a one-dimensional family.

4) C*XC* has the following biholomorphic invariants: HYS)=Z@Z (for
the moment, cohomologies are defined in coefficients in Z), H3(S)=Z, H*(S)=0,
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T(S)=ZDZ, 0o(S)~S1 X STX S, k(S)=-—-00. S=(C*)? is Stein, of course.
Q.c. invariants of the preceding q.c. structures of S are calculated as
follows:

structures | alg. dim 1 7(S) l g ‘ £ ig o
standard 2 | o | 2 0 0 ZDZ
elliptic 2 | zez ‘ 1 | —w | z®Z 0
Hopt 0 zZ | 1| - z zZ
A H* | AS)*/C* | NS(S) | Pic, others

0 Z (VA 0 0 affine

7z 0 0 Z r D non-affine

0 Z 0 0 D non-Kihler ‘

(1.24) REMARK. If £ (M)=dim M, then M admits only one g.c. structure.
This follows from Sakai’s theory ([Sa], cf. (1.8) too).

§2. Vanishing of higher Betti numbers.

From now on we are mainly concerned with surfaces. But at first we prove
the following

(2.1) THEOREM. Let f: M—N be a proper finite morphism of complex mani-
folds. Then f*: HYN; C)—H?(M; C) is injective.

PrROOF. In general, the hypercohomology of the de Rham complex {2y, dx}
of any complex manifold X is canonically isomorphic to H(X; C). In our
situation, H'(2y, dy)=H (f+Qy, f+dsy) because [ is finite. Therefore, the
theorem follows from the result below.

(2.2) PROPOSITION. Let f, M, N be as in (2.1) and let 27(f) be the natural
homomorphism 2% —f.2%. Then there exists a homomorphism {c’} 1 {f«2u}
— {2y} of complexes such that ¢ -82°(f) is the identity of {2x}.

PROOF. ' ¢? is constructed in the following way. Let B be the branch
locus of f and suppose x to be a point on N off B. Take a neighborhood U of
x such that ail the connected components Uy, ---, U, of f~YU) are mapped
isomorphically onto U by f. For ¢efi25U)=@,2%U)=d,;27U), set
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o?P(p)=k 2kt 0, where ¢;e87(U) is the push down of the j-th component of
¢ by f. Patching them together, we get a sheaf homomorphism fyf25—02%
defined off B. ’

Next consider the restriction of f to f~'(B) with respect to the reduced
structure. We have a nowhere dense closed subset S of B such that this
restriction is étale over B—S and B is non-singular at any point x on B—S.
Let v, --, y, be the points on M lying over x. We can find a coordinate
neighborhood U (resp. V4, -+, V,) of x (resp. vy, -, y-) with coordinate system

(ul, -, u™) (vesp. (W}, -+, v}) on U (resp. V; for each j=I1, ---, #) such that the
restriction f; of f to V; is a surjective morphism onto U and f,}, -+, v})
=((v)h#4, v%, -, v} in terms of the above coordinates for every j=I, ---, r.

Here g, -+, p» are positive integers such that g+ -+ 4-p.=4%, the mapping
degree of f. Of course BNU is the divisor defined by u!'=0. Let g;: V,—=V;
be the automorphism defined by g}, -, vh=(pn}, v}, ---, v}), where p;
=exp (2zi/p;). Then U is the quotient of V; with respect to g; In particular,
a holomorphic p-form on V; comes from U if and only if it is g;-invariant.
Now, let o= fe25(U)=35-.025(V ;) and let ¢; be the j-th component of ¢. Then
2L (g)*p; is giinvariant and hence comes from a p-form ¢; on U. Setting
a?(p)=(:~+ -+ +¢,)/k, we obtain a sheaf homomorphism f;Q25—2% defined on
N—S as an extension of that on N—B defined in the preceding paragraph.
Since codim(S)=2, one can extend the above homomorphism to the whole
space N using the theorem of Hartogs. It is easy to see that this has the
desired property. Q.E.D.

(2.3) REMARK. (2.2) gives a mapping o: H?(M; C)—H?(N; C) such that
oof* is the identity. If M and N are compact, one can verify that ¢ is k7-
times of the Poincaré dual of Hyy-p(M)—Hsn-p(N). In case of Z-valued
cohomologies, f* need not be injective. The kernel may have k-torsion.

(2.4) From now on, throughout in this section, (S, D) is an NC-completion
of a smooth q.c. surface S=5—D.

THEOREM. 1) 5,(S)=2p,(5).
2) If 5,(S)=0 and b.(S) is even, then S is projectively algebraic.
3) If in addition b,(S)=0, then S is affine.

Proor. 1) Let v=c,op: QD)—HAS; Z) be as in (1.16). Then Im(v) lies
in the (1, 1)-part with respect to the Hodge decomposition of H%S: C). There-
fore 5,(S)=rank(Coker(y))=h*"+h"*=2p,(S).

2) p,(8)=0 by 1) and 5,(5)=b,(S) by (1.15; 1). So the criterion [Ko 2; p.
758, Theorem 107 applies.
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3) Let U be the set consisting of all the effective divisors A such that
Supp(A)CD and AC>0 for any prime component C of A. We first show that
A contains a non-zero element. Coker(y) is a torsion module since 5(S)=0.
Hence there exists an ample divisor X on S such that Supp(X)cD. Write
X=Y—Z such that Y and Z are effective and have no common component.
Then, for any component C of ¥, we have YC=(X+Z)C=XC>0. So Y.

Take A= such that the number of irreducible components of A is the
maximum among elements of Y. We claim that Supp(4)=D. Indeed, otherwise,
there 'is a component C of D such that CaSupp(4) and AC>0, because D is
connected by (1.15;3). Then (tA+C)C>0 for t>—C?, and hence A’=tA-+-Cc9.
The number of components of A’ is greater than that of A, contradicting the
hypothesis. Thus we prove Supp(A)=D. »

It is enough to show that A is ample. A2>0 follows from the definition of
A.  So, thanks to Nakai’'s criterion (cf. [NKk]), it suffices to show AC>0 for
any curve C in 5. By definition of A we may assume CaD. Then YC=XC>0.
So DC>0. This implies AC>0 since Supp(A)=D. Q.E.D.

REMARK. As for the non-algebraic case, see (9.5).

(25) COROLLARY (almost due to Ramanujam [Ra]). The following two
conditions are equivalent to each other.

a) bi{S)=0 for any ;>0.

b) S is affine, A(S)*=C*, Pic(S) is a torsion group, p,(S)=¢(3)=0 and
b,(DY=0.

PROOF. a)=b). 5,(5)=0 by (1.15;1). So ¢(5)=0 and Pic,(5)=0. In view
of (L18;2), we infer that Pic(S)=NS(S)CH*S ; Z) is a torsion group.
HYS; Z)=0 because this is torsion-free by the universal coefficient theorem.
Hence A(S)*=C™ by (1.18; 3). 2:(5)=0 by (24; 1). So S is affine by (24; 3).
b(D)=0 because b,(5)=0,(S)=0 (see the definition of 5,).

b)=a). H?(S; Z)=0 for p>2 since S is affine. 5(S)=0 by (1.15; 1). We
have Picy(S)=0 since ¢(5)=0. So A(S)*=C* implies 5,=0 by (L18; 3). 5.5
=0 implies NS(S)=H%S; 2). Hence b,(S)=rank NS(S)=rank Pic(S)=0.
B,(S)=0 follows from the definition and b(D)=0.

REMARK. Actually, we may omit the condition ¢S)=0 from b). Indeed,
by(S)=0 since S is affine. So b,(D)=0 implies 5:(S5)=0 by definition of ..

(2.6) COROLLARY. Suppose that the conditions in (2.5) are satisfied. Then
S is rational unless &(S)=2.
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PROOF. - Suppose that S is not rational. Then, by Castelnuovo’s criterion,
we infer x(S5)=0. Hence FS)=x(K+D, Sy=x(D, S)=2, where K denotes the
canonical bundle of S.

(2.7) DErFINITION. A connected NC-divisor D on a surface will be called a
tree if: 1) there is no pair (C;, C,) of components of D such that C,C;=2, and
2) there are no components Cy, Cs, -+, C,. of D with »=3 such that C,C;>0 for
every (7, j) with 7/—7=1 modulo r.

If in addition every component of D is a rational curve, D will be called a
rational tree.

(2.8) THEOREM. A connected NC-divisor D on a surface is a rational tree
if and only if b(D)=0. Moreover, in this case n(D)=H(D; Z)=0.

The proof is easy and well-known. See e.g. [Ra; p. 701

(2.9) COROLLARY. Suppose that the conditions in (2.5) are satisfied. Then
Pic(S)=HXS ; Z) and S is simply connected.

PROOF. D is a rational tree by (28). So H(D; Z)=0 which implies
HXS; Z)=0. Hence Pic(S)=NS(S)=HS; Z)=HXS; Z). D is the support of
an ample divisor on S as we saw in (2.4). Therefore n(D)—=,(S) is surjective
by virtue of Lefschetz theorem. So S is simply connected as well as D.

(2.10) Question. Let S be as above. Then, is S necessarily rational ?

The answer is YES if #(S)=—co. £(S5)#0 since p,(5)=0 and 7,(S)=0. It
seems to be improbable that £(S)=1, because of the structure theory of elliptic
surfaces (cf. [Ko 17). It is a long-standing conjecture that £(5)=2 and =,(5)=0
implies p,(5)>0. '

(2.11) ReEMARK. In the situation (2.5), S itself may not be simply connected.
Far from that, #,(S) may be an infinite non-abelian group (see (5.12)).

(2.12) THEOREM. Let f: M—N be a dominant morphism of q.c. manifolds.
Then Im(z(M)) is a subgroup of =m(N) of finite index.

Proor. There exists a proper mapping f: M—N and an open embedding
McCM such that f is the restriction of 7. Since =, (M)—r,(M) is surjective, it
suffices to show the assertion for . So we may assume that f is proper.

Let U be an open dense subset of N such that f is smooth over U. Since
z(U)—z,(N) is surjective, it suffices to show the assertion for fy: f~(U)—-U.
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So we may assume that f is smooth.

Let M—W-—N be the Stein factorization of f. So any general fiber of
f': M—W is connected. This implies that =,(f’) is surjective. Hence, we may
further assume that dim M=dim N.

Thus we reduce the problem to the case in which f is proper, smooth,
finite, that means, étale. Here the assertion is obvious. Q.E.D.

(2.13) COROLLARY. If in addition M is simply connected, then m (N} is
finite.

(2.14) COROLLARY. Let f, M and N be as in (2.13) and further suppose that
f is a finite morphism and that bi{M)=0 for any j>0. Then m(N)=0.

PROOF. Let 7: N—N be the universal covering of N. f can be lifted to
f:M—>N since M is simply connected. We have by(N)=b,;(N)=0 by (2.1).
Hence x(]\Nl )=y¢(N)=1. This implies deg (7)=1, proving the assertion.

§3. Weighted dual graphs of NC-divisors on surfaces.

In this section we will fix our terminology and notation.

(3.1) Let D be an NC-divisor on a surface. We define a graph I' in the
following way. The prime components D,, ---, D, are in one-to-one correspond-
ence with the vertices vy, -+, v, of I. The nodes on D;N\D; are in one-to-one
correspondence with the segments connecting v; and v;. Furthermore, the weight
of v, is defined to be the self intersection number D} Such a graph I" will be
called the weighted dual graph of D. In the sequel we sometimes use termi-
nologies concerning NC-divisors and weighted dual graphs interchangeably.

Example. D is a tree in the sense (2.7) if and only if I'is a tree.

(3.2) Let v be a vertex of a graph I'. The number of segments connecting
v and other vertices is called the branch number of I' at v and is denoted by
Br), or B(v) when there is no danger of confusion. Obviously B)=0 if and
only if v is isolated. If Bw)=1, v is called a tip of I'. v is called a branching
if Bw)=3.

Suppose that I" is connected. Then I' is linear if and only if I" has no
branching. A twig is a linear graph I” together with a total ordering v,> --- >v-
among its vertices such that v; and v;., are connected by a segment for each
7. The highest vertex v, is called the i#p of it. Such a twig is denoted by
(—w,, =+, —w,], where w; is the weight of v,

Let v be a tip of [T Then, unless v is in a linear connected component of
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I', there exist vertices v,=v, vy, =+, Up, Upu; Of I' such that v; and v, is
connected by precisely one segment for each j=1, -, » and that Sv,)= -+ =8,)
=2 and B(v;+)=3. This linear subgraph consisting of vy, ---, v, (not including
vre1) is called the twig of I" with the tip v. v, is called the branching of this
twig.

(3.3) QD) (resp. Q")) denotes the r-dimensional @Q-vector space of formal
linear combinations of prime components of D (resp. vertices of I”) with coefficients
being rational numbers. The intersection pairing induces a @-valued symmetric
bilinear form I on Q") such that I(v;, v)=D;D;. I is said to be contractible
if I is negative definite. By d(I") we denote the determinant of the (r, 7)-
matrix with (4, j)-ingredients —I(v;, v;).

(3.4) Let g be a point on D. Blow up the surface at ¢ and let D’ be the
inverse image of D. Let I be the dual graph of D’ and let v be the vertex
corresponding to the exceptional divisor lying over g¢.

B(»)=2 if and only if ¢ is a node of D. In this case the blowing-up is
said to be subdivisional. pB()=1 if and only if ¢ is a smooth point on D. In
this case the blowing-up is called sprouting. In either case, the weighted dual
graph I is obtained from I” by the obvious combinatorial process.

It is easy to see that d(J")=d(I") and I is contractible if and only if I" is
0.

A weighted graph I' is said to be minimal if it does not contain a vertex
with weight —1 and f=1or 2. If I contains such a vertex, then it is obtained
from another graph by one of the processes corresponding to the two types of
blowing-up described above.

(3.5) Let A be the twig [a,, -+, a,]. We call the twig [a,, -+, a,] the
transposal of A and demote it by *A. We define also A=[a,, -, a,] and
A="TA=lay, -, a,-1]. e(A)y=d(A)/d(A) is called the inductance of A.

A is said to be integral if aj's are integers. If in addition @;=2 for every
7, A is said to be admissible. It is easy to see that a twig is admissible if and
only if it is integral, contractible and minimal.

(3.6) LEMMA. Let A be an admissible twig. Then

) d(A)=a,d(A)—d(A)=d(A)=a,d(A)—d(A), where d(D)=1 by convention.
2) d(A)d(A)—d(AdA)=1.

3) d(A) and d(A) are coprime integers such that d(A)>d(A).

Proor. 1) follows from the definition of d(A) and by elementary calcu-
lations in linear algebra. Applying 1) to d(A) and d(A4), we obtain d(A)d(A4)
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—d(A)dA)=d(A)d(A)—d(A)d(A). So2)is proved by induction on 7. 3) follows
easily from 2).

(3.7) COROLLARY. Let A and B be admissible twigs such that e(A)+e(B)=1.
Then d(A)=d(B) and e(*A)+e(*B)=1.

PROOF. d(A)=d(B) is clear by definition of ¢ and (3.6; 3). The assumption
implies that d(A)=—d(B)mod d(4). (3.6; 2) implies that d(A) and d(4) are
multiplicatively inverse to each other in Z/d(A)Z. Therefore d(B) and —d(A4)
are multiplicatively inverse to each other modulo d(B). So d(B)+d(A)=0 mod d(B).
From this we infer that e(*!B)+e(*A)=1.

(3.8) COROLLARY. e defines a one-to-one correspondence from the set of all
the admissible twigs to the set of rational numbers in the interval 0<g<l.

ProoF. (3.6; 1) implies that e(A)'=a,—e(A). Since a, is an integer and
0<e(A)<1, e(A) determines both a; and e(A). Note also that e(A4)"! is an integer
if and only if r=1, i.e., A=¢. Thus A=[ay, -, a,] can be recovered by the
method of continued fraction. This method shows also the existence of A with
e(A)y=q for every rational number g such that 0<g<1.

(3.9) The admissible twig of inductance e is denoted by I'(e). For an
admissible twig A, ['(1—e(*A)) is the transposal of T'(1—e(A)) by (3.7). This is
called the adjoint of A and is denoted by A*. "So e(*A)te(A*)=1.

Example. I'M/r)=[r]. I'r/r+1)=[rx2], where rX2 stands for the
r-times repetition of 2. I'(2/5)=[3, 21. I'(3/5)=[2,3]. I'(2/7)=[4, 21. I'3/7)
=[3, 2, 2] I'4/D=[2, 4. I'G/7)=[2,2,3] I'G/8)=[3,3]. re/8)=02, 3, 21.
etc.

8§4. Geometry on ruled surfaces.

(4.1) DEFINITION. A surjective morphism f: S—C from a smooth complete
surface S onto a smooth curve Cis called a ruling (or P'-ruling) if any general
fiber of f is P

(4.2) THEOREM. Any singular fiber of a ruling f: S—C contains an excep-
tional curve (of the first kind).

Proof is easy and well-known.

(4.3) COROLLARY. f is obtained from a P'-bundle over C by a finite number
of successive blowing-ups.
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(4.4) COROLLARY. Any fiber F of f is set-theoretically a rational tree.

(4.5) COROLLARY. The dual graph of F does mot have a branching with
weight —1.

(4.6) COROLLARY. F does not contain two exceptional curves Ci, C; with
C:C;>0, unless F is the twig [1, 1].

(4.7) PROPOSITION. Let F be a rational tree on a smooth complete surface
S. Suppose that the dual graph of F is the twig [ay, -, ar, 1, b, -, by] such
that both A=[ay, -, a,] and B=[by, -+, b;] are admissible. Then, A and B

are adjoint to each other if and only if S admits a ruling such that F isa fiber
of it.

PROOF. Note first that F is a fiber of a ruling if and only if F can be
blown down to a single smooth rational curve with self-intersection number
zero. We prove the proposition by induction on »+s.

F is blown down to the twig [ai, -, @, s, a,—1, by—1, by, -, by]=F".
Suppose that F is a fiber of a ruling. Then F’ must contain an exceptional
curve, hence a,=2 or b;=2. We may assume a,=2 by symmetry. Then
d(A)=2d(4)—d(4) by (3.6; 1). So e(*A)*=2—e(*A). On the other hand, setting
B'=[by—1, b, -+, bs], we have d(B")=d(B)—d(B) and e(B")=e(B)/(1—e(B)).
By the induction hypothesis we have e(*A)+e(B)=1. So e(*A)-'=1+e(B")
=(1—e(B))™?, which implies A=B*,

Conversely, suppose that e(*A)+e(B)=1. In view of (3.6; 3), we infer that
d(A)=d(B)=d(A)+d(B). By symmetry we may assume d(4)=d(B). Then, as
we saw in the proof of (3.8), a,=2. So F’is of the form [4, 1, B’]. Reversing
the preceding calculation, we obtain e(*A)+e(B)=1 from e(*A)--e¢(B)=1. Hence
F’ is obtained from [0] by successive blowing-ups by virtue of the induction
hypothesis. Hence so is F. Q.E.D.

(4.8) PROPOSITION. Let F, A and B be as above. Regarding F to be the
blowing-up of the twig [1, 1], let « and B be the total transformsin Q(F) of the
upper and lower wvertices of [1,1] respectively. Then the coefficients of the
exceptional curve E of F in a and B are d(B) and d(A) respectively. Hence,
the coefficient of E in the Cartier divisor F is d(B)+d(A)=d(A)=d(B).

PROOF. By symmetry it suffices to prove the assertion for B. Let uy, -+, u,
be the vertices of A with weights —ay, -+, —a,, let x; be the coefficient of u;
in B and let x be the coefficient of E in 8. Note that x,=0, because u, is the
proper transform of the upper component of [1,1]. Set f'=3_;x;u; Then
IB', u)=1, I(f', up)=0 for j=2,--,r—1, and I(f’, u,)=—x, since I(B, up=1
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and I(8, u;)=0 for j=2. Therefore 0=x,=P,;—xP;, where (P;; is the
inverse (v, »)-matrix of (—I{u;, u;)). Calculating the cofactors we obtain d(A)y=x
from this, as required.

(4.9) DEFINITION. Let f:S—C be a ruling as in (4.1), let D be a reduced
effective divisor on S and set S=S—D. A component ¥ of a fiber F over
xeC is called a D-component if YCD, or S-component if Y @ D. -The number
of S-components of F is denoted by op(x), or o(F), o(x) when there is no
danger of confusion. The multiplicity of ¥ is defined to be the coefficient of ¥
in f*x, which is a Cartier divisor with support F. The S-multiplicity (or
multiplicity, when there is no danger of confusion) of F is defined to be the
greatest common divisor of the multiplicities of S-components of F, and is
denoted by pg(x) or u(F), u(x). When o(x)=0, u(x) is defined to be oo by
convention. Obviously F=P* and o(x)=p(x)=1 for all but finite points on C.
These exceptional fibers are called D-singular fibers of f.

F is said to be D-connected if FN\D is connected. A connected component
of FA\D is called a D-connected component of F.

F is said to be D-minimal if every D-component of F is not an exceptional
curve {of the first kind). f is said to be D-minimal if every fiber of it is D-
minimal.

(4.10) PROPOSITION. Let f:5—C, D and S be as in (4.9). Then there exist
a birational morphism p: S—S', a ruling f': 5'—C, an effective reduced divisor
D’ on S and a finite subset Y of S'=8'—D' such that f’-p=f, p(D)=D'VY,
D=p~Y(D'VY), ps: S—=S"—Y is anisomorphism and f' is D'-minimal. In partic-
ular, if D is connected, then Y= or D'=.

Proor. If f itself is D-minimal, nothing is to prove. So suppose that we
have an exceptional curve E which is a D-component of a fiber of f. Let
p1: S—5; be the blowing down of E to a point y on S, and let D, be the image
on S, of the union of the components of D other than E. Then D=prY(D,\Vy)
and S=5,—D;—y. Moreover f induces a ruling f;: S;,—C such that f=fi°p,.
Repeating such processes one proves the proposition by induction on the number
of components of D.

REMARK. HYS; Z)=HYS'; Z) for ¢=3 and H%S; Z)=H«S’; Z) for ¢=<2.
Moreover, S and S’ have the same Pic, NS, Pic,, =; and A(S)= A(S").

(411) REMARK. Let f,5,D, S, »,5, f/, D', Y and C be as above and let
x be a point on C and let F=f"*(x) and F’=f""*(x). Then o(F)=¢(F’) and
HE)=p(F").
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(412) LEMMA. Let f, S, D be asin (4.9) and let F be a D-minimal fiber with
o(F)=0. Then F=P1,

Obvious by definition and by 4.2).

(4.13) LEMMA. Let f, S and D be as in (4.9) and let F be a D-minimal fiber
with o(F)=1. Then F=P! or WF)YZ2.  Moreover, in the latter case, the S-
component of F is the unique exceptional curve in F.

PROOF. Suppose that F is singular. By (4.2) F contains an exceptional
curve E. E must be the unique S-component of F by minimality. For any
other component F; of F we have Fi<—2 and hence KF;=0, where K is the
canonical bundle of S. So, —2=KFzu(F)KE=—1(F) since KE=FE?=—1. Thus
HE)=2.

(4.14) How is a singular fiber as in (4.13) obtained by successive blowing-
ups ? ’

Let ¢ be a point on a fiber and consider the blowing-up with center ¢g. By
(4.6), the number of exceptional curves in the fiber does not decrease except
the case in which we get the twig [2, 1, 2] from [1, 1. Moreover, this number
increases unless ¢ lies on some exceptional curve.

Therefore, a fiber as in (4.13) must be obtained from [2, 1, 27 by successive
blowing-ups whose centers being on the exceptional curves at each stage. More-
over, such a fiber is D-connected if and only if the final exceptional curve is a
tip of the fiber, or equivalently, the final blowing-up is sprouting.

Taking a sprouting blowing-up of a fiber as in (4.7), we can find a D-
connected D-minimal singular fiber F as in (4.13) for any positive integer u=2
Of course, there are many other types of such fibers, but they are obtained
from a fiber of the above type by successive blowing-ups.

(4.15) DEFINITION. Let things be as in (4.9). A component Y of D is said
to be horizontal if f(¥Y)=C. Let 4 be the number of horizontal components of
D, let X be the sum of (¢{(F)—1) of all the fibers F with a(F)>1, let v be the
number of fibers with ¢=0 and set e=1 if vy>0, or ¢=0 if y=0. Then:

(416; 1) A—34+v—2=b,(5)—b,S) and
(4165 2) by(S)=v—¢ and b(S)=Z—h—c+2.

PrROOF. We have an exact sequence 0—H 1(S)—>1‘1'2(D)—>H2(§)—>]§7 2S)—0. So
by—b,={the number of components of D} —by(S)=h—2— (3 peclo(x)—1)
=h—2—2X+y, This proves 1). Clearly the fibers with ¢=0 are algebraically
equivalent to each other. Hence 5,(S)=p—s. Combining this with 1), we



Topology of non-complete algebraic surfaces 521

obtain 5y(S)=3—h—e+2.
4.17) To study the fundamental group of S, we make the following

DEFINITION. Let X be a prime divisor on a manifold M (both M and X
are not necessarily complete). Let x be a general point on X and let (z;, -+, 25)
be a system of coordinates of M at x such that X is defined by the equation
z;=0 in a neighborhood U of x isomorphic to the polydisc. Let d={(zy, -+, z,)
elU|zy= - =2z,=0} and take a small circle 7 around the origin of 4 with the
counter-clockwise direction. Then the image of 7 in 7 (M—D) is determined by
D uniquely up to conjugacy. This will be called the vanishing loop of D. The
normal subgroup generated by y will be called the vanishing subgroup of D.
Clearly it is contained in the kernel of the homomorphism z,(M—D)—z(M).

(4.18) LEMMA. Let D be a reduced divisor on a smooth complete surface S
and let C be a smooth irreducible curve on S intersecting with D normally. Set
S=5—D and Sy=S—C. Then 71(Se)—1(S) is surjective and the kernel coincides
with the vanishing subgroup of C.

For a proof, take a tubular neighborhood U of C and apply Van Kampfen's
theorem to S=S,\J(U—D). Note that U—D—C has the homotopy type of an
St-bundle over C—D, since C and D intersect normally.

(4.19) PROPOSITION. Let things be as in (4.9). Suppose that D has no
horizontal component. Let Fi, -, Fy be the fibers with p>1, let x;=f(F;), set
i=u(x5), let Co=C—\Jko1x; and let o;€m,(Cy) be the vanishing Zoop of x;. Then
nl(S) is the quotient group of m:Co) by the relation of1= --- =glr=1, where
o§i=1 means nothing if p;=

Proor. If we add all the D-singular fibers to Fj's allowing wu(F;)=1, the
meaning of the assertion does not change. Hence we suppose so. Then
fo: So=f"YCy)—C, is a Plbundle and =.(So=r,(C,). By virtue of (4.18), we
infer that #,(S) is the quotient of 7,(S,) by the normal subgroup generated by
the vanishing loops of the S-component of F/s. It is easy to see that the
vanishing loop of an S-component ¥ of F; of multiplicity m is (conjugate to)

o¥. So, the S-components of F; altogether yield the relation ¢§i=1. Our
assertion follows from these observations.

(4.20) COROLLARY. Let things be as in (4.19). Then n(S) is finite if and
only if C=P*' and pj's are one of the following.

1) k=1, In this case w(S) is trivial.

2) k=2 and (y;, po)#(c0, o). w(SY=Z/mZ for m=g.c.d. (ps, o).
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3) k=3 and (uy, ps, =2, 2, m) for m<co (modulo permutation). In this
case wi(S) is isomorphic to the dihedral group D, with $=2m.
4) k=3 and (g1, tts, #)=(2, 3, 3). 7.(S) is the 4-th antisymmetric group A,
5) k=3 and (u, pts, £)=(2, 3, 4). =\(S) is the 4-th symmetric group S,.
6) k=3 and (y1, po, #)=Q2, 3, 5). 7,(S) is the 5-th antisymmetric group As.

Since we have established an explicit description of #.(S) in (4.19), the above
fact is reduced to a famous result in the group theory. In particular, the ‘if’
part is an elementary exercise. We present here an algebro-geometric proof of
the ‘only if’ part.

The finiteness of 7,(S) implies that z,(S)=#.(C) is finite. So C=P'. The
assertion is easy to verify if 2=2 or if p;=co for some ;. Hence we assume
that 2=3 and p;<co. We are assuming that G=m=,(S), which is a group
generated by o, -+, 0, with the relation ¢, g,=0¢f1= - =gf*r=1, is a finite
group. Correspondingly we have a Galois covering p: C'—C with Gal(C’/C)=G
which is unramified over C,.

For any given integers a, b and ¢ with a=b=c=2, it is not difficult to find
permutations p, ¢ and ¢ exactly of order a, b and ¢ respectively in some sym-
metric group S, such that por=1. From this we infer that ¢; is exactly of
order y; in G. So, any point on C’ lying over x; is a ramification point of
order p;.

Let C”—C’ be any unramified Galois covering. Then C”—C is also Galois
and o; is of order y; in Gal(C”/C) because C” is ramified over x; as C’. By
definition of G this implies that z(Cy)—Gal(C”/C) factors through G. On the
other hand, G=Gal(C’/C) is a quotient of Gal(C”/C) by Gal(C”/C"). Therefore
we infer that Gal{C”/C)=1 and C”=(C’. Thus we conclude that C'=P*.

Now, counting the order of the canonical line bundles and setting
d=deg(C’/C), we obtain —2=—2d+2;(pt;—INd/p)=—d2—31—p7"). Hence
»i{1—p79<2. From this we infer that there are only the four possibilities 3),
4), 5) and 6). Q.E.D.

REMARK. The ‘only if’ part of (4.20) is valid even if D has horizontal
components.

(4.21) COROLLARY. Let things be as in (4.19). Then =yS) is abelian if
and only if one of the following conditions is satisfled.

1) k=0 and C is an elliptic curve.

2) C=P?!and B2,

3) C=P', k=3 and py=po=ps=2. In this case n(S)=Z/2ZDZ/2Z.

The proof is easy and is left to the reader. As well as (4.20), the ‘only if’
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part is valid even if D has horizontal components.

§5. Al-ruled surfaces.

(5.1) Let f:85-C, D and S=S—D be as in (4.9). Then, f is called an
A'-ruling if DF=1 for any general fiber F of f. A quasi-complete surface S is
said to be A'-ruled if there exists a completion of it admitting an Al-ruling.

(5.2) Suppose that f is an A*ruling. Then D has a unique horizontal
component D. which defines a section of f. In particular, for every fiber F of
f, Do meets F at exactly one point transversally. So using (4.4) we infer:

a) D is an NC-divisor.

b) D is connected if and only if every fiber of f is D-connected.

¢) Any connected component of D is a tree.

(5.3) THEOREM. E(S)=—o0 if S is A'ruled. Conversely, if ¥(S)=—oco,
55(S)=0 and if S is algebraic, then S is A'-ruled.

For a proof, see [MS], [Sg], [Ru], [My 3]. Note that 5,(S)=0 if and only
if D is connected (see (1.15; 3)). This condition is satisfled if S is Stein.

(5.4) THEOREM. Let f:S5—C be an Alruling of S=S—D and let the
notations be as in (4.15). Then 5(S)=v—¢ and by(S)=3—e-+1.

PRrROOF. D, is the unique component of D meeting a general fiber of f.
Hence it is numerically independent of the other components of D. Now it is
easy to see that all the numerical equivalence relations among the components
of D are derived from the equivalences of fibers of f. So §,(S)=v—s by
(1.18; 2). by(S) is calculated by this and (4.16; 1).

(55) COROLLARY. b.(S)=0 if and only if =0 and v>0, i.e., o(F)<X1 for
every fiber F of f and o(F)=0 for some fiber F of f. Moreover, in this case,
NS(S)EFIZ(S; Z)=HS,; Z)=P,Z/x)Z, where x runs through the points on
C with o(x)=1.

PROOF. The first assertion is clear because 2Y=0 and ¢<1 by definition
(4.15). By the observation (5.2) we infer H,(D)=H,(D..)=H,(C)=H,(S). Hence
H%S)=0 and H¥S; Z)=A%S; Z)=NS(S). On the other hand, NS(S) is
generated by the S-components of the D-singular fibers of f. Since o(F)<1
for every fiber F and v>0, the second assertion follows now straightforwards.

(5.6) COROLLARY. Suppose further that NS(S)=0. Then, S is isomorphic
to an A'-bundle minus by(S) points over an open subset of C.
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ProOF. By virtue of (4.10) we may assume that f is D-minimal. Then
(4.13) applies. Note also that Hy(D)=H,(S) (see (5.5)) implies 5y(S)=0 and
by(S)=b4(S).

(5.7 COROLLARY. Let S be a quasi-complete surface such that 5,(S)=0=5,(S),
E(S)=—o0 and H¥S; Z)=0. Then Sz A X(A'-minus by(S) points). In particular,
S=A? {f in addition by(S)=0.

Proor. S is affine by (24). Hence Alruled by (5.3). So (5.6) applies.
Note that 2g(C)=2h%S, ©)=5,(S)=0. Q.E.D.

(5.8) COROLLARY. Let f:A>—S be a proper finite morphism of quasi-
complete surfaces. Then S= A%

PROOF. b;(S)=0 for ;>0 by (2.1), and we have = (S)=1 by (2.14). So
H*S; Z) has no torsion as well as Hy(S; Z). We have also £(S)=E(A%)=—o0.
Hence (5.7) applies.

(5.9) PROPOSITION. Let things be as in (5.2), let D' be the union of com-
ponents of D other than D.. and let S'=5—D'. Then =(S)=x(S").

PrOOF. We can take a vanishing loop of D. in a general fiber F of f.
Then it vanishes in ,(S) since F\S=A! is simply connected. So (4.18) proves
our assertion.

(5.10) REMARK. pg(x)=pg(x) for every x=C. Therefore (4.19) applies also
to the A'ruled case. In particular, (4.20) and (4.21) are valid in this context.

(6.11) LEMMA. Let F be a line bundle on a manifold M and let B |kF|
for some positive integer k. Suppose that there do not exist integers m, k' and
B'e|k'F| such that B=mB’ and m>1. Then, there is a manifold M together
with a proper morphism =: M—M such that the restriction of w to M—z~Y(B)
is a finite unramified cyclic covering of degree k.

Several proofs are well-known. For example, let H be the tautological line
bundle on P=P,(FHeE) and let V be the member of |kH| on P corresponding
to feH"M, kF)CH (M, SHFQO)=H(P, kH), which defines the divisor B on
M. Then V is irreducible by the assumption. A mnon-singular model M of V
has the required property.

(5.12) THEOREM. Let things be as in (5.2) and suppose that b,(S)=0 and
o(x)=0 for a point x on C. Then the following conditions are equivalent to each



Topology of non-complete algebraic surfaces 525

other.
a) There exists at most one fiber with 1< p<oo.
b) wi(S) is abelian.
) wi(S) is finite.
¢y  Any element of m(S) is of finite order.
d)  b(S)=0 for any finite unramified covering S ofs.

PROOF. By (5.4), ¢(x)=0 for exactly one point. Moreover, b,(S)=0 implies
that C= P! So, (5.9) and (4.21; 2) prove a)=h). by=c¢) follows from b,(S)=0.
c)=>¢’) is obvious. c¢’) implies d) because 7:.(8) is a subgroup of m(S). Thus
it suffices to show d)=-a).

Let o be the point with o(0)=0 and suppose that there are two points x, y
on C such that 1< pu(y)=<pu(x)<co. Let C’'—C be the cyclic u(x)-sheeted branched
covering with branch locus precisely o and x. Let S’ be the normalization of
SxsC’. Then, S’ is unramified over S because every S-component of F,=f"(x)
has a multiplicity divisible by p(x). Clearly S’—C’ can be completed to an A'-
ruling f/: §’—C’. All the p#(x) points on C’ lying over y are with u=p(y).
Using (5.11), take a p(y)-sheeted cyclic branched covering C”—C’ with branch
locus p(y) points among these points over y. Let S” be the normalization of
S’%XoC”. Then, similarly as above, S”—S’ is unramified. Moreover, S"—C”
can be completed to an A'-ruling which has x(y) fibers with ¢=0 lying over
Fo=f"0). So by(S")=u(y)—1>0 by (5.4). Thus we prove d)=a).

(5.13) PROPOSITION. Let things be as in (5.12). The above conditions are
satisfied if there exists a dominant morphism A*—Y-—S, with Y being a finite
set. Conversely, such a morphism exists if a) is satisfied and if every fiber
Fo.=f"%x) has an S-component of multiplicity p(x) except the case o(x)=0.

ProOOF. The first part follows from (2.13). To show the converse, we may
assume that ¢(x)=1 for every x on C except ¢o. If in addition =#,(S)=1, then
we infer that S itself is of the form A4%—Y, by virtue of (5.9), (4.20; 2), (5.5)
and (5.6). Otherwise we have a unique point x on C with p(x)>1. Let C'—C
be the p(x)-sheeted cyclic branched covering with branch locus o\Vx, and let
S’ be the normalization of SXC’. Then, as in (56.12), S’ is unramified over S.
Moreover, S’ has p(x) components of multiplicity one lying over F.. Hence, by
the first step, we find an open dense subset of S’ isomorphic to 4*—Y. The
assertion follows from this.

REMARK. If 5,(S)=0, the above hypothesis for the converse is automatically
satisfied because of (5.5). Furthermore, ¥ can be taken to be empty if D is
connected.
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(5.14) Example. Let X be CXP! with C=P*. Let D, be the fiber over
o=C of the first projection p: X—C, and let D.. be a fiber of the second pro-
jection. Let x be a point on C other than ¢ and let y be the intersection point
of D.. and p~*(x). Performing successive blowing-ups over y we get a fiber
over x looking like the twig [(m—1)X2, 1, m], where (m—1)X2 stands for the
(m—1) times repetition of 2. The proper transform D, of D.. meets the highest
component of this twig, which is of weight —2. Let S be the ruled surface
obtained by the sprouting blowing-up at a point on the exceptional component
of this twig. Let E be the final exceptional curve on S and let F be the fiber
of S over x. Set D=D,JD,\J(F—E) and S=5—D. Then D looks like the
twig [0, 1, mx2, m]. By (5.4) we see also bj(S)zolfor any 7>0. Moreover,
u(x)=m and NS(S)=PiS)=Z/mZ=x/(S).

D is not a minimal twig. Indeed, we can blow it down successively to
obtain the twig [—m—1, m—1]. Correspondingly, S has an NC-completion
(§’, D) such that D’ consists of two prime components D, and D, with
Di=m+1 and Di=1—m. Since b(S)=b,(S)=0, we have b,(5)=2. Hence §’
must be isomorphic to the Hirzebruch surface %, =P @m—1)EO) which is a
P'-bundle over P*, and D; and D, are sections of this bundle map. However,
this bundle map has nothing to do with the ruling S—C.

In the special case m=2, D’ can be blown down to [—4], and S is the
complement of a smooth plane quadric curve. Its universal covering is isomor-
phic to P*XP!' minus the diagonal, and the covering transformation is the
factor changing involution.

(5.15) THEOREM. Let f:S—C be an A%ruling of S=S—D and let F,, -, F»
be the fibers with p=2. Suppose that there exists a dominant wmorphism
A*—=Y —S, Y being a finite subset of A%. Then C=P*' and k<3. Moreover, if
k=3, the multiplicities p(Fy), pu(Fy), t(Fs) ave one of the following triplet up to
permutation: (2,3,5), 2,3,4), (2,3, 3) or (2,2, m) for some m< oo,

For a proof, combine (2.13), (5.9) and (4.20). As for the converse, we have:

(5.16) THEOREM. Let f:S—C be an A'-ruling of S=5—D. For any point
x on C, let p'(x) be the minimum of the multiplicities of S-components of
F,=f"Yx) which are tips of the tree Fy. If every tip of F, is a D-component,
then p'(x)=oco. Suppose that 2 ,ec{l—{(p(x))™)<2. Then there exists a dominant
quasi-finite morphism A*—Y —S, where Y is a finite subset of A% Moveover, ¥
can be taken to be empty if D is connected.

Proor. Let E, be a tip of F, which is an S-component with multiplicity
#(x). Addling the other components to D, we may assume that E, is the
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unique S-component of F,. In particular, u(Fp)=pg'(F;). Moreover, by virtie
of (410) and (5.2; a), we may assume that f is D-minimal. Then p=2 for
every D-singular fiber by (4.13).

Let Fy, -+, F', be the fibers with pg=2. By (5.13), we may assume that
p(Fy) is finite for every ;. Then our hypothesis implies that k=3 and the
multiplicities are one of the triplets in (4.20; 3),4),5) and 6). In any case
G=r(S) is finite, and we have a Galois covering p:C’—C with branch locus
%1, x5 and x; such that Gal{C’/C)=G. Let S’ be. the normalization of SX.C’.
Then, similarly as in (5.12) and (5.13), S’ is completed to an A’-ruling f’: S’ —C’
with p(x)=1 for every x=C. Moreover, the S’-components are tips of the
rational trees F,. Now, with the help of (4.10) and (4.13), we infer that S’
contains an open subset which is isomorphic to A*—Y. Similarly as in 5.6), ¥
can be taken to be empty if D is connected. Thus we prove the theorem.

(5.17) Many results in this section are translations in our topological
terminology of results of Miyanishi. For example, the characterization of A?
given by (5.7) corresponds to the following criterion (cf. [My 11): An affine
surface S=Spec(A) is isomorphic to A® if and only if A*=C*, A is UFD and
S is A'-ruled.

Furthermore, (5.13) is a weaker version of [My 3; Theorem 4.7]. (5.15) is
almost the same with [My 3; Theorem 4.11.17. (5.16) is slightly better than
[My 3; Theorem 4.11.3], where the case (2, 3, 5) was not settled. Why this
case was difficult is perhaps explained by the fact that =,(S) is simple and non-
solvable unlike the other cases.

§6. Zariski decomposition of effective divisers.

(6.1) DEermuTION. A divisor is a Z-linear combination of its prime com-
ponents., Similarly, a @Q-divisor is defined to be a linear combination of its prime
components with coefficients being rational numbers. We use terminologies
concerning usual divisors for @-divisors too. For example, a @-divisor is said
to be effective if every coefficient of its prime components is non-negative.,

We define the D-dimension of a @-divisor D to be x(tD), where ¢t is a
positive integer such that ¢D is a usual divisor. £{tD) is independent of the
choice of ¢, hence x(D) is well-defined.

Q-valued intersection numbers of @-divisors are defined in the obvious way.
A Q-divisor D is said to be semipositive if DC=0 for any irreducible curve C.
A Q-divisor D on a surface is said to be pseudo-effective if DH=0 for any semi-
positive @Q-divisor H. Of course D is pseudo-effective if £(D)=0, e.g., D is
effective.

For a Q-divisor D on a surface, @(D) is the @-vector space generated by
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the prime components of D (see (3.3)). D is said to be contractible if the inter-
section form I defined on @Q(D) is negative definite.

(6.2) LEMMA. Let D be a contractible Q-divisor. Let X<Q(D) and suppose
that XD;=0 for any prime component D; of D. Then X is effective.

Proof is easy and is found in [Z; p. 588].

(6.3) THEOREM. Let D be a pseudo-effective Q-divisor on a smooth complete

surface S. Then there exists an effective Q-divisor N satisfying the following
properties.

a) N=0 or N is contractible.
b) H=D-—N is semipositive.
¢) HC=0 for any prime component C of N.

For a proof, see [F]. The case where D is effective was treated by [Z].
(64) LEMMA. N is determined by the numerical equivalence class of D.

Proor. Let D=N,+H, and D,=N,+H, be decompositions as in (6.3) of
two @Q-divisors D; and D, which are numerically equivalent to each other.
Assume that N;#N, and write N,—N,—=FE,—E,, where E,; and E, are effective
and have no common component. By symmetry we may assume E;#0. Then
E2<0 because E;=Q(N;). So E.C<0 for some component C of E,. Then
C(N;—N,)=C(E,—E,;)<0. Hence CN,>CN,=CD,=CD,=CN,. This contradiction
proves the lemma.

(6.5) DEFINITION. N is denoted by D~ and is called the negative part of D.
H=D—N is denoted by D* and is called the semipositive part of D. D=N+H

is called the Zariski decomposition of D. The two facts below are obvious by
definition.

6.6; 1) (mD)y=m(D") and (mD)*=m(D*) for any m>0.
(6.6; 2) (D4E)y=D* for any effective divisor E in Q(D").

(6.7) LEMMA. Let D, N and H be as in (6.3) and let E be an effective Q-
divisor such that D—E is semipositive. Then E—N is effective.

PRrOOF. Assume that E—N is not effective and write E—N=Y,—Y,, where
Y, and Y, are effective and have no common component. Yi<0 since Y,=Q(N).

So there is a component C of Y, such that CY,<0. Then CE>CN=CD=CE.
This contradiction proves the lemma.
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(6.8) COROLLARY. Let D be a usual divisor and let F be the fixed part of
|D{. Then F—D~ is effective.

(6.9) PrROPOSITION. Let D, N and H be as in (6.3) and assume that D is
effective. Then H is also effective.

PrOOF. Write H=H,—H,, where H, and H, are effective and have no
common component. We have H,eQ(N) since D is effective. So 0=HH,
=(H,—H;)H,=—H3%. Hence H,=0 because N is contractible. Q.E.D.

(6.10) COROLLARY. g(D)=g(D").

(6.11) THEOREM (Kawamata, see [Kw 3] or [My 31). Let (S, D) be an NC-
completion of a surface S=S—D with &(S)=0. Let K be a canonical divisor
of S and set H=(K+D)*. Then

1) #(S)=0 if and only if H~0, where ~ denotes the numerical equivalence.

2) E(S)=1if and only if H*0 and H*=0. Moreover, in this case, Bs|tH| =&
Jor some positive integer t. The rational mapping defined by |tH| makes S a
Jiber space over a curve C (which may have singular fibers). A general fiber F
of S—C is either an elliptic curve with FD=0 or a rational curve with FD=2.

3) ®(S)=2 if and only if H?>0.

REMARK. The ‘f’ part of 1) is trivial and 3) is easy. The fibration in 2)
is a special case of litaka’s theory. The ‘only if’ part of 1) is the most essential
contribution of Kawamata.

(6.12) In order to study the Zariski decomposition of K- D more precisely,
we make several definitions. For the sake of later convenience, we consider
also the case in which D has bad singularities.

Let S be a smooth complete surface and let D be an effective reduced divisor
on it. For any component YV of D, we denote Y(D—Y) by B(Y), or by Bp(Y)
when confusion is possible. This is called the branching number of YV in D.
Compare (3.2).

Y is called a tip of D if B(Y)=1. It is called a rational tip if Y=P. A
sequence Cy, ---, C, of components of D is called a rational twig of D if each
C; is a rational normal curve, S(C)=1, B(C)=2 and C;,C;=1 for 2=;<r. C,
is called the t¢7/p of this twig T.

Since B(C,)=2, there is a component C of D not in T such that C,C=1. If
C is a rational tip of D, then T'=T-+C is a connected component of D and
will be called a rational club of D. A component Y of D such that Y =P
B(Y)=0 also will be called a rational club of D.
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When the above C is isomorphic to P! and B(C)=2, T’ is a rational twig
of D. Otherwise, T is called a maximal rational twig of. D and C is called the
branching component of T. Obviously any rational tip of D is contained in a
rational club or a maximal rational twig of D.

If T is a contractible rational twig of D, the element Ne@(T) such that
NC;=-—1 and NC;=0 for j=2 is called the bark of T. If T'=Ci+ - +CHC
is a contractible rational club of D, the bark of T is defined to be the Q-divisor
N’ in @(T’) such that N'C,=N’C=—1and N’'C;=0 for 2=;j=r. For an isolated
rational normal curve Y, its bark is defined to be 2(—Y*"'Y. In any case we
have NZ=(K+D)Z for any component Z of T (or T').

If all the rational clubs and maximal twigs of D are contractible, then the
sum of their barks are denoted by Bk(D) and is called the bark of D.

(6.13) LEMMA. Let things be as above and suppose that K-+D s pseudo-
effective. Then any component of any rational twig of D is a component of
N=(K--D)=. Hence all the rational clubs and maximal twigs of D are contractible.

Proor. Let T=C,+ --- +C, be a rational twig of D asin (6.12). C,=Q(N)
since (K4-D)C;=—1. Suppose that C;.;=Q(N) for some j=2. Then, if C; were
not a component of N, we would have 0=(K+D)C;=ZNC;>0. So C;=Q(N).
Thus we prove C;=@Q(N) by induction on 7.

(6.14) COROLLARY. Let things be as in (6.12) and suppose that D has a
rational twig or club which is not contractible. Then e(K-+-D, S)=#(S)=—oo.

Indeed, we have #(S)<#(K+D, S) in general, where S=5—D. See [I].
(6.15) LEMMA. Let things be as in (6.13). Then N—BK(D) is effective.

Proor. Write N—-Bk(D)=FE,—FE,, where E, and E, are effective and have
no common component. If E,#0, then E3<0 since E,eQBk(D)). So E, Y <0
for some component ¥ of E,. Then NY>Bk(D)Y =(K+D)Y=NY by definition
of Bk(D). This contradiction proves the lemma.

(6.16) LEMMA. a) Let T=C+ - +C, be a rational twig of D asin (6.12).
Suppose that the dual graph I'=[—C%, ---, —C%] is admissible, that means, con-
tractible and minimal (recall (3.5)). Let N=>n,C;€Q(T) be the bark of T.
Then ny=e(l'), n,=d([")*, N*=—n;=—e(l") and 0<n;<1 for 1<i<y.

b) Let T'=Ci{+ --- +C; be a rational club of D and suppose that the dual
graph I'" of T’ is an admissible twig. Let N'=3niC} be the bark of T'. Then
0<n;<1 for 1=57=<s, except the case in which (C}*=—2 for every j and N'=T".
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PrROOF. By (6.2) and a similar argument as in (6.13), we infer n,>0 for
every i. By definition of N, —n; is the (i, j)-entry of the inverse matrix of the
(r, r)-matrix (C;C;). So we get n,=e(l") and n,=d{I")™* by elementary com-
putation. N2?=—n, is clear by definition of N. Note that n;<1 for /=1, r.
Now assume that M=Max(n;)=1. Take the least  such that n;=M. Since
1<i<r, we have 0=NC;=n;1+nCin;;<M2+C%H=0 because of the mini-
mality of 7. This contradiction shows that M<1. Thus we prove a).

b) is proved similarly. In particular, we have ni=e(")+d(")™* and
ni=e(*I'")+d(I")~1. Both are less than one except the case I"=[sX2] (see (3.9)).
So the above argument works.

(6.17) LEMMA. Let things be as in (6.13) and suppose that (the dual graph
of) any rational twig of D is admissible. This means, in particular, D has no
isolated exceptional component. Suppose in addition that any component of
N=(K+D)" is a component of D. Let Dy, -+, D, be the connected components
of D and write N=3N;, where N;=Q(D;) for j=1, -+, k. Then N;=BKk(Dj
unless D; consists of three maximal rational twigs Ty, T, Ts and their common
branching component B such that B=P?, 8(B)=3 and d(T) *+d(T*+d(Ts) ' >1.

PrOOF. Set H;=K-+D—Bk(D;). If H;Y=0 for any component Y of D,
we see easily N;=Bk(D,) by (6.7) and (6.15). So we assume H;B<0 for some
component B of D;. Since (K+D)Y=Bk(D;)Y for any component ¥ of Bk(Dj),
B cannot be a component of Bk(D;. Let Ty, -, T, be the rational twigs of
D whose branching components is B. Then, using (6.16), we obtain H;B
=2g(B)—2+4B(B)—X%..d(T;)™, where g(B) is the arithmetic genus of B. Since
B(Byzg and d(T;)=2, this can be negative only when g(B)=0, (B)=¢=3 and
Sd(TH*>1. Thus BT+ T.+T, is a connected component of D, which is
D; of course.

(6.18) DEFINITION. A connected component D;=B~+T,+T.+T; of D of
the above type will be called an abnormal rational club of D. The @-divisor
NeQ(D)) such that NY=(K+4D)Y for every component ¥ of D; will be called
the thicker bark of D; and is denoted by Bk*(D,). For a connected component
D; which is not an abnormal rational club, we set Bk*(D;)=Bk(D;). We define
also Bk*(D)=33%_,Bk*(D,), where D, ---, D, are the connected components of D.

It is clear that (K4 D) =Bk*(D) in the situation (6.17).

6.19) LEMMA. Let Dy=B+T+T:+T; be an abnormal rational club as
above. Set B*=-b, let N} be the bark of the transposal of T, set B’=B+Ni+N;
+Ni, 0=2d(T)™ and e=>3;e(*T;). Then

1) (d(Ty)) is one of the following triplet modulo permutation: (2,3, 3),
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2,3, 4), (2,3,5) or (2,2, m) for some m=2.
2) b>e.
3) Bk Dj)=(0—1)b—e)*B’+Bk(D).
4y Both Bk*(D;) and D;—Bk*(D;) are effective.

ProoF. 1) follows from an elementary argument. By (6.16), we have
BN{=e(*T;). We have also B’Y=0 for any component Y of T, Hence
0>(B")=B'B=—b+e¢. Thus we prove 2). 3) is easily checked by definition
of Bk* and by Bk(D)B=4. To show 4), note that b>e=0>1. So B*=—2and
KB=0. Hence KY =0 for any component Y of D;, Write D;—Bk*D;)=E,—FE,,
where E; and E, are effective and have no common component. If E,#0, then
E}<0 since E,=eQ(D;. So E,Y<0 for some component Y of E,. Then
D;Y >Bk¥D,;)Y =(K+D)Y =zDY =D,Y. This contradiction proves that D;,—Bk*(D;)
is effective. The effectivity of Bk¥*(D,) is clear by 3). Q.E.D.

REMARK. By the above argument we can show the effectivity of D—Bk(D)
for a usual rational club too. Compare (6.16). Moreover, similarly as in (6.16;
b), the coefficient of any component of D; in D;—Bk*(D;) is positive unless
Y2=—2 and KY=0 for any component Y of D, in which case we have
D;=Bk*(D)).

(6.20) LEMMA. Let things be as in (6.13) and suppose that any rational twig
of D is admissible. Then, if N+Bk*(D), there exists a component E of N which
is an exceptional curve not in D and satisfies one of the following conditions.

1) DE=0, i.e., DNE=0.

2y DE=1 and E meets a component of Bk*(D).

3) DE>1 and E meets two components of D, one of which is a tip of a
rational club of D.

PROOF. Set L=K+D—Bk*D). If this is semipositive, then N=Bk*(D) by
definition of Zariski decomposition. We have LY =0 for any component Y of
D by definition of thicker bark. So we may assume that LE <0 for some curve
E not in D. Any such curve must be a component of N. Hence E2<O0.
Moreover, KE< LE<0 since D—Bk*(D) is effective by (6.16) and (6.19). There-
fore £ must be an exceptional curve. Let E,, ---, E, be all such curves with
LE;<0, and set D’=D+E,+ --- +E,. By (6.6; 2) we have (K+D')"=N+XE,;.

Suppose that DE;=1 for some E;. Then E; meets Bk* D) since LE;=0
otherwise. So it suffices to consider the case in which DE;=2 for every E..
Then any rational tip of D’ is a rational tip of D. Assume that none of the
E/s satisfies the condition 3). Then E; is not contained in any rational twig
of D’. Therefore any rational twig of D’ is a subset of a rational twig of D.
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Hence (Bk*(D)—Bk*(D')Y <0 for any component ¥ of Bk*(D). So Blk*(D)—Bk*(D")
is effective by (6.2). Since (K-+-D")"#Bk*(D"), there is a curve C not in D’ such
that (K+D'—Bk¥D')C<0 by (6.17). We have LC<O0, because Bk*(D)—Bk*(D")
+D/—D is effective. So C must be one of the curves E;’s, contradicting Cc D',
Thus we prove the lemma (6.20).

(6.21) Let things be as in (6.13) and let E be an exceptional curve on S.
Let z: S—3’ be the blowing-down of E to a point p. We consider the follow-
ing five cases.

1) ECD and B(E)=1 or 2. = is called D-blowing-down. We define
D'=#(D) and S’=8'—D'=S,

2) EcCD and B(E)=0. D'==n(D)—{p} and §'=8'—D'=S\J{p}. S’ (resp.
S) is called a one point attachment (resp. detachment) of S (resp. S).

3y EaD and DE=0. x is called S-blowing-down. D'=n(D)=D and
S'=8—-D".

4) EaD and DE=1. D'=z(D) looks like D, and §'=8'—D'=S-—-E. S
(resp. S) is called a half point detachment (resp. attachment) of S (resp. SN.

5) Ed¢D and E is a component of N=(K+ D)~ satisfying the condition
6.20; 3).

(6.22) REMARK. In the processes in (6.21), b;’s and b;’s do not change except

a) by(S)=b(S)—1 in case 2) and 5).

by 5,(S")=bh(S)+1 in case 4) and 5), provided that E is numerically equiv-
alent to a Q-divisor in Q(D).

Q) By(S))=5b,(S)—1 in case 3), 4) and 5) unless b) is the case. Any way
we have 5,(S)—b(S")=5,(S)—5,(S)—1 in case 3), 4) and 5) in which EaD.

The proof is easy. As a consequence, we see that the blowing-downs of
type (6.21; 2) and 5) (resp. 3)) are impossible if by(S)=0 (resp. 5,(S)=0).

(6.23) REMARK. In each case in (6.21), H=(K+D)* is the pull-back of
H'=(K’+D"*, where K’ is the canonical bundle of 5’.  Consequently
HY(&, m(K'+D")=HYS, m(K-+D)) for every positive integer m by (6.9).

To prove H=r*H’, we note that K+ D=x*K'+D")+pE for some =0 in
case (6.21; 1-4). Then K+D=n*H’'+{(z*(K'+D")"+pFE) satisfies the condition
in (6.3). So H=gz*H' by definition of Zariski decomposition.

In case (6.21; 5), we have H=(K-+D-+E)* since E is a component of N.
So H=r*H' because K+ D-+E=na*K'+D").

(6.24) From (6.20) we obtain the following

THEOREM. Let D be a reduced effective divisor on a smooth complete su_rface
S. Suppose that K+D is pseudo-effective for the canonical bundle K of S and
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that any blowing-down of the five types described in (6.21) is impossible. Then
(K+D)y~=Bk*(D). (Note that every rational twig of D is admissible since (6.21;
1) is impossible).

Thus, after several blowing-downs, we know the Zariski decomposition of
K-+ D fairly explicitly by virtue of (6.16) and (6.19).

(6.25) As an application of the above method, we obtain the following

THEOREM. Let D be an effective reduced divisor on a smooth complete surface
S. Then the graded algebra @.z0HYS, HK+D)) is finitely generated.

In fact, this was proved by Kawamata [Kw 3] when D has no singularity
other than nodes. We sketch here how to modify his argument.

We may assume x(K-+D,S5)=2 by virtue of [Z; Proposition 11.5]. Set
H=(K+D)" and let ¢ be the union of all the curves C such that HC=0. Then
H?*>0 since g(H)=r(K+D)=2.

Suppose that e contains an exceptional curve E. Since ¢ is contractible by
the index theorem, (K+4-D+pE)*=H for any x=0. Therefore, if 7:5—-3" is
the blowing-down of E and if D’ is the image divisor of D, we have
H=z*{(K’'+D")*) similarly as in (6.23).

Repeating similarly we reduce the problem to the case in which & contains
no exceptional curve. In particular the processes in (6.21) is impossible and
(K+D)-=Bk*(D).

Suppose that Ca: D for a curve Cine. Then C2<0and KCZ(K-+D—Bk*(D)C
=HC=0. So KC=0 since C is not exceptional. Hence (D—Bk*(D)C=0. So C
can meet only those connected components D; of D such that Bk¥(D,)=D;. By
the remark to (6.19), we have Y?*=—2 and KY =0 for any component ¥ of
such D; From these observations we infer that any connected component of ¢
not contained in D can be contracted to a rational double point.

As for the connected components contained in D, we see that they are of
the types considered by Kawamata [Kw 3; (2.22)-(2.24)] by a similar argument
as that in (6.17) (see also (8.7) below). Thereafter we proceed in the same way
as Kawamata.

REMARK. There are many counter-examples to the above statement if we
do not assume that D is reduced.

§7. Al-ruled surfaces.

(7.1) Let f: S—C be a ruling and let D be a reduced effective divisor on
S. fis called an Ak-ruling of S=5—D if DF=2 for any general fiber F of f.
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We will study the structure of such rulings in this section. (6.11; 2) is an
important motive of our study.

(7.2) DEFINITION. We are chiefly interested in the case where D is an NC-
divisor. So we call a fiber F of f to be almost D-minimal if F has no exception-
al D-component E with B(E)<2. Similarly as in (4.10), we can reduce the
problem to the case in which f is almost D-minimal, that means, every fiber F
of f is almost D-minimal. Under the process of blowing-down D remains to be
an NC-divisor.

A fiber F of f is said to be virtually D-connected if every connected com-
ponent of FN\D meets a horizontal component of D. A connected component
of FN\D is called a rivet if it meets the horizontal component(s) of D at more
than one points, or if it is a node of D,, the union of horizontal components
of D.

In case of Al-rulings there are at most two horizontal components of D.
If there are two, both must be a section of f. In this case the ruling is called
a sandwich. If there is only one, then it is a two-sheeted (branched) covering
of C. In this case the ruling is called a gyoza (=#:7, in Japanese). In either
case if a virtually D-connected fiber contains a rivet, then it is D-connected.

(7.3) LEMMA. Let F be a fiber of a ruling f: S—C. Suppose that F contains
an exceptional curve E of multiplicity one (¢f. (4.9)). Then E is a tip of the
rational tree F. Moreover, F contains another exceptional curve.

Proor. If E were not a tip, it would be the exceptional divisor of a sub-
divisional blowing-up. So its multiplicity cannot be one. If there were no other
exceptional curve in F, then KF=KE=—1 as in (4.13). This contradiction
completes the proof,

(7.4) From now on, we study the structure of singular fibers of Ak-rulings.
We assume that D is an NC-divisor and f is almost D-minimal until (7.7).

(7.5) LEMMA. Suppose that ¢(F)=0, i.e., FCD. Then either

1) F=P?!and F is a rivet, or

2) F s the twig [2,1, 2], f is a gyoza, f(F) is a branch point of Dp—C
where D, is the horizontal component of D and D, meets the exceptional com-
ponent of F transversally.

PROOF. Suppose that F is a rivet. Assume that F is singular. Then there
is an exceptional curve E in F. By almost D-minimality we have S,(E)=3.
Hence E must meet D, by (4.5), where D, is the union of horizontal components
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of D. Since D, meets F at two points by definition of rivet, E is of multiplicity
one, because otherwise D,F>2. So E is a tip of F by (7.3). Therefore ,(E)
=3 implies D,E=2. On the other hand, we have another exceptional component
in F by (7.3). By the same reasoning as above, it also must meet D,. Then
D,F>2, a contradiction. Thus we prove F=P!

Suppose that F is not a rivet. Then D,NF must be a point, which is a
node of D. So D, consists of one component and there is only one component
C of F that meets D,. Moreover, C is of multiplicity two. Thus F is singular,
and it contains an exceptional component. By almost D-minimality and (4.5)
this must meet D,. Hence C is the unique exceptional component of F.
—2=KF=2KC implies KY=0 and Y?=—2 for any other component Y of F.
Note also that C is not a tip of F by almost D-minimality. Now, by the
observation in (4.14), we infer that F is a twig [2, 1, 2].

(7.6) LEMMA. Suppose that o(F)=1 and that F does not contain a rivet.
Then

1) F=P! and F meets D, at two different points, or

2) Flooks like a twig [A, 1, B] as in (4.7), the S-component of F is the
unique exceptional component of F, and D, meets the highest and the lowest com-
ponents of F, or

3) fis a gyoza and f(F) is a branch point of D,—C.

Proor. It suffices to show 2) assuming that F is singular and that 3) is
not the case. By (42) F containg an exceptional curve E. If E were a D-
component, then B(E)=3 and D,E>0 by almost D-minimality and (4.5). So the
multiplicity of £ would be one because otherwise D,F>2. Hence E would be
a tip of F by (7.3). But then D,E=2 by B(E)=3. So F would contain a rivet.
Thus we conclude that E is the S-component of F. In particular, F contains
only one exceptional curve. Now, by the observation (4.14), we see that F is
obtained by succesive blowing-ups from a twig [4, 1, B] as in (4.7). So, the
proper transforms of the highest and the lowest components of this twig are
the only components of multiplicity one. D, meets F at two different points
since 3) is mot the case. These points must lie on two different components of
F of multiplicity one. Hence D, meets the above two proper transforms. They
would become connected in F\D if once we perform a sprouting blowing-up.
So F is obtained only by subdivisional blowing-ups, and hence looks like a twig
[A,1, B] as in (47). In particular, p(F)=2.

(7.7) LEMMA. Suppose that o(F)=1 and that F contains a rivet. Then

1) F=P, fis a sandwich, Dy"\F=D,NF where D; are the horizontal com-
ponents of D, or
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2) F is D-minimal and meets D, at two different points, or
3) there is precisely one exceptional D-component E of multiplicity one, E
is a tip of F and meets D, at two different points.

PROOF. Suppose that F contains a node of D,. Since D is an NC-divisor,
this node must be on the S-component of F. Moreover, f is a sandwich. Now,
we infer that this S-component must be of multiplicity one, because otherwise
D,F>2. Moreover, the almost D-minimality implies the D-minimality of F,
since D, does not meet D-components of F. So, using (4.13), we see that 1) is
satisfied.

Second suppose that D, meets F at two different points. If F is not D-
minimal, we infer that an exceptional D-component must meet D,, be of multi-
plicity one, be a tip of F and meet D, at two points, by the same argument
as in (7.6). Thus 3) is the case. Q.E.D.

REMARK. In both cases 2) and 3), the S-component of F is an exceptional
curve,

(7.8) Now we will calculate numerical invariants of S. Let v be the number
of fibers with =0, let 2" be the sum of (s(F)—1) where F runs through all
the fibers of f with ¢>1, let p be the numbers of rivets contained in fibers of
f, and let ¢ be the function defined by (0)=0 and e(f)=1 for t>0.

(7.9) LEMMA. Let [:S5—C be an Ak-ruling of S=S—D, where D is an
NC-divisor. Suppose that f is a gyoza. Then 5, (S)=v—e(v), 5,(S)=I+1—c(v)
and 52(5):p+2(g(Dh)—g(C)), where Dy is the horizontal component of D and g
denote the genus of curves.

PROOF. b5,(S) and 5,(S) are calculated in the same way as in (5.4). B5(S)
=b(D)—b(S) by definition of 5, and by the surjectivity of Hy(Dy)—H (D)
—~H(8)—H\(C). 1t is easy to see by(5)=2g(C) and by(D)=2g(D;)+p. Thus we
obtain the desired formula.

(7.10) LEMMA. Let things be as in (7.9), but this time suppose that [ is a
sandwich. Then by(S)—by(S)=v—23, by(S)=v—e() or v—e(W)+1, b,(S)=3 —e() or
S—e()+1, 5S)=2g(C)+p—e(p).

Proor. The first equality is a special case of (4.16; 1). Let D, and D, be
the horizontal components of D. If D, is linearly @-independent of the other
components of D, then 5(S)=y—e(v) by a similar reasoning as in (5.4). If D,
is linearly dependent on the other components, or equivalently, D,— D, is linearly
dependent over @ on the non-horizontal components of D, then we have one
more relation among the components of D and b5,(S)=v—e(@)+1. Thus we
prove the assertion for 5,(S). The claim for 5,(S) follows from this. As for
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5,(S), we have bi(D)=2g(D;)+2g(Dy)+p—elp). So the formula is proved
similarly as in (7.9).

(7.11) LEMMA. Let y(F) be the number of connected components of FAD
which do not meet the horizontal component(s) of D, and let I" be the sum of
7(F) of all the fibers F of f. Then, by(S)=I"if fis a gyoza, and b(S)=I"+1—¢(p)
if fis a sandwich.

This is proved easily by (1.15; 3).
(7.12) LEMMA. Suppose that by(S)=0. Then g(C)=0 and S is rational.

Proor. If f is a sandwich, ,(S)=0 implies g(C)=0 by the formula (7.10).
So we assume f to be a gvoza. Then, by (7.9) and 5,(S)=0, we obtain 0=0
and g(Dy)=g(C). Since D, is a covering of C, g(C) can be positive only when
C is an elliptic curve and D,—C is unramified. We may assume that f is
almost D-minimal. Therefore (7.5) applies to the effect y=0. Then §,(S)=3+1>0
by (7.9). This contradiction to b,(S)=0 proves g(C)=0.

(7.13) COROLLARY. Let S be an algebraic surface such that b,(S)=0 and
£(S)=1. Then S is rational.

For a proof, use (6.11: 2). Note that FD=0 is impossible since 5.(S)=0
implies that every curve on S meets D,

(7.14) LeMMA. Let f:5—C be an Ak-ruling of S=S5—D, where D is an
effective reduced divisor. Then NS(S)#0 in any of the following cases.

1) fisa gyoza.

2) There are two fibers Fy, Fy with p(F)=2, and ¢(F)>0 for every fiber F.

3) There are fibers F,, Fy such that o(F)=2 and 1< u(F;)<co.

PrRoOOF. In case 1), the class of a section of f is not zero in NS(S). Actu-
ally, we have a surjective homomorphism NS(S)—Z/2Z.

In case 2), adding several components to D if necessary, we may assume
o(x)==1 for every x=C. Let E, be the S-component of F,=f"(x). Then
F=p(x)E, in NS(S) for any x. Letting D, and D, be the horizontal components
of D (we may assume that f is a sandwich by 1), we have 0=D,—D,=%,d,E,
+tF in NS(S), where y runs through the singular locus of f and d,’s and ¢
are integers. In view of w,E,=F=p,F, we may assume that 4,>0 and d,>0.
Adding further relations E,=0 for y+1, 2, we obtain a quotient group G of
NS(S) generated by the classes e, ¢; of E, and E, with the relations pie,
=pe,=d,e;+dye,=0 where p,=p(x). Setting ¢le)=p, and ¢le,)=yp,, we
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obtain a well-defined non-trivial homomorphism 0. G=Z/(dpe+dop)Z. Thus
NS(S)=#0 is proved.

The case 3) is treated similarly as 2). We sketch the method. We may
assume f to be a sandwich. We may assume o(F;)=2, because otherwise 5(S)
=rank N5(S)>0 by (7.10). Furthermore, adding several components to D if
necessary, we may assume that ¢(F)=0 for any singular fiber F other than F,
and F,. Let A, and A, be the S-components of F, and let s, m, be their
multiplicities. Let g be the multiplicity of the S-component E of F, and write
Di—D,=vE+n,Ai+n. A, +tF in NS(S) as in 2). Since myA,+m,A,=pE=F,
we may assume that 7;>0, n,>0 and 0=v<g. Then, NS(S) is isomorphic to
the abelian group G generated by the classes a, a, and ¢ of A, 4, and E
under the relation m;a,+mea,=pe=n,a:+n.a,-~ve=0. We will show G=0.

If m, and m, are not coprime, then (my, ms) and (n;, n,) cannot generate
ZBZ. Therefore G/{e=0} is non-trivial. So we may assume g.c.d. (m,, mg)=L.
Let ¢ be the greatest common divisor of 4 and » and take integers x and 7y
such that px-vy=c. Set @(a.)=—cm,, @la)=cm,, ole)=y(nm,—ngmy). It is
easy to see that ¢ gives rise to a homomorphism G—Z/uZ. If this were
trivial, then g would divide both ¢m, and ¢m,, hence g.c.d.(cmy, cmy)=c. But
this is impossible by definition of ¢ and v<p.

(7.15) PROPOSITION. Let f:5—C be an Ai-ruling of S=S—D, where D is
an NC-divisor. Suppose that HYS; Z)=0 and #(S)=0. Then f is a sandwich,
and #(S)=b(S)=1, and 7.(S) is non-abelian.

PROOF. f is a sandwich by (7.14; 1). Let D, and D, be the horizontal
components of D and let X, v, p be as in (7.10) and (7.8). Then 5,(S)=0
implies g(C)=0 and »=<p=1. So 5,(S)=0 and b(S)=b,(S)=v—2, since 5,(S)=0.
We may assume that f is almost D-minimal.

Assume that y=0. Then, by (7.14; 2), there is at most one fiber with p=2.
By virtue of (4.13) we infer that there are at most two singular fibers, and if
there are two, one of them must contain a rivet and with g=1. The other
singular fiber is of type (7.6; 2). From these observations we see easily that
both D, and D, are contained in some rational twigs of D. Hence (K4 D)*F<0
for a general fiber F by (6.13). This is absurd.

Thus we prove v>0, and hence p=v=1. Let F. be the fiber with o(F.)=0.
Assume that there is a fiber F, such that ¢(Fy)=2. Then o(F,)=2 since 5(S)
=1—2. Moreover, by (7.14; 3), there is no other fiber with x>1, nor ¢>1.
So, by (7.6), every other fiber is non-singular.

It is easy to see that we can find a linear subgraph T of the dual graph
of F, such that T consists of components Yy, -+, Y, of F, in this order where
and Y, D,=Y,D,=1. Since F does not contain a rivet, one of Y,s must be an
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S-component. Let Y’ be the other S-component, set D'=D+Y’, and let F; be
the connected component of Fy\D’ containing the point D;N\F for each j=1, 2.
By symmetry we may assume Y’CF,.. Then we claim that F, is a rational
twig of D (or possibly consists of only the point D;\F,). Indeed, otherwise,
F, would contain an exceptional curve by a reasoning as in (4.14). But this is
impossible by the almost D-minimality, (4.5) and (7.3). Thus we infer that F,
is a rational twig of D, and hence so is Fo-+D, Then (K+D)*F<0 by (6.13),
which is absurd.

Thus we prove ¢(F)<1 for every fiber F. Hence b(S)=1, and every
singular fiber is of type (7.6; 2) except for F.. Let Fy, -, F, be the singular
fibers and set p;=p(F;). We may assume k=2, because otherwise D; would be
contained in a rational twig of D and this would lead to a contradiction as
above. So 7,(S) is non-abelian by (4.21). .

Moreover, by the same reasoning, we infer that (K4 D)~ contains no hori-
zontal component, Therefore we see that (K+ D) =Bk(D) by (6.17). Further-
more, (K+D)*D=—1+3%,(1—p5H=0 if and only if Z(S)=0. This is possible
only when =2 and p;=pg,=2. But then we have NS(S)=Z/2Z. Thus we
conclude that #(S)=1, completing the proof of (7.15).

REMARK. In the above argument, we just used that (K4-D) is pseudo-
effective. However, on rational surfaces, this apparently weaker condition is
actually equivalent to #(S)=0 (cf. [F; (2.8)]).

(7.16) COROLLARY. Let S be an aigebraic surface such that b.(S)=0 and
H¥S; Z)=0. Then #&(S)=+1.

(7.17) In order to calculate the fundamental group, the following lemma is
useful.

LEMMA. Let x be a node of an effective reduced divisor D on a smooth sur-
face S and let S=8—D. Let §' be the blowing-up of S at x and let E be the
exceptional curve over x. Then a vanishing loop v of E in mi(S) is of the Jorm
7ire=7e1, where 11 and 7. are vanishing loops of the two analytic branches of D
at x. (Recall that a vanishing loop is determined up to conjugacy, (4.17)).

Proor. Take a coordinate neighborhood U= {(z,, z)€C?|12;] <1} of x such
that DN\U={2z:2,=0}. Define a path 7 in U—D by y(t)=(c exp(2rit), ¢ exp(2nit))
for 0=<t=1, where ¢ is a small positive number. It is easy to see that 7 lifts
to a vanishing loop of E, and 7 is of the desired form. Any other vanishing
loop of E is conjugate to 7, and hence of the desired form as well as 7.
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(7.18) LEMMA. Let S, D and S be as above and let x be a smooth point
(resp. node) of D. Let p:35—S be a successive blowing-ups with centers lying
over x and let D'=p~¥D) and S'=5'—D'=S. Let Y be a component of D’
over x and let m (resp. my, and ms) be the coefficient(s) of Y in the total trans-
form{s) of the component(s) D, (resp. D: and D,) of D passing x. Here, m, and
mg should be counted separatedly, when two analytic branches at x happen to
belong to a same irreducible component of D. Then, a vanishing loop of Y is of
the form 7™ (resp. YT Pe with yiy.=7:r1), where 7 (vesp. each 7;) is a vanishing
loop of Dy (resp. Dj).

Proor. Take a coordinate neighborhood U of x as in (7.17) and we con-
sider everything over U. UNS=(4*? if x is a node, UNnS=4X4* if x is a
smooth point on D. In either case =, (UNS) is abelian and we get rid of the
troubles coming from the non-commutativity. In particular, vanishing loops are
determined uniquely in ;. So, we just apply (7.17) successively to obtain the
desired result. '

REMARK. When the two analytic branches of D at x belong to a same
component of D, their vanishing loops 7, and 7, are conjugate in =,(S), but may
not be the same.

(7.19) COROLLARY. Suppose that there is an exceptional curve E not in D
with DE=1. Let Y be the component of D meeting E andlet D’ be the divisor
D—Y. Then 7,(S)=n(S") where S’=5—D".

ProOOF. Let p: S5—3; be the blowing-down of E to a point. Set D,=p(D),
Di{=p(D’). The vanishing loop of E in z(S—(D+E)=x(S,—D,) is that of
p(¥) by (7.18). Hence 7(S)=Zx(S;— D)=z (S") by (4.18).

(7.20) We give now a recipe to calculate z,(S) of an Ak-ruled surface S.

First we consider the case of sandwich. Let Fy, ---, F, be all the singular
fibers of f:S—C with respect to D and let Sy=S—(D\JF\J - \UF,). Then S,
is a C*-bundle over Co=7F(S,), which is topologically trivial unless C,=C. 1If
Co=C, then D=D,+D, and these two horizontal components are disjoint. In
this case m,(S)—x(C) is surjective and its kernel is a cyclic group of order
| D =|D%]. So we consider the case Cy#C. In this case n(Sy)=x(Co) Xz (F),
where F=C* is a general fiber and =, (F)=Z is in the center of 7:(Sy). 7(S)
is the quotient group of x,(S,) by the relations coming from vanishing loops of
S-components of F; (recall (4.18)). By virtue of (7.18), the vanishing loop of an
S-component Y of F; is of the form y7t" for some integers m, n, where 7; is a
vanishing loop of x;=f(F,) in n.(C,) and ¢ is a generator of =, (F)=Z. Thus
we can calculate =(S).
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When f:S—C is a gyoza, the business becomes a little involved. Let D,
be the horizontal component of D and let B be the branch locus of D,—C. Set
Se=S—f"YB), and S{=S;X;D,. Then S} is an unramified double covering of
So, and we easily see that S} can be completed to an Ak-ruled surface over Dy,
which is a sandwich. By the pfeceding method we calculate =,(S;), which is a
subgroup of 7,(S,) of index two. Thus we describe the structure of =,(S), and

our =,(S) is a quotient group of z,(S,) by relations given by (7.18). See also
(7.24).

(7.21) Example. Suppose that f: S—C has a fiber F of type (7.7; 1). Then,
by the following process in order to calculate =,(S), we can transform F to a
fiber of type (7.6; 1).

Let x be the intersection point of D, and D, on F. Let p:S5'—S be the
blowing-up at x, D’=p"YD), E be the exceptional curve over x and let E’ be
the proper transform of F. Then, thanks to (7.19), we have 7,(S)=z,(5'—D")
=7 ,(5'—(D'—E)) since E’ is an exceptional curve on S’ with D’E’=1. Blowing
down E’ we get a fiber of type (7.6; 1) with respect to D'—E.

(7.22) Example. - Suppose that there is a fiber F consisting of two exceptional
curves E, and E,, each of which is an S-component of F and meets a horizontal
¢ component of D. Then 7(S)=x(S—Dy), where Dy is the divisor D minus its
horizontal component(s). Indeed, this is a special case of (7.19). m(S—=Dy) is
described by (4.19).

(7.23) Example. Suppose that there is a fiber F of type (7.6; 2). Then the
S-component of F gives a relation of the form y™*=1, where 7 is a vanishing
loop of f(F) and ¢ is a generator of x; (general fiber of f)=Z (see (7.20)), and
m=p(F) and n is an integer calculated with the help of (4.8). In particular, n
is coprime to m.

(7.24) Example. Suppose that f is a gyoza and has a fiber F of type (7.5;
2). If we blow down two times to make the fiber Y isomorphic to P2, then Y
and the horizontal component D, of D has a contact of order two. Let y be
the vanishing loop of Y and let ¢ be the vanishing loop of D,. Then we have
yiy-l=tv

To see this, take a coordinate neighborhood U= {(x, s)=C?|Max(} x|, |s|)<1}
of the contact point such that UnY={s=0} and UnD,={s=x%. Take
vanishing loops in an s-disc in U where x is a fixed small positive number .
Then move this s-disc along a path in the x-disc to another s-disc over —e,
where the path is homotopic to a half-circle. By this process yty~! is transformed
to a vanishing loop of D, in the s-disc over —e. The vanishing loops of Dy
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over ¢ and —e are the same in =, as the two vanishing loops of D, in the x-
disc where s=¢% So they are inverse to each other. Thus we obtain yty~!=¢-1,

Note that this relation implies yt~*y~'==f, and hence t and y* commute with
each other.

§8. The case £=0.

(8.1) We recall the following important result.

THEOREM (Kawamata, [Kw 21). Let f: M—T be a dominant wmorphism of
algebraic varieties such that any general fiber F is an irreducible curve (M, T
and F may not be complete). Then F(M)=k(T)+kE(F).

(8.2) THEOREM. Let S be an algebraic surface such that &(S)=0 and b,(S)=0.
Then S is rational except the following case: S=S—D—Y, S=PLPO), L isan
ample line bundle on an elliptic curve C, D=D,-+D,, D; and D, are the sections
of f:8—C corresponding to the direct sum factors L and ©, and Y is a finite
subset of S.

Proor. Take an NC-completion (S, D) of S. We claim x(5)=—occ. Indeed,
iffnot, we have an effective @-divisor K representing the canonical bundle of S.
£(S)=0 implies that H=(K+-D)* is numerically equivalent to zero, while (6.9)
says that H is effective. So H=0 and K+D=(K+D)-. Hence DeQN) is
contractible. But this is impossible since 5,(S)=0 and S is algebraic.

Thus £(S)=—oco and hence S is ruled. We analyze the case in which S is
not rational. We have a ruling f: S—C over a curve C with genus g>0. DF>2
for a general fiber F, because otherwise #(S)=-co. On the other hand DF<2
because otherwise #(S)=£(FN\S)=1 by 8.1). So f is an Ak-ruling of S. From
(8.1) we infer also that there is no fiber with ¢=0, which means v=0 (see (7.8)).

If f were a gyoza, we would have b,(S)=1+23>0 by (7.9). So f is a sand-
wich. Using (7.10) and 5,(S)=0, we obtain X¥=0 and hence o(F)=1 for every
fiber F. Adding several points to S if necessary, we may assume that f is
almost D-minimal. Then every fiber F is either of type (7.6; 1), (7.6; 2) or
7.7.

Assume that (K+D)Z <0 for some curve Z not in D. Then Z is a com-
ponent of (K+D)~. Z cannot be horizontal, because otherwise (K4 D)*F<0 for
a general fiber F of f. So Z must be the S-component of some fiber F,. By
6.6:2) we have E(S)=x(K+D, S)y=x(K+D+Z,5)=KS—Z2). But &S—2)
>E(C—f(Fy)=1 by (8.1). This contradiction proves that (K+D)Z=0 for any
curve Z not in D. Hence (K+ D) =Bk(D) by virtue of (6.17).

In view of (6.16), we infer that (K4 D)*D;>0 for each horizontal component
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D; of D, unless g(C)=1 and all the fibers are of type (7.6; 1). Therefore we
conclude that D is the union of its horizontal components, which are disjoint to
each other. So S=P.(LE0O) for some line bundle L on C. Moreover, deg(L)=0
because otherwise D, and D, would be numerically equivalent to each other and
b(S)=1. Q.E.D.

REMARK. £(Y)=5,(S)—1.

(8.3) COROLLARY. Let S be an algebraic surface with #(S)=b,S)=0. Then
S is rational under any of the following additional hypotheses. 1) 5,(S)>0.
2) 5x(S)=0. 3) 5,(S)=0. 4) S is affine. 5) pz(S)=hr"S, K--D)=0.

(84) REMARK. Let S be a rational surface with £(S)=0 and let (S, D) be
its NC-completion. Then the logarithmic m-genus Po(S)=h"S, m(K+D)) is posi-
tive if and only if m(K+ D)~ is a usual divisor with integral coefficients.

Indeed, (K+D)* is linearly equivalent to zero by (6.11). So ‘if’ part is obvious.
The ‘only if’ part follows from (6.9). i

(8.5) THEOREM. Let S be a rational surface such that £&(S)=0, b,(S)=0 and
b(S)>0. Then there is a ruling f: S—C=P? together with an NC-divisor D on
S and a finite subset Y of S, such that S=S—D-Y, f is a gyoza, there are
precisely two branch points of Dyn—C where Dy, is the horizontal component of
D, the fibers over the branch points are of type (7.5; 2) and all the other fibers
are non-singular, that means, of type (7.6; 1).

PrOOF. By (1.18; 3) we have a non-constant invertible rational function on
S. This gives a dominant morphism ¢: S—A4k=A4'—{0}. Let S—Cy—Ak be its
Stein factorization. By #(S)=0 and (8.1) we infer that #(Cy)=0 and &(F,)=0
for any general fiber F, of fo: S—Co. The former implies that Cy= AL The
latter implies that f, can be completed to an Ak-ruling f: S—Cx=P! of S. By
a similar reasoning as in (4.10), we reduce the problem to the case in which f
is almost D-minimal, where D=S5—S is an NC-divisor on S.

Thus, f has exactly two fibers F;, and F, with ¢=0. So v=2, where the
notation is as in (7.8). If f were a sandwich, then 52(S)=p—1>0 by (7.10).
So f is a gyoza. Then 5,(S)=0 implies 0=g(D3)=0. Hence Dp=P* and D,—C
has two branch point, while F; and F, must be of type (7.5; 2). Thus f(F,)
and f(F.) are exactly the branch locus. Moreover, from 5,(S)=0, we infer that
2=0 and o(F)=1 for every fiber F. Hence F is either of type (7.6; 1) or
(76; 2).

Now, calculating (K-+D)~ similarly as in (8.2), we infer that there is no
fiber of type (7.6; 2). This completes the proof.
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REMARK. Y=g if 5,(S)=0.

(8.6) COROLLARY. Let S be a surface as in (85). Then 5.(S)=1, NS(S)
=Pic(S)=2Z/2Z, Pn(S)=h"S, m(K+D)=1 if and only if m is a non-negative
even integer, wi(S) is the group generated by t and y under the relation yty ‘=t

ProoF. It is easy to calculate 5,(S) and NS(S)=Pic(S). Pm is calculated
by (8.4). As for z,(S), use (7.20) and (7.24).

(8.7) LEMMA. Let D be a reduced effective divisor as in (6.13). Suppose
that every rational twig of D is admissible (hence Bk*(D) is well-defined). Let
C be a component of D such that (K+D)C=Bk*D)C. Then

1) Cis a component of Bk*(D), or

2) C=Pt, B(C)=2 and Bk*(D)C=0, or

3) C=P', B(C)=3 and there are two rational tips Ty, T, such that Ti=—2
and T;C=1 for each j=1, 2, or

4) C=P', B(C)=3 and there are three rational twigs Ty, T, and T, with
2d(Ty) =1 and with common branching component C, or

5 C=P?, B(C)=4 and there are four rational tips Ty, -+, T, with T3=—2
and T;C=1 for each j, or

6) B(C)=0 and the arithmetic genus of C is one.

PrRooOF. Let D; be the connected component of D containing C. We may
assume CaBk*(D) and hence D; is neither a (usual) rational club nor an abnormal
rational club. So D;—Bk*(D;) is an effective Q-divisor with the same components
as Dj; (see (6.16)). Therefore (D—Bk*(D)—C)C>0 unless B(C)=0. When
(K+C)C=0, we have (D—Bk*(D)—C)C=0 by the assumption (K+ D)C=Bk*(D)C.
This implies 8(C)=0. Then (K+C)C=0 and 6) is the case. When (K-+C)C<O0,
we have C=P' and 2=(D—Bk*(D)—C)C=p(C)—Bk*(D)C. Using (6.16), we infer
that 2), 3), 4) or 5) must be the case.

(8.8) COROLLARY. Let D be as above and let Dy be a connected component
of D such that (K+D)C=Bk*(D)C for every component C of D; Then Dj is

(I a (usual or abnormal) rational club, or

(0) a rational cycle such that B(C)=2 for every component C of D;, or

(H) a rational tree with precisely two branching components, both of which
are of type (8.7; 3), or

(Y) a rational tree with three twigs and their common branching component
of type (8.7; 4), or

(X) a rational tree consisting of four tips and a branching component of
type (8.7; 5), or

(%) an isolated prime component of arithmetic genus one.
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Proor. If D; contains a component of type (8.7; 4) (resp. 5) or 6)), then
D; is of the above type (V) (resp. (X) or (). If all the components of D; are
of type (8.7; 2), then D; is of type (0). Otherwise, D; has a component with
B(C)=3 unless D; is a rational club. If this C is of type (8.7; 1), D; is an
abnormal rational club. Thus, we may assume that C is of type (8.7; 3). Then

D; must have another branching component, which also is of type (8.7; 3). So
D; is of type (H).

(8.9) Now we will study the structure of a smooth algebraic surface S
such that 5.(S)=56,S)=&(S)=0. S is affine by (2.4; 3) and is rational by (8.3).
An NC-completion (S, D) of S is said to be NC-minimal if none of the five
types of blowing-downs as in (6.21) is possible. We study first the cases in

which there exists an NC-minimal completion, and then proceed to the general
case.

(8.10) Suppose that (S, D) is NC-minimal (until (8.64)). Then (K+D) =
Bk*(D) by (6.24). We have also (K4 D)*=0 by (6.11; 1). Hence (8.8) applies
to D. Note that D is connected and is not contractible since S is affine. So D
is either of type (x), (0), (H), (X) or (¥).

(8.11) Type (x). We have b (S)=Zby(D)-+-b,(S)=1. Hence S=P2 We have
also K+D=Bk*(D)=0. So deg(D)=3. Now it is easy to see NS(S5)=Pic(S)
=Z/3Z=r(S), b(S)=0 and P,(S)=1 for any integer m>0. D is a non-
singular elliptic curve by definition of NC-divisor. However, the case in which
D is a rational curve with one node can be treated similarly. In particular, we
have #,(S)=Z/3Z. See (8.17).

(8.12) Type (0). By definition of NC-minimality, D has no exceptional com-
ponent. Moreover, in fact, S is relatively minimal. To see this, assume that
there is an exceptional curve E on S. Then ED=1, since K-+ D=Bk*D)=0,
Hence (6.21; 4) would be possible, contradicting the NC-minimality. Thus S=P?
or S is a P-bundie over P'. Note that K+D=0 in any case.

(813) Suppose in addition that S=P? Then deg(D)=3 and hence D is
either a union of three lines in a general position or a union of a smooth quadric
and a line intersecting normally with each other. In the former case S=AZ and
the completion is denoted by O(l, 1, 1). The latter type is denoted by O(4, 1).
In this case b,(S)=1. We have Pic(S)=NS(S)=0 in both cases.

(8.14) Second we consider the case S=JX,=P(E)PO). Let f: S>P' be
the bundle mapping and let v be the number of fibers with ¢=0. It is easy to
see that v=2 and that f is an Ak-ruling. Moreover, if v=2, there are exactly
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two horizontal compohents of D and S= A% in this case.

(8.15.1) Let things be as in (8.14) and suppose in addition v=1. Let F, be
the fiber with ¢=0. Here we consider the case in which f is a sandwich.

We see D=D,+D,+F, and D,Fy=D,F,=D,D,=1. Since K?=¢,(5)2=8 and
K+ D=0, we obtain Di+4Di=—4—K(D,+D,)=—4—KD-+-KF,=2.

Blow up S at the point ¢g=D;~\F,. Then the proper transform of F, is an
exceptional curve on it. By blowing down this curve, we get another NC-
completion 57 of S. § is a P-bundle over P! and D’=5'—S is of the form
F}+D;+D;, where F} is a fiber of f’: 5 —P* and D} is a transform of D, for
7=1,2. Note that (D}*=Di—1 and (D;)*=D}41. Such an NC-completion will
be called an elementary transformation of (S, D).

By successive elementary transformations we can transform D, to an ex-
ceptional curve. Blowing it down to a point, we get a completion of type 04, 1).

On the other hand, we can transform the completion so that (D}):=(D})2==1.
Let §”=3,. for some k”=0. (D7)¥?*=k” modulo 2. If k”=3, we would have
D'C=—K"C=2—k"<0 for the section C of S"—P?! such that C?=—p”. This
is absurd. Now we conclude 2”=1. Let E be the exceptional curve on S"=Y,.
Then EFy=1, ED{=EDj=0. Therefore S is a half-point attachment of A%.
Moreover, we have 7,(S)=Z be virtue of (7.19).

Thus, incidentally, we prove m(S)=Z for a surface S of type O, 1).

(8.15.2) Here we consider the case in which f is a gyoza. So D=D,+F,.
Such a completion (S, D) (or S) is said to be of type 04, 0). By elementary
transformations we obtain another completion (57, D¥) of S such that 57z 1
Write D”"=Dj+F{ and let E be the exceptional curve on S”. Then D/E=0
and F{E=1. Hence S is a half-point attachment of a surface of type O(4, ).
Using (7.19), we obtain 7,(S)=r,(P*— {smooth quadric})=Z/2Z.

(8.16) Let things be as in (8.14) and suppose in addition that v=0. Then
[ is a sandwich and D=D,+D,. —KD=K?=8 implies D?+ D=4,

Let F; and F, be the fibers of f containing the two points on D,ND,. It
is easy to see that Sy=S—(F,JF,) is isomorphic to 4% Hence 7,(S) is a
homomorphic image of my(S,)=ZEZ and so abelian. Therefore =,(S)=H\(S; Z),
which is non-canonically isomorphic to the torsion part of HXS; Z) by the
universal coeflicient theorem. Thus it is isomorphic to A %(S; Z)=NS(S)=Pic(S),
because H%(S; Z)=HD; Z)=Z.

(8.16.1) Suppose that £=0, i.e., S=P*xP*. Then D is of bidegree (2, 2).
So the bidegrees of Djs are (1, 1)+(1, 1) or (1, 2)+(1, 0). In the former case
D; is numerically equivalent to D, and b,(S)=1, contradicting the hypothesis.
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In the latter case, changing the role of two rulings of S, we see that (S, D)
is of type O(4, 0).

(8.16.2) Suppose that £=2. - Let C be the curve on S=X, such that C*=—*k.
Then DC=—KC=2—%k=0. So C is a component of D, say D;,. Then
D,=—K—C~C-H+(E-+2)F, where F- is the class of ‘a fiber of f. So Di=k+44
and Pic(S)=NS(S)=Z/(k+2)Z. This type is called O(k+4, —Ek).

(8.17) - REMARK. In (8.16), the case k=1 is ruled out by the assumption on
the NC-minimality of (S, D). But this case can be treated similarly as ‘above.
This type will be called O3, 1) (resp.” O(5, —1)) if the exceptional curve C on
S=3, is not (resp. lies) in D. In case of O3, 1), D, |C+F| and D,=|C+2F|,
hence NS(S)=0. S is a half-point attachment of a surface of type O(4, 1),
where the half-point lying over the quadric. In case of O(5, —1), D;=C and
D, |C+3F|, hence NS(S)=Z/3Z. By blowing down C to a point, we see that
S is the complement in P? of a rational curve of degree three with one node.
Incidentally we prove =,(S)=Z/3Z.

(8.18) Type (H). Let B, and B, be the two branching components of D
and let Ty, T, (resp. Ty, Ty) be the tips meeting B, (resp. By). Then K+D
=(K-+D)"=Bk*(D)=(1/2)(T1+Te-+Ts+Ts). So P,(S)=1 if and only if m is even
and non-negative. Note that (K-+-D)*=—2=(K-+D)D. So (K+D)K=0.

(8.19) bl(D)=0_because D is a rational tree. So b/(S)=5,S)=0. Hence
(8.5) applies if 5,(S)>0. This type will be called H[—1, 0, —1]. From now on,
we consider the case in which b,(S)=0.

(8.20) Since b:(S)=0.(S)=0, we have by(S)=b,(D)=6. So there exists an
exceptional curve E on S. In view of K=(1/2)3:T:)—D=—1/2)3:T:)—
(D—T,), EK=—1 and the NC-minimality of (S, D), we infer that one of the
following conditions are satisfied.

a) E=B; for j=1 or 2.

b) E meets two tips with the same branching component.

¢) E meets two tips whose branching components are different.

d) E meets only one tip T;, and ET;=2.

(8.21) Actually, we have the following stronger result: Any irreducible
reduced curve C on S with C*<0 and Ca D must be an exceptional curve of
the above type b), ¢) or d).

Indeed, C meets D because S is affine. From this we infer KC<0. Hence
C must be an exceptional curve.
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(8.22) Claim. If there is an exceptional curve E of type a), then there is
another exceptional curve of type c).

To show this, we may assume E=B,. Then T,\JB,\JT; looks like a twig
[2,1,2]. Hence %S, F))=2 for F,=T,+2B,+T; and F, appears as a fiber of
a-ruling f of S. F, is of type (7.5; 2) and f is a gyoza. By virtue of (8.21),
it suffices to show that there exists a section C of f such that C2<0. By (4.3),
S is a blowing-up-of a Pbundle=3,. If £>0, take C to be the proper trans-
form of the section 4 of ¥, such that 42=—F. If k=0, take C to be the proper
transform of a horizontal line passing through a center of the blowing-up 5-2%,.
In either case C has the required property.

(8.23) Claim. If there is an exceptional curve E of type b), then there is
another exceptional curve of type c). »
) To show this, we may assume FET,=FT,=1, Similarly as above,
F,=T,+2E+T, appears as a fiber of a ruling f: S—»P. Again f is a gyoza
and B, is the horizontal component. From now on the argument is the same
as in (8.22).

(8.24) Claim. There exists an exceptional curve of type (8.20; c).

Indeed, otherwise, all the curves as in (8.21) must be of type d). Recall
that S is obtained from some X, by successive blowing-ups. Let E,, ---, E, be
the proper transforms of the exceptional curves of these blowing-ups. Then
E?<0. By (821), E; is of type d) or a component of D. Moreover, the excep-
tional curve E, of the final blowing-up must be of type d), since case a) is
ruled out.

We may assume E,T,=2. Let E,., be the exceptional curve of the blowing-
up just before the final step. E,_, cannot be the image of T, which is singular.
E!_, is not any other component of the image of D, because otherwise E..
would be a component of D and of type a). Thus E,-, is not in D and of type
d). Moreover, we have E, T,=2. In fact, if E..,T;=2 for some i#+1, then
(T1+2E2=(T;+2E,_*=2 and (T,+2E)XT;+2E,.)=0. This contradicts the
index theorem.

By similar reasoning we infer that all the above curves Ei, ---, E, are of
type d), with T.E,;=2, and disjoint from each other. Therefore T, T, and T,
are mapped isomorphically onto ¥ ,. However, X', contains only one curve with
negative self-intersection number. This contradiction proves the claim.

(8.25) Now, let E; be an exceptional curve of type (8.20; ¢). W may assume
E.T,=E,T,=1 by symmetry. Then ho(S, F)=2 for F,=T,+2E,+T; and hence
F, appears as a fiber of a ruling f: S—P. Let F, be the fiber containing T..
Then F, contains an exceptional curve E, by (4.2). This can be neither of type
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a) nor b). E; is not of type d) because F, is a rational tree by (4.4). Thus E,
is of type c). This implies E,T,=FE,T.,=1 and Fo=T,+2E;+T,. Clearly B,
and B, are horizontal and f is a sandwich.

By the above observation and by (8.20), we infer that any fiber F different
from F, and F, does not contain an exceptional curve. So F=P! by (4.2).
Hence b,(D)=bx5)=6. Therefore D=B,+B,+X;T; and B;B,=1. So there is
a fiber F, of type (7.7; 1). Any other fiber is of type (7.6; 1). Consequently
m,(S) is abelian by virtue of (7.21).

(8.26) K(K-+D)=0 (cf. (8.18)) and K2=10—b,(5)=4 imply B2+ B%=0. By
symmetry we may assume that Bi=—B3i=F for some £2=0. In this case (S, D)
will be said to be of type H[k, —k].

If =0, set L=2B,—2B,+T,—T,+T;—T,. Then LD;=0 for any component
D; of D. So L is numerically equivalent to zero. This implies 5,(S)>0, con-
tradicting our hypothesis. Thus, » must be positive.

(8.27) To calculate NS(S), we blow down E, and E,, and then further blow
down the images of T, and T,. The result is 3 & because B, is mapped to a
curve C with C*=—Fk<0. Since B,B,=1, the image of B, is a member of
|C+(k+1)F|. Therefore B,e|By+H(k+1)F—(T+E,)—(Ts+E;)|. Hence, in
NS(S), we have 0=B,—B,=(k+1)F—E,~E,=2k+1)E;—E,—E,. So E,=
(2R+1)E, in NS(S). In view of the relation F=2E,=2F,, we infer that NS(S)
is a cyclic group of order 4%.

By virtue of (8.25) and the universal coefficient theorem, we obtain also
n(S)=H\(S; Z)=Z/4kZ.

(8.28) Type (X). Our conclusion is that this case does not happen.

D=B+T,+T,+T,4T,, where B is the branching component. K- D=Bk*(D)
=1/2(Z:T:). So K=—B—(1/2)X(2T,). (K+DyY=—2=(K+D)D as in (8.18).
Moreover by(5)=by(D)=5. Hence K2=10—b,(3)=5. So KB=KD=-5. This
implies B*=3,

By similar arguments as in the case of type (H), we infer that there is an
exceptional curve E which meets two tips, say Tyand T,. Then F\=T,+2E-+T,
appears as a fiber of a ruling f: S—P%. There exists another fiber F, of the
form T+2E,+T., where E, is another exceptional curve, f is a gyoza and B
is the horizontal component. Then, by (7.9), we get 5,(S)>0 since y=0, This
contradiction proves that type (X) cannot exist.

(8.29) Type (Y). Let D=B+T,+T,+T, where B is the branching com-
ponent and T,’s are the rational twigs of D. They are admissible, and hence
their components are Q-linearly independent. B is not dependent on them in
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NS(S), because otherwise D would be contractible. Thus the components of D
are independent in NS(S)®Q, and so by(S)=by(D) and by(S)=0.

(8.30) By symmetry we may assume d(T)=d(T2)=d(T5). Since 2d(T,) =1,
the triplet (d(T), d(Ty), d(Ts)) is one of the following: (3, 3,3, 2,4,4) or
(2,3,6). In these cases (5, D) is said to be of type Y {3,3, 3}, Y{2,4,4 or
Y {2, 3, 6} respectively.

(831) Type Y{3,3,3}. Set N; be the bark of T, Then (K-+D)*
=(Ny+ N+ No)* =N+ Ni-+Ni=—e(T:)—e(To)—e(Ts) by (6.16). Since d(T)=3,
e(T;=1/3 or 2/3. So, in order that (K+Dy is an integer, we must have either
e(TD=e(T)=e(Ts)=1/3 or e(T)=e(T:)=e(T3)=2/3.

(8.32) In the case e(T)=1/3, T, is a tip with Tj=—3 (cf. (3.8) and (3.9)).
So K+D=Bk(D)=(T';+T,+T,)/3 and (K+D)*=—1. We have also (K+D)D=-2
and K?=10—b,5)=6. Hence KD=—5 and KB=KD—3;KT;=—8. So B*=6.
We will show that such a case does not occur.

Indeed, for an exceptional curve E on 5, we have l=—KE=(B+2/3>:T)E.
By the above observation we see that EaD. So the above equality implies
BE=1. But this contradicts the NC-minimality of (S5, D). See (6.21; 4).

(8.33) Thus e(T;)=2/3 for each 7, and T; is a twig [2, 2]. Write T,=Tun
4T, where Ty is the tip of T;. Then N;=BK(T)=Q2T u+7T:)/3. (K+D)
=—2=(K+D)D. K?=10—by5)=3. So KB=KD=-—3 and B’=Ll.

(834) B=P* and 0—H%S, O)—H"S, o[Bl)—H"(B, 0L B1)—HYS, ©)=0 is
exact. From this we infer r%S, B)=3, Bs|B|=g and |B| defines a birational
morphism p: S—P?% Moreover, for each 7, L;=p(T ) is a line on P2

(8.35) Assume that L,, L, and L, contain a common point x on P2 Clearly
$ is not étale over x. So p is factored as S—P—P?, where P is the blowing-
up of P? at x. Let E be the exceptional divisor on P over x, and let C be
the proper transform of E on S. Then C=P!and C*<0. By a similar argument
as in (8.21), we infer that CCD unless C is exceptional. If C?=—1, then 5P
is étale over E, which implies CT;,=1 for each 7. Then —KC=CZ:T:)(2/3)=2,
which is absurd.

Thus we conclude C—D. So C=T,;, for some 7, and C*=-—2. We may
assume ;=1 without loss of generality. Since C[\ng—Cf\Tag—Q the morphism
5— P is not étale at the two points EnL, and EmL3, where L is the proper
transform of L; on P. Therefore C?<E2—2=-3.

This contradiction proves LiNL.NL;=¢.
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(8.36) Set x;=L.N\Ls, x,=L,N\L, and x;=L,~\L,. p is not étale over
these points, and is lifted to a morphism p’: S—P’, where P’ is the blowing-up
of P* at x, x; and x;. Let E; be the exceptional curve on P’ over x; let L}
be the proper transform of L; on P’ and let C; be the proper transform of E;
on S. Similarly as in (8.35), we infer that C; cannot be exceptional on S, and
must be a component of D. This implies C2=—2 and there exists exactly one
point y; on E; such that p’ is not étale over y,.

(8.37) Since by(S)=7=b,(P")+3, § is the blowing-up of P’ at y,, v, and y,.
Since (Ly)*=-—1=T%+1, each L; contains exactly one point among y5s. So
there are two possibilities: (1) y,=E;NLj, y.=E.NL; and ys=E;N\Li{, or
2) »i=E:NL;, y.=FE,NL{ and y,=E,n\Lj. Both are the same except the
difference between the ways of numbering. We have C,=T;, C,=T,, and
C:=T,; in case (1), or C;=T4, C;=T4 and C;=T;; in case (2). Note that p(B)
is a line on- P? not passing the pomts x1, X2 and x,. Thus we describe the
structure (S D) completely.

(8.38) To calculate NS(S)=Pic(S), let z; be the class in NS(S) of the
exceptional curves on S lying over y;. Clearly NS(S) is generated by zi, 2,
and z,. E;=z; in NS(S) since C;=D. To proceed further, we assume that (1)
is the case. Then, in NS(S), 0=T ,=B—E,—E;—z;, S0 2y+22,=0. Similarly
23+22,=0=2z,-22,. These give z,=—2z,, z,=42, and 9z,=0. Hence NS(S)=Z/9Z.
This implies H(S; Z)=Z/9Z by the universal coefficient theorem, since H¥%S; Z)
=NS(S).

(8.39) We will prove that 7,(S) is abelian. To show this, let D”=D—B and
S”=8—D". By a similar argument as in (8.38), we can show that NS(§")=Z.
Hence Hy(S”; Z) is torsion free. So by(S”)=b,(S)=0 implies H,(S”: Z)=0. On
the other hand, S” contains an open dense subset isomorphic to P*—(L,\UL,\JLy)
= A% Therefore #,(S”) is abelian, so we have n(S")=H(S"; Z)= {1}. By
{4.18), we infer that the vanishing subgroup of B coincides with #,(S). Hence
it is enough to show that a vanishing loop of B is in the center of z,(S).

(8.40) In order to make use of the techniques in [Ral, we fix our notation.
For each prime component D; of D, take a sufficiently small tubular neighbor-
hood U; and let U=\J,U,. Let W=alU be the boundary of U and set W,=WnU,.

Then, as we saw in (1.21), W has the homotopy type oo(S). W, will be called
a wrap of D,.

(841) Using Morse theory as in the proof of the Lefschetz theorem .(cf.
[M1; pp. 427), we can prove that =;(UNS)—xz(S) is surjective, since S is affine.
Hence 7, (W)—=(S) is surjective.
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(8.42) Let ny, -+, ny be the nodes of D lying on D;. Then W, has the
structure of an S'-bundle over D;—\J%_,4;, where 4; is a small disc on D; with
center 7n; Moreover, each fiber (=S") equipped with the orientation coming
from the complex structure represents a vanishing loop of D; in 7(S). '

Thus, W, is a real three dimensional manifold with boundary \J%.,W;;, where
W,; is an S'-bundle over 04;=S*. Let D, be the other component of D passing
n; Then W,; is an S'-bundle over 04}, where 4j is a small disc on D, with
center n;. W,; and W,; are identified in W in such a way that the two pro-
jections W,;—84; and W,;—~04; define an isomorphism W;;=W,;=04;xd4;
=S5t St

(8.43) Suppose that D;=P'. Then, as was explained in [Ra; p. 76], 7,(W;)
is described in the following way.

Let a; (resp. B)en(W;;) be the element defined by a fiber of the projection
W;—d; (resp. 04%). Be careful to define mappings ¢;: m,(W,,)—r,(W.), because
there is no canonical way to define them simultaneously. Following the recipe
in [Ral, we do this by choosing a base point ¢ on W,, and a base point o; on

W,; together with a path in W, connecting o0 and o; for each j=1, -.-, ¢, so that
(W3} is generated by the images of «;s and B;'s (which will be denoted by
a; or B; by abuse of notation) under the relation a,=a,= -+ =a, and B:f: - S,

=(a,)*, where a=—Dj
Theoretically, we can calculate =, (W) by combining the above descriptions
of each =;(W,) with the help of van Kampfen’s theorem.

(8.44) Let T=T,+ ---+7T, be a rational twig of D whose dual graph
Cay, -+, a,] is admissible. Let W be as in (8.40) and let W; be the wrap of T',.
Let B be the component with T.B=1 and not in T, and let n be the node
T.N\B. Set W(T)=\U;W,. Then the boundary oW(T) is a trivial S'-bundle
over g4=S", where 4 is a small disc on T, with center n. Let ofT) and B(T)
be the generator system of =, (0W(T)=Z&BZ as in (843), so that a(T) (resp.
B(T)) represents a vanishing loop of T, (resp. B) in #,(S). Then we have:

(8.45) LEMMA. There is an isomorphism m(W(T)=Z such that B(T) and
a(T) are mapped to dfay, -+, a-l and d[a,, -+, G,-1] respectively.

PROOF. We use the induction on 7. If »=1, by the observation (8.43) we
infer that =;(W(T)) is generated by «(T) and B(T) under the relation S(T)
=a(T)*1. So our assertion is true (d[@]=1 by convention). If r=2, let
T'=T,+ - +T,-; and take «(T’) and S(7") as before. By the induction hypoth-
esis 7;W(T"))=Z and we have a generator 7 of it such that a(T")=yr% and
B(T"y=y%, where d"=d[a,, -, a,-.] and d’=d[a,, -+, @r-1]. By (843), =, (W,)
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is the group generated by a(T”), B8(T’), a(T) and B(T) under the relation «(7T)
=H(T") and B(T)a(T")=pT")r. So, in =, (W(T)), we have a(T)=7% and B(T)
=y¢, where d=a,d’'—d”"=d[a,, -, a,] by (3.6; 1). This proves the lemma.

(8.46) PROPOSITION. Let D be a rational tree on a smooth complete surface
S consisting of several admissible rational twigs Ti, Ty, -+, T, and their common
branching component B. Let W be as in (8.40). Then the vanishing loop of B
represented by a fiber of the wrap of B lies in the center of m(W).

PrROOF. By (8.45) and by van Kampfen’s theorem, we infer that =,(Wp)
(W) is surjective, where Wy is the wrap of B. Moreover, there is a generator
v; of m(W(T)=Z such that B(T,)=7¢T». Hence =, (W) is generated by
71, -+, 7 The vanishing loop of B is f(T)= - =p(T,), so it commutes with
any 7; and hence lies in the center of m,(W). Q.E.D.

(8.47) Now, combining (8.41) and (8.46), we prove that a vanishing loop of
B is in the center of #(S). Thus we obtain #,(S)=H\(S; Z)=Z/9Z for a
surface of type Y {3, 3, 3}.

(848) Type Y {2, 4, 4. Similar arguments as in the case Y {3, 3, 3} will
apply in this case too.

As in (8.31), we must have (e(T), e(T,), e(T.))=(1/2, 1/4, 1/4) or (1/2, 3/4, 3/4)
in order that (K4+D)*=2X;—e(T;) is an integer. In the former case, each T, is
a tip of D and T{=-2, Ti=—4=T% By a similar calculation as in (8.32), we
obtain B*=7. Since K=—B—(2T+3T,+37T,)/4 in this case, by similar arguments
as in (8.21) and (8.32) we prove the following claim: Any curve C on S with
C?*<0 is a component of D or an exceptional curve with CT,=2.

S is a successive blowing-up of a P.-bundle X, over P. By a similar
argument as in (8.24) using the above claim, we infer that both T, and T, are
mapped isomorphically onto their images on X ,. This is impossible because ¥,
contains at most one curve with negative self-intersection number.

Thus we conclude: (e(T), e(T), e(T4))=(1/2, 3/4, 3/4).

(849) For 7=2 and 3, we have T,=T;+T+T; with T4=—2. T, is
the tip and N,=@3T;+2T»+T;:)/4 is the bark of T, Hence we have
—K=B+T1/2+3i 0 3; j=1,2,5] T ¢;/4. Similarly as in (8.33), we obtain B?=0.

(850) LEMMA. Let C be an irreducible reduced curve on S such that C*<0.
Then C s an exceptional curve unless CCD.

Proof is similar as in (8.31).
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(8.51) LEMMA. Let F be a singular fiber of a ruling of 5. Then any S-
component of F is an exceptional curve. Moreover, the sum of the multiplicities
of the S-components of F is not greater than two.

Proor. The first assertion follows straightforward from (8.50). The second
assertion follows from KF=-—2.

(8.52) Since B*=0, there is a ruling f: S—P? such that B is a fiber of f.
Ti, Ty and T, are sections of f. Let F, and F, be the fibers containing
To1+T,e and Ty+-T, respectively. We first claim that F,# F..

Assume that F,=F,. Let X be the component of this fiber F such that
XT,>0. Since FT,=1, the multiplicity of X is one. X is an S-component and
hence exceptional. By (7.3), F contains another exceptional curve Y. In view
of (8.51), we infer that ¥ is of multiplicity one and there is no other S-component
of F. (7.3) says that X and Y are tips of F. Therefore F—X—Y=Ty+T4
+T4+7T;, should be connected. But this is not the case. Thus we prove
F,#F,.

(853) Let E; be the component of F; meeting T,. Since F,T,=1, E; is of
multiplicity one in F; and s exceptional by (8.51). By (7.3) F, has another
exceptional component Ej. This is of multiplicity one by (8.51) and both E; and
Ej are tips of F;. Moreover, by (8.51), we infer that there is no other component
of F;. Thus we obtain Fy=FE;+7T:,+Ty+E; for i=2,3. Using the formula for
K in (849), we see E;Tw=TuEi=TyuEi=T.,E}=1.

In view of 8,(S)=b,(D)=8, we infer that any other fiber of f is isomorphic
to P Moreover, any exceptional curve E on S is one of E,, E,, E}, Ei.
Indeed, by NC-minimality we have EB=0. This implies that E is contained in
some fiber of f. So E must be a component of either F, or F..

854) T,VEJT,, looks like a twig [2, 1, 2]. Hence G,=T +2E,+T,, is a
fiber of a ruling g:S—P! Then B, 7T, and T, are sections of g. There
exists another singular fiber G,=Ej+Ta+TotTas-E; of g, Counting 5.(5),
we infer that there is no other singular fiber of g.

We blow down first E;, E} and Ej and then further the images of T, T
and Ts. Then we get a Plbundle S’ over P!, with g’: 5’—P*! induced by g.
The images T4, and T} of Ty and T, on S’ are sections of g’, disjoint with
each other, and with self-intersection number zero. Therefore §'=P!x P, the
second projection being given by |[T3,|=]|T3s|, which will be denoted by [Z],
with ZePic(S).

Thus, the observations (8.53) and (8.54) describe the structure (S, D) fairly
explicitly.
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(8.55) Clearly Pic(S)=NS(S) is generated by FE;, E; and Ej because of
(854). Let¥Z be as above and let G be the class of a fiber of g or g’. Then
we have Tou=Z—(Tyu+EN—E;, To=Z—(Ty+E;)—E;, B=(Z+4G)—(T1+Ey
—(Te+ED and Ty+2E;+T=G=E}+Ty+Ts+Ts+E;. From this we obtain
E{=3E,, Et=—E, and 8E;=0 in NS(S). Thus we prove NS(S)=Z/8Z.

This implies Hy(S; Z)=Z/8Z by the universal coefficient theorem.

(8.56) To calculate 7,(S), let D”=D—B and S”=5—D". By (854), we infer
that S” contains a Zariski open subset which is isomorphic to S/ (T4 IT5\IGHIGYH
=~ A% Therefore ,(S”) is abelian. So #,(S”)=H,(S”; Z), which is a homo-
morphic image of H\(S; Z). Hence =,(S”) is cyclic.

On the other hand, combining (4.18), (8.46) and a similar argument as in
(8.41), we infer that Ker(z,(S)—x,(S")) is a cyclic group lying in the center of
7.(S). Now we see easily that =,(S) is abelian.

Thus we obtain z.(S)=H,(S; Z)=Z/8Z.

(8.57) The case of type Y {2, 3, 6}.

We obtain (e(T)), e(Ts), e(T))=(1/2, 2/3, 5/6) by a similar method as in (8.48).
Hence To=T s+ Tos Ts=T 01+ T 5o+ T s+ T 54+ T 55, K= —B—(1/2)T—(T 51 +2T:2)/3
—(T31-F2T 3537 53+4T 54+ 5T'55)/6, bo(S)=bo(D)=9 and B?=—1.

(858) The Lemmas (8.50) and (8.51) are valid in this context too.

(859) T..\JB\UT,; looks like a twig [2,1,2]. So F=Typ+2B+Ty; is a
fiber of a ruling f: S—P. T, and T, are sections of f. T, is a double section,
that means, 7,F,=2 for any fiber F, of f.

Let F, be the fiber containing Ty +T s+ T Let B* be the component of
F, meeting T,,. Since F;Ty=1, B* is of multiplicity one in F;. By (7.3) we
infer that there is another exceptional component E of Fy. Thanks to (8.58),
we see that E is of multiplicity one and F, has no other component. Thus
Fo=B*4+-Ty+Tw-Te-E and both B* and E are tips of F; by (7.3). So
B*E=0. If T,E=2, then KE=—1 would imply T';;E=0 by the formula of K
in (8.57). This is impossible because F; is connected. So T.E<2, and similarly
we have B*T,«2. Hence T,F,=2 implies T,E=T,B*=1. Now, from KE
=KB*=—1 and from the formula of K in (8.57), we obtain B*T 3, =FET=1.
Thus the structure of F; is described completely.

Since b,(5)=9, there is still another singular fiber F, of f. F, has no D-
component, so F,=E,--E, for some exceptional curves E, and E,. By symmetry
we may assume E,T,,=1. Then E,T,=0 by E,K=—2 and the formula of K.
So F,T,=2 implies E,T,=2. Hence E,T:=0 by a similar reason as above. So
E,Ty=1 by F,T;=1.
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From 5,(5)=9, we infer that f has no other singular fiber.

(8.60) Studing the ruling f* given by F*=T,+2B*4+T,;, we find a fiber
F% of the form E,;4-E% for an exceptional curve E¥ with E¥T,,=EfTs=1.
The situation is symmetric to (8.59).

(861) T,\JEUT,, looks like a tree [2,1,2]. So G=T,+2E+T, is a fiber
of a ruling g: S—P%. Ty, Tu, B (and also B*) are sections of g. Let G, be
the fiber containing T \JT . In view of (8.60) we see Go=E,+Tu+Te+E%.
Let G, be the fiber containing T';. It must contain an S-component E, meeting
Ty E, is exceptional by (8.58). From E,K=-—1 and from the formula of K
in (857) we infer E;T,=1. Thus we see G;=T 35+ 2E;+Tss.

Since 5,(S)=9, any other fiber of g is smooth.

REMARK. Although we don’t use the fact, S contains no other exceptional
curve except B, B*, E, E,, E,, E¥ and F,.

(8.62) Using (8.61), we calculate Pic(S)=NS(S) in the following way.

We blow down E, E,, E, and E% first, and then the images of T, T and
Ts. Then we get a Pl-bundle g’: S’— P!, where g’ is induced by g. The
images of B, Ty, and T, on S’ is a section of g/, disjoint with each other and
with self-intersection number zero. Therefore they define the same line bundle
Z on §, and §'= P'x P! with the second projection given by |Z]|.

Clearly NS(S) is generated by E, E,, E¥ and E,. In NS(S) we have
B=Z—(T\+E), Tsy=Z—(Toy+E)—E%, Toe=Z—(Tu+Ey)—E, and G=T,+2E
+T3s=Ey+Tyi+Tot+ E¥=T3,+2E;+T;. From them we obtain E=2E,, E¥=3E,,
E,=—F, and 6E,=0 in NS(S). Thus we see NS(S)=Z/6Z.

(8.63) We will prove =,(S)=H.(S; Z)=Z/6Z. Let D"=D—Band S"=5—-D".
Similarly as in (8.56), it suffices to show that =,(S”) is cyclic.

We use (8.61) and (8.62). Let T, Ti, G', G4 and G{ be the images of T,
Tw, G,G, and G, on S’. Then S” contains a Zariski open subset S
=S/ ~(EENMESUE =S —(Ti, T3 UG UGG = Ay X (P— {three points}).
So m,(SY) is isomorphic to the group generated by three elements £, 7, and 7,
under the relation ty,=y¢ for j=2, 3. Here we can take ¢, 7, and 7; in such a
way that 7; is a vanishing loop of Gj for each j and ¢ (resp. {7%) is a vanishing
loop of T, (resp. Ti).

w(S”) is a quotient of this group, and the kernel is generated by the
vanishing subgroups of £, E,;, £% and F,, which are described by (7.18). Thus,
in 7,(S”), we have the relation 1=y, ?=y,s=y¥%. From this we obtain t=y35?
7.=7% and 7§=1. So 7,(S”) is generated by 7, as desired.
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In fact, we can prove m,(S")=x,(S)=Z/6Z.

(8.64) Summarizing the preceding arguments (8.10)~(8.63), we obtain the
following list of NC-minimal completions (S, D) of S such that #(S)=0.(S)
=56,(S)=0. Type O3, 1) and O(5, —1) are included in the list, but they are
not NC-minimal in the strict sense. See (8.17).

Table to (8.64).

Type of (5, D) | b:(S)| bs(S)| m(S)|  Pic(S) 2,(S) for details,
) o | 2| 1 Z/37 Z)3z (8.11)

o, 1, 1) 2 1 |1 0 Z5Z RS
0@, 1) 1|11 0 z (8.13)
ORFL=Ri Lo | 1 | 1| z/k4t2Z | Z/k+DZ <8-(18§)17§Z
HI-L,0,—13! 1 | 0 | 2 Z12Z | <y, Dyty=1| (85)
HEk, L o | 0| 2 Z/shZ Z/ARZ | (8.26)
Y3, 3,3 o 0| 3 Z/92 Z/9% 837)

Y2, 4,4 0o 0 | 4 Z/8% Z/8Z (8-(55% 4‘§‘
Y12, 3, 6) 00| 6 Z/6Z Z/6Z R R

Here, m(S) is the least positive integer such that P, (S)>0.

(8.65) Now we consider the case in which (S, D) is not NC-minimal.
However the blowing-downs of the types (6.21; 2), 3) and 5) are impossible by
(6.22) because 5,(S)=50,(S)=0. If a D-blowing-down (6.21; 1) is possible, we do
it. The result D’ is an NC-divisor, unless E meets a single component Y of D

at different two points.
and S itself does not change.
then b,(S) increases because 5,(S)=0.

In any case D’ has no singularities other than nodes,

When we do half point detachment as in (6.21; 4),

Thus, after several blowing-downs, we reach a situation (§’, D’y where any

blowing-down as in (6.21) is impossible.
detaching b,(S")—0,(S) half-points.
nodes, we can apply (6.11; 1) to the effect K+ D'=(K+D')".

S$’=5"—D’ is obtained from S by
Since D’ has no singularities other than
This is Bk*(D")
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by (6.24). So (8.8) applies. Since D’ is not contractible, it is either of type
(0), (H), (X), (V) or (¥). Hence (§’, D’} is an NC-minimal NC-completion unless
D’ is an irreducible rational curve with one node. In this case S’ is isomorphic
to a surface of type O(5, —1) (see (8.17)). So 6,(S")=0 and hence S=S".

Of course, here we are interested in the case where S’#S. So b(S")
>b,(5)=0. Hence (S’, D) is one of the types O(1, 1, 1), 04, 1) or H[—1, 0, —1].
S is obtained from S’ by attaching one or two half points. Let us examine
these three cases.

(8.66) The case of type O(1, 1, 1). Obviously we have 5,(S)=b,(S")=1 and
Po(S)=P,(S". 71(S")—m,(S) is surjective and hence 7,(S)=H(S; Z). This is
generated by at most two elements. However, we cannot say very much about
the structure of (S5, D) in detail, because there are too many ways to attach
half-point(s) to S’. Here we just present a couple of examples.

867) Let S’=P? and D'=L,+ L.+ L,, where L; are lines on P? having
no common point. S’zS’——D’%Ai. Let x; be the vanishing loop of L; in
7:(S)=ZDZ. Then =,(S) is generated by them under the relation x,+ x,—+ x;=0.

1) Take a point ¢ on L,—(L,\JL,). Blow up 5’ m times with each center
being the point on the proper transform of L, and over ¢, where m is a posi-
tive number. Take a general point y on the final exceptional divisor and let
S be the blowing-up at y. Let D=p~D')—E, where p: 353 is the natural
morphism and E is the exceptional divisor over y. Then S=S5—D is a half-
point attachment of S—p=3(D)=S’. E is of multiplicity m in p*D. Hence, by
(7.18), 7i(S) = {x1, 2o, X/ 21 F 20t x,=mx, =0 = ZP(Z/mZ). So Pic(S)=NS(S)
~H[%S;: Z)=Z/mZ, because HS; Z)=Z.

This type of half point will be said to be of multiplicity m over g& L,.

2) Take a point ¢ on L;—(L,\JL;) and let n be a positive integer. Blow
up S’ n-times over ¢ with each center being a general point on the exceptional
curve at each stage. Let p:S—S’ be the natural morphism and let D=p-(D")—E,
where E is the exceptional divisor of the final blowing-up. Then S=35—D is
a half-point attachment of S’. It is easy to check 5,(S)=50,(S)=0. E is of multi-
plicity one in p*D. Hence, using (7.18), we see n,(S)=H(S; Z)=Z and Pic(S)
=NS(S)=0.

This type of half point will be called a simple half point with moment =
over g.

3) Let ¢, be the point L.,nL, and let m, and ms; be positive integers
coprime with each other. As we saw in (47), we can obtain a twig
Ll (ms/(met-my)), 1, tT(ms/(me+my))] from [1, 1] by successive subdivisional
blowing-ups. Doing blow-ups over ¢, in the same way, we obtain p: S”"—3
such that the multiplicities of the exceptional curve E” on S” of the final
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blowing-up in p*L, and p*L, are m, and m, respectively. Let S be S”—p~(D")
plus a simple half-point with moment one over a general point on E”. Then
we have m,(S)= {x1, %», X5/ %1t %ot Xs=maxs-+mx,=0} =Z. If we attach a half-
point of multiplicity m over a general point on E”, then we would have z(S)
= {%1, Xs, Xa/ X1 XoF xs=mMmax,+mexe) =0} 2 ZPH(Z/mZ).

A half-point of the former type will be said to be of bi-multiplicity (ms, ms)
over q.

4) 1In general, let p: S—3’ be any successive blowing-ups over a point g
on D’. Suppose that the final blowing-up is sprouting, or equivalently, the final
exceptional curve E is of type (6.21; 4), that means, ED=1 for D=p~%(D")—FE.
Then D is connected and hence 5,(S)=0 for S=S—D. We can easily verify
that b,(S)=1 and 5,(S)=0. Thus we get many examples of such surfaces.

5) There are also lots of ways to attach two half-points to S’. But we
must be a little careful, because sometimes we get a surface with b,=b,=1,
not with the desired property b,=56,=0. For example, if the both half-points
lie over general points on L, then we have b,(S)=1. But if they lie over
general points on different lines, say L, and L, then we have b=0,=0 as
desired.

6) For any abelian group generated by two elements, one can find a sur-
face S of type (8.66) whose fundamental group is the given group.

(8.68) The case of type O(4, 1). Roughly speaking, what is valid in case
of type O(,1,1) is valid in case of type O, 1) too. Actually, a surface of
type O(4, 1) itself can be viewed as a half-point attachment of A%. See (8.15.1).

(8.69) The case of type H[—1, 0, —1]. We have by (S)=0,(S")=0 in this
case. As described in (8.5), S’ admits an Al-ruling, which is a gyoza. Hence
so does 5. Therefore there is a mnon-trivial surjective homomorphism Pic(S)
=NS(S)—Z/2Z. 7(S) may and may not be abelian, infinite, according to the
nature of the attached half-point.

Let D'=T11+B,+T o4 Djy+ By+T s +Tss, where Dj is the horizontal com-
ponent with respect to the Al-ruling f and F;=Ty+2B;+T: (=1, 2) are the
singular fibers of f. In order that 5,(S)=0,(S)=0, the attached half-point must
lie on F; or I,. By symmetry, we may assume that it lies over a point ¢ on
Fi.

We can take vanishing loops %, v, z and ¢ of Ty, Ty, B, and Dj respec-
tively such that #,(S”) is the group generated by them under the relation x=yt,
y=tx, z=x°=y% Note that the subgroup generated by z and ¢ is of index two
and is isomorphic to Z&Z. =z is in the center of =,(S").

In z:(S), we have an additional relation described in (7.18). We examine
several cases.
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(1) The case in which y™=1, m being even. In this case z.(S).is non-
abelian and infinite. Indeed, even if y*=1, 7,(S) is the group generated by x
and y under the relation x*=y?=1, the “infinite dihedral group”.

(2) y™=1, m being odd. In this case vy is a multiple of z, and hence in the
center of ,(S). So =,(S) is abelian, because it is generated by ¢ and y. Then
we have t*=1 also. Thus =(S)=(Z/mZ)D(Z/2Z)=Z/2mZ.

(3) t™z"=1, m>0. In this case 7,(S) is finite. Indeed, let H be the sub-
group generated by ¢ and z. Then H is abelian and of index at most two.
Using additive notation, we have mt-+nz=0in H. Considering the inner automor-
phism induced by y, we get —mi+nz=0. So H is finite by m>0. Thus
71(S) is finite.

73(S) is abelian if and only if ¢=—¢ in H. This is equivalent to m=1. If
s0, m(S)=Z/4nZ. '

(3) corresponds to the case in which geB,n\D;. Otherwise, we get a
relation of type (1) or (2) unless ¢=7T ;. In case geTy, we get a relation of
type x™=1, and this case can be treated similarly as in (1) and (2).

(8.70) Summarizing we obtain the following

THEOREM. Let S be an algebraic surface with #(S)=50,(8)=6,S)=0. Then

D) if PyS)=0, then S is one of the types Y {3, 3, 3}, Y{2,4, 4}, Y {2, 3, 6}.

2) wy(S) is abelian unless S is of type H[—1, 0, —1] or half-poini attachment
of it, where S admits an Ak-ruling which is a gyoza.

3) Pic(S)=NS(S)#0 unless S is of type (0), or half-point(s) attachment of
it. In particular, by(S)=1 in this case. So H¥S; Z)+0 in any case.

4) P(S)=1 if and only if by(S)>0.

5) b(S)<2. The equality holds if and only if S is of type (%).

6) w.(S) is generated by suitable two elements.

7) H(S; Z) is cyclic unless S is (a half-point attachment of) a surface of
type O(1, 1, 1) or H[—1,0, —17.

8) bi(S)=0 unless S is either of type H[—1,0, —17 or (a half-point aitach-
ment of) Aj.

§9. Applications and comments,

(9.1) THEOREM. Let S be a quasi-complete surface such that by(S)=5y(S)=0
and H¥S; Z)=0. Then £(S)=2 unless S==2A®

PrROOF. S is algebraic by (24; 2). #S)#=1 by (7.15). #S)+0 by (8.70; 3).
If Z(S)=—co, then S= A% by (5.7).
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(9.2) COROLLARY. C? admits only one quasi-complete structure.

For a proof, use (1.9) to infer £+2. This fact itself was proved by
Ramanujam by a different method. See [Ra].

(9.3) THEOREM. Let S be a quasi-complete surface such that by (S)=5,(5)=0,
and w,(S)=Z. Then one of the following conditions is satisfied.

1) E(S)=2.

2) Sz=A'XAL

3) The one point compactification of S admits a structure of a normal
analytic space. In particular, there is no non-constant holomorphic functions on S.

ProoF. We have b,(S)=5,(S)+5,(S)=1. When 5,(S)=b,5)=0, S is algebraic
by (24; 2). Actually S is affine. #(S)#1 by (7.15). E(S)#0 by (8.70; 3). If
£(S)=—o0, then (5.7) proves the condition 2). Thus 1) or 2) is the case.

So consider the case 5;(S)=1=b,(5), where (S, D) is an NC-completion of S.
So, following [Ko 2], we see A%S)=0 and A%¥S)=1. b(S)=0 implies that
H*S; Q) is generated by the Chern classes of components of D. Hence p (8)=0.
Therefore X(S: 0)=0 and c¢?=—c,=—b,(5) by Noether’s formula. So b+—b-
=(c3—2¢,)/3=—b,(S) by index theorem, which implies that the cup product
pairing on H*S; @) is negative definite. Hence D is connected and contractible
in the sense (3.3). By Grauert’s criterion [G], D can be actually contracted to
a normal point. Thus 3) is valid.

REMARK. We do not know whether a surface of the above type 3) really
exists or not. It is not difficult to show that S must be of algebraic dimension
zero. Furthermore, S cannot be a Hopf surface. Indeed, since by(D)=b,(S)+54S)
=1, any component of D is a rational curve. So we have a non-trivial morphism
P35, which is lifted to a non-constant morphism P!'—U to the universal
covering U of 5. Thus I/ contains a compact analytic curve, hence cannot be
a domain in any Stein manifold.

(9.4) COROLLARY. CxC* admits only one quasi-complete structure.
This was proved by Suzuki [Sz] by a similar method as in [Ra].

(9.5) Actually, the above arguments work in more general context too.
First we have the following

THEOREM. Let S be a quasi-complete surface with by,(S)=0. Then S is
algebraic unless S is compactified to a normal analytic space by adding finite
points. Thus, in the non-algebraic case, there is no non-constant holomorphic
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Sfunctions on S.

Outline of proof. Let (5, D) be an NC-completion of S. If 5(S) is even,
then S is algebraic by (2.4; 2). We have pg(§):0 by (2.4; 1) in any case. So,
if 5y(S) is odd, we infer that D is contractible by a similar argument as in (9.3).
Hence, by Grauert’s criterion, any connected component of D can be contracted
to a normal point. This proves the assertion.

(9.6) THEOREM. CX {C-several poinis} admits only one quasi-complete struc-
ture.

PROOF. Any q.c. structure is algebraic by (9.5). £+#2 by Nevannlinna-Sakai
theory (cf. (1.9)). £#1 by (7.15. E=0 by (8.70; 3). Therefore §=—oo, and
(5.7) applies. Q.E.D.

9.7) REMARK. In case of C*XC*, the problem becomes a little subtler.
However, Ueda [U] and Suzuki [Sz] managed to prove that the quasi-complete
structures on it are one of the types described in (1.23).

(9.8) Now we consider cancellation problems.

DEFINITION. A quasi-complete variety V is said to be cancellation stable
if VXT=WXT implies V=W. A quasi-complete invariant ¢ is called a can-
cellation invariant if VX T=WXT implies (V)=«W). Here, T and W are also
quasi-complete varieties.

Of course, a variety is cancellation stable if it is characterized by cancellation
invariants.

(9.9) Examples of cancellation invariants.

1) dimV.

2) The number of irreducible components of the singular locus of V. In
particular, if VXT=WXT and if V is smooth, then W is smooth.

3) H(V;Z) and H?V; Z). Cancellation invariance follows from the
Kiinneth formula.

4) Logarithmic tensor invariants as in (1.8), including £. For a proof of
their cancellation invariance, see [Km].

5) A(V)</C* and HY(V ; Z). See [Km; 45].

6) Any birational cancellation invariants of V. Its algebraic dimension.
Irregularity ¢(V)=h"%V). And so on.

7 A V; Z) is a cancellation invariant for a smooth manifold V. To see
this, we note first that VXT=W XT implies that W is smooth. Hence, con-
sidering the smooth part, we obtain VX T, =W XT, for the smooth part of T.
So it is enough to show the cancellation invariance assuming that T is smooth.
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Let V and T be smooth completions of V and T. Then we have HXVXT)
=~ HYVYGHYVYQHNT))DHXT), where the coefficients of the cohomology groups
are Z. From this we obtain BV XT)=HV)BH V)QHTHOHXT). We
have HY{W)=HYV) by 6). Applying the above formula to WXT too, we infer
that H*(V)=H*W).

We don’t know whether other H?’s and Hvs are cancellation invariants or
not.

8) If V is a manifold with ¢(V)=0 (e.g. rational), then NS(V)=Pic(V) is
a cancellation invariant of V. To show this, we may assume that T is smooth
as in 7). Then, similarly as above, we have NS(V)PNS(T)=NS(V X T), because
g(V)=0 implies H(V)=0. Since H*(W)=0 by 6), we have similarly NS(W X T)
=NS(W)PBNS(T). Now we infer NS(V)=NS(W). By virtue of (L18; 3),
¢(V)=0 implies Pic(V)=NS(V). So Pic(W)=NS(W) too.

(9.10) Examples of cancellation stable varieties.

1) A'X {A'—k points}, k<4. To prove the cancellation stability, use (5.7).
When k=b,V)=4, then we can prove W=A!X {4'—F points}, but the isomor-
phism classes of {A'—Fk points} may depend on the position of these £ points.

.2) A2 For a proof, use (8.70).

3y Any surface of type (Y) in (8.64) is cancellation stable. We give a
proof in case of type Y {3, 3, 3}. Similar arguments work in other cases too.

Using (8.70; 1), we infer that W is also of type Y {3,3,3}. By (8.37), the
isomorphism class of a surface of type Y{3,3,3} is determined by the four
lines L,, L,, Ly and p(B)on P% All such quadruplets are projectively equivalent
to each other on P Hence all surfaces of type Y {3, 3, 3} are isomorphic to
each other. In particular, V=W.

4) Perhaps you can find many other examples for yourself,

(9.11) Problem. Is w(V) a cancellation invariant ?

(9.12) Now we discuss positive characteristic versions of our theory. The
first trouble is the lack of a desingularization theory. However, as was shown
in [KmJ], many invariants in §1 can be defined for resolvable varieties. In
particular, Pic(V), NS(V), A(S) and any logarithmic tensor invariants including
£ are well-defined.

)i »V: Z) and ﬁ‘l(V; Z) are not defined in the abstract context. However,
b,(V) and 5,(V) can be defined by virtue of étale cohomology theory.

(9.13) After necessary modifications; Theorem (2.4) can be proved in positive
characteristic cases too. (2.1) will be proved also, if we assume that f is
separable. (2.12) is proved for z{", p=char(®). Here, similarly as the algebraic
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fundamental group m, #{” is defined by considering all the finite étale Galois
coverings whose mapping orders are prime to p.

(9.14) The theory of Zariski decomposition of pseudo-effective divisors are
valid in any characteristic cases. However, at present, the author does not know
how we can generalize Kawamata’s theory as in (6.11), (6.25) and (3.1). Perhaps
the statements given in this paper are valid without any change.

(9.15) The analysis of singular fibers of a ruling can be done independently
of char(®). So, most results in §4 and many results in §5 and §7 are valid in
positive characteristic cases too. However, the author does not know exactly
how to generalize the results concerning fundamental groups, especially when
char(®)=2, 3 or 5. ‘

(9.16) The A'ruling theorem (5.3) is valid in any characteristic (cf. [KmJ).
So (5.7), and hence (9.10; 1), are true in positive characteristic cases too. The
author does not know how we can generalize (5.8), (5.12), (5.13), (5.15) and (5.16),
especially in low characteristic cases.

(9.17) At present, the author can prove (6.25) under the additional assump-
tion that Picy(S) is reduced.

(9.18) The proposition (7.15) is valid in any characteristic, if we assume NS(S)
=0=0b,(S) instead of H*S; Z)=0. The results in §8, except those concerning
7, are true in any characteristic, if we can prove (6.11; 1) and (8.1).
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Note added in proof. The author finds an error in the argument (7.14). In
fact, the assertion is not true in case 2). So, in (7.15), b,(S)=0 is possible
although we can still prove that z,(S) is nom-abelian. In (7.16) and (9.1) we
need to assume r,(S)={1}. Details will appear in future.



