On degeneration of rational surfaces
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In this paper we shall prove the following:

THEOREM 1. Let K be a complete discrete valuation field whose residue field
k is algebraically closed and of characteristic zero. Let X be a 2-dimensional
smooth projective variety over K such that XX xK is birationally equivalent to
the projective space P% over K, where K denotes the algebraic closure of K. Then
X has at least one K-rational point.

The surface X as in Theorem 1 is called a rational surface over K. We note
that a rational surface over K is not necessarily birationally equivalent to P%
over K (Example 1). In the geometric language our theorem means the following:
Let D={zc C; |z]<1} be a disc, let X, be a projective variety over D, and let
7. Xp—D be the projection. We assume the following conditions:

(1) Xp is non-singular,

(2) The fibers n~(z) for z€ D*=D\{0} are non-singular rational surfaces, and

(3) Any irreducible component of #7*(0) is non-singular and cross normally
each other.

Then z7'(0) has a component of multiplicity one. We note that the family X, is
not necessarily birationally equivalent to a smooth family of rational surfaces over
D.

Theorem 1 was raised as a problem by T. Mabuchi, who encountered this
problem during his study of 3-folds with negative Kodaira dimension. The author
would like to thank him for stimulating discussions.

The author is partly supported by the Sakkokai Foundation.

1. Preliminaries

A field K is called a C,-field, if every homogeneous polynomial of degree d
in m variables over K with d<m has a non-trivial zero in K.

'THEOREM 2 (Theorem 10 of [2]). Let K be a complete discrete valuation field
whose residue field k is algebraically closed. Then K is a C;-field.
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PRrROPOSITION 3 ([5] Chap. X, Prop. 10). If K is a C,-field, then the Brauer
group of K 1s zero, i.e., the following holds: Let X be a smooth projective variety
over K such that X=XxxK is isomorphic to P% over K, where K denotes the
algebraie closure of K. Then X is isomorphic to Pk.

PROPOSITION 4 {[5] Chap. X, Application after Prop. 11). If K is a C;-field,
then every principal homogeneous space over o torus over K is trivial.

From now on we assume that K is a field as in Theorem 1. For an algebraic
variety X over K, we denote by X(K) the set of K-rational points on X.

COROLLARY 5. Let X and X’ be smooth projective surfaces over K. Assume
that X and X' are birationally equivalent over K. Then X(K)#Q if and only
of X'(K)#d.

PrROOF. We can reduce it to the following ease: there is a monoidal trans-
formation f: X'—X with center p on X. First, if ge X/(K), then flg) ¢ X(K).
On the other hand, if ¢ X(K) and r+#p, then f~{r)e X/(K). If pe X(K), then
the exceptional curve E=f"1(p) is isomorphic to Pk, and hence X'(K)DE(K)+J.

Q.E.D.

Example 1. By Theorem A of [3], cubic surfaces z3-+x}+=xi+ax, where
a; € KX\(K*)® for 1=1,2 are birationally equivalent, if and only if a,az' ¢ (K>3,
Thus there are cubie surfaces over K which are not birationally equivalent to P%
over K.

2. Proof of Theorem 1

A rational surface X over a field K is defined to be a smooth 2-dimensional
projective variety over K such that Xx K is birationally equivalent to P%, where
K is the algebraic closure of K.

THEOREM 6 ([1] Theorem 1). Any minimal rational surface X is one of the
Jollowing:

(1) Pk

2) a quadric @ in Pk such that Pic Q=2Z.

(8) PicX=ZxZ, and there is a morphism f: X—C such that C and the
generic fiber X, are smooth curves of genus 0.

(4) Pie X=2Z, and it is generated by the ample anticanonical sheaf Q%
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Let K be a complete discrete valuation field and let X be a rational surface
as in Theorem 1. By Corollary 5 we may assume that X is minimal. We shall
check that X{K)# @ in each case of Theorem 6.

case (1): trivial.

case (2): This follows from Theorem 2.

case (3): By Proposition 3, C is isomorphic to P%. Using Bertini’s theorem,
we choose a point peC(K) such that fi(p) is smooth. Then JHp) is again
isomorphic to Pk. Thus X(K)>f(p)(K)*.

case (4): In this case X=XX K is a del Pezzo surface (cf. Section 24 of [4]).
Let d=(2x. 24) be the degree of X. We know that 1<d<9.

If d=9, then X is isomorphic to P%. Hence X(K)# by Proposition 3.

If d=8, then X is isomorphic to either Pk X Pk or F%, where the latter is
obtained by blowing up one point from P%.

If d<7, then X is obtained from P% by blowing up (9—d)-points =y, ...,z
of “general position” on P%. Let h: X—P% be the projection. An exceptional
curve of the first kind E on X is defined to be a non-singular rational eurve with
(E. E}=—1. Let E be the set of all exceptional curves of the first kind on X.
The Galois group G=Gal(K/K) acts on X and each g¢@ sends an exceptional
curve of the first kind to another. Sinece Pic X=Z, all the exceptional ecurves on
X are conjugate under the action of G. Thus, there is an element g€ G which

«induces a cyelic simply transitive action on E.

THEOREM 7 (Theorem 26.2 of [3]).

(1) The image h(E) of an arbitrary exceptional curve E of the first kind on
X is one of the following type:

(1) omne of the points x,,

(ii) « Iine passing through two of the points =,

(iii) @ conic passing through five of the points x;,

(iv) a cubic passing through seven of the poimts z; such that one of them is
o double point,

(v) a quartic passing through eight of the points x; such that three of them
are double points,

(vi) @ quintic passing through eight of the points x; such that siz of them
are double points,

(vii) a sextic passing through eight of the points w; such that seven of them
are double points and one is a triple point.
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(2) The number n=n(d) of exceptional curves of the first kind on X is given
by the following table:

d 1 2 3 4 5 6 7
n 240 56 27 16 10 6 3 1

First, we treat the following cases:

(i) d=3,

(i) d=6,

(i) d=8 and X=PkXP%.

subease (i): In this case X is a cubic surface in P% Then X(K)#Q by
Theorem 2.

subcase (ii): Let D be the union of all the exceptional curves on X. Then
X\D becomes a principal homogeneous space over some 2-dimensional K-torus
by Theorem 30.3.1 of [4]. By Proposition 4, it is a K-torus. Thus X\D has a
K-rational point (for example, the origin).

subcase (iii): Pic X has two generators L; and L, corresponding to the genera-
tors of lines on X. Since Pic X=2Z, the Galois group G=Gal (K/K) interchanges
them. Put K,=K(/2), where t is a uniformizing element of K with respect to
the given valuation. Then the unique subgroup G,=Gal (KIK,) of index 2 in G
acts on Pic X trivially. Putting X;=XxK;, we obtain Pic X;=Z®Z. Thus X,
falls into the class (8) of Theorem 6. Hence X (K))#@. Let PeXi(K;). If
Pe X(K), then we are done. If not, let @ be the conjugate point of P over K.
There are two cases: (a) P and @ are on a line L of self-infersection zero on X.
Then L is K-rational and has a K-rational point by Proposition 8. (b) P and @
are not on a line of self-intersection zero. Then, blowing up P and @, we obtain
a del Pezzo surface X’ of degrée 6 over K. By the subease (i}, X"(K)# . There-
fore, X(K)q&@. Q.E.D.

We shall complete the proof of Theorem 1 by the following:
LEMMA 8. In the remaining cases, X is not minimal.

PrOOF. If d=8, then the only exceptional curve E on X is invariant under
the action of G. Thus E can be blown down.

The elements of E and their intersections give a configuration. We shall
show that there can be no simply transitive eyelic action on E which preserves
the above configuration, if d=7, 5, 4, 2 or 1. In the following drawings, a ter-
minal denotes an element of E and a cord between them denotes an intersection.
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A double cord and a triple cord denote a double and a triple intersections, re-
spectively. Let g denote the simply transitive cyclic action on E induced by the
Galois action of G. Thus E={g*E}o<s<n@ for an E€E, and g® =id.

If d=7, then the configuration of E is the following:

o—0—0

It is trivial that there is no possibility of g.
If d=5, then the configuration is as follows:

Let S={ke 2/10Z; (¢*E.E)=1}. Then #S=3. Since (g*E.E)=(E.¢"'E), if k€S,
then —kcS. Thus 5¢8. Let k be another element of S. Then the set {E, g*E,
¢*"*E, ¢°E} makes a square in the configuration, which does not exist, a contra-
diction.

Let d=4 and let S={ke Z/16Z; (¢*E.F)=1} as above. Then $S=5. If k€S,
then —keS. Thus 8¢S. We also know that if 4,5€S, 0s4i%5#0, then
(¢°E.g'E)=0. Hence i—j¢ S. On the other hand, any E’€E can be joined with
E by a succession of at most two cords. Thus S+S coincides with the whole
Z/16Z. Then the possible S are the following: (a) {1,8,8,13,15}, (b) {1,5,8,11, 15},
() {3,7,8,9,13}, and (d) {5,7,8,9,11}. The replacements g,=¢°, g.=¢° and g;=¢"
reduce (b), (¢) and (d) to (a), respectively. Thus we consider only the case (a).
Let E;={¢g*E; k¢ S} and E,=FE\(E;U{E}). Then we observe that for each E'€E,
there are exactly two cords joining E’ with E,. But since 14=15+15=13+1
(mod 16), there are three cords joining g**E€ E, with E,, a contradiction.

Let d=2. In this cagse there appear double cords. There is only one E'€E
such that (E.E)=2. Hence E'=¢g2E by symmetry. Let S={k¢ Z[66Z; (g*E.E)=1]}.
Then #S=27. If keS8, then —kcS. Hence the order of S must be even, a
contradiction.

Finally, letd=1. In this case there appear triple cords. We consider only
the double cords. Let S={kc Z/240Z; (¢*E.E)=2}. Then $S=56. The configura-
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tion of {E}U(g*E; k¢ S} with respect to double cords is as follows:

There are 28 pairs {a; b} (i=1,...,28) in S such that (¢guE. E)={(¢%E. E)=
(9E. g%E)=2 and (g%E. g%E)=(g4E. ¢"iE)=(ghE. gE)=0 for i#j. Pick a
pair {a;,b;}. Then a;,—b;€S. If a,—b,=b; (mod 240), then {a;—b;, a;} gives another
pair and we have a configuration as follows:

<

But this is a contradiction. Hence a;=2b; (mod 240). Similarly, b;=2a; (mod 240).
Thus 3a,=8b;=0 (mod 240). This contradicts the fact that #S=56. Q.E.D.
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