On degeneration of rational surfaces

By Yujiro KAWAMATA

In this paper we shall prove the following:

THEOREM 1. Let K be a complete discrete valuation field whose residue field k is algebraically closed and of characteristic zero. Let X be a 2-dimensional smooth projective variety over K such that $X \times_K \overline{K}$ is birationally equivalent to the projective space P_K^2 over \overline{K} , where \overline{K} denotes the algebraic closure of K. Then X has at least one K-rational point.

The surface X as in Theorem 1 is called a *rational surface* over K. We note that a rational surface over K is not necessarily birationally equivalent to P_K^2 over K (Example 1). In the geometric language our theorem means the following: Let $D=\{z\in C; |z|<1\}$ be a disc, let X_D be a projective variety over D, and let $\pi\colon X_D\to D$ be the projection. We assume the following conditions:

- (1) X_D is non-singular,
- (2) The fibers $\pi^{-1}(z)$ for $z \in D^* = D \setminus \{0\}$ are non-singular rational surfaces, and
- (3) Any irreducible component of $\pi^{-1}(0)$ is non-singular and cross normally each other.

Then $\pi^{-1}(0)$ has a component of multiplicity one. We note that the family X_D is not necessarily birationally equivalent to a smooth family of rational surfaces over D.

Theorem 1 was raised as a problem by T. Mabuchi, who encountered this problem during his study of 3-folds with negative Kodaira dimension. The author would like to thank him for stimulating discussions.

The author is partly supported by the Sakkokai Foundation.

1. Preliminaries

A field K is called a C_1 -field, if every homogeneous polynomial of degree d in m variables over K with d < m has a non-trivial zero in K.

Theorem 2 (Theorem 10 of [2]). Let K be a complete discrete valuation field whose residue field k is algebraically closed. Then K is a C_1 -field.

PROPOSITION 3 ([5] Chap. X, Prop. 10). If K is a C_1 -field, then the Brauer group of K is zero, i.e., the following holds: Let X be a smooth projective variety over K such that $\overline{X} = X \times_K \overline{K}$ is isomorphic to P_K^n over \overline{K} , where \overline{K} denotes the algebraic closure of K. Then X is isomorphic to P_K^n .

PROPOSITION 4 ([5] Chap. X, Application after Prop. 11). If K is a C_1 -field, then every principal homogeneous space over a torus over K is trivial.

From now on we assume that K is a field as in Theorem 1. For an algebraic variety X over K, we denote by X(K) the set of K-rational points on X.

COROLLARY 5. Let X and X' be smooth projective surfaces over K. Assume that X and X' are birationally equivalent over K. Then $X(K) \neq \emptyset$ if and only if $X'(K) \neq \emptyset$.

PROOF. We can reduce it to the following case: there is a monoidal transformation $f\colon X'\to X$ with center p on X. First, if $q\in X'(K)$, then $f(q)\in X(K)$. On the other hand, if $r\in X(K)$ and $r\neq p$, then $f^{-1}(r)\in X'(K)$. If $p\in X(K)$, then the exceptional curve $E=f^{-1}(p)$ is isomorphic to \mathbf{P}^1_K , and hence $X'(K)\supset E(K)\neq\varnothing$. Q.E.D.

Example 1. By Theorem A of [3], cubic surfaces $x_0^3 + x_1^3 + x_2^3 + a_i x_3^3$, where $a_i \in K^{\times} \setminus (K^{\times})^3$ for i=1,2 are birationally equivalent, if and only if $a_1 a_2^{-1} \in (K^{\times})^3$. Thus there are cubic surfaces over K which are not birationally equivalent to P_K^2 over K.

2. Proof of Theorem 1

A rational surface X over a field K is defined to be a smooth 2-dimensional projective variety over K such that $X \times_K \overline{K}$ is birationally equivalent to P_K^2 , where \overline{K} is the algebraic closure of K.

THEOREM 6 ([1] Theorem 1). Any minimal rational surface X is one of the following:

- (1) P_{K}^{2} .
- (2) a quadric Q in P_K^3 such that $Pic Q \cong Z$.
- (3) Pic $X \cong \mathbb{Z} \times \mathbb{Z}$, and there is a morphism $f: X \to \mathbb{C}$ such that \mathbb{C} and the generic fiber X_{η} are smooth curves of genus 0.
 - (4) Pic $X \cong \mathbb{Z}$, and it is generated by the ample anticanonical sheaf Ω_X^{-1} .

Let K be a complete discrete valuation field and let X be a rational surface as in Theorem 1. By Corollary 5 we may assume that X is minimal. We shall check that $X(K) \neq \emptyset$ in each case of Theorem 6.

- case (1): trivial.
- case (2): This follows from Theorem 2.
- case (3): By Proposition 3, C is isomorphic to P_K^1 . Using Bertini's theorem, we choose a point $p \in C(K)$ such that $f^{-1}(p)$ is smooth. Then $f^{-1}(p)$ is again isomorphic to P_K^1 . Thus $X(K) \supset f^{-1}(p)(K) \neq \emptyset$.
- case (4): In this case $\overline{X} = X \times_K \overline{K}$ is a del Pezzo surface (cf. Section 24 of [4]). Let $d = (\Omega_X, \Omega_X)$ be the degree of X. We know that $1 \le d \le 9$.
 - If d=9, then \overline{X} is isomorphic to P_K^2 . Hence $X(K)\neq\emptyset$ by Proposition 3.
- If d=8, then \overline{X} is isomorphic to either $P_{K}^{1} \times P_{K}^{1}$ or F_{K}^{1} , where the latter is obtained by blowing up one point from P_{K}^{2} .

If $d \le 7$, then \overline{X} is obtained from P_R^2 by blowing up (9-d)-points x_1, \ldots, x_{9-d} of "general position" on P_R^2 . Let $h \colon \overline{X} \to P_R^2$ be the projection. An exceptional curve of the first kind E on \overline{X} is defined to be a non-singular rational curve with (E, E) = -1. Let E be the set of all exceptional curves of the first kind on \overline{X} . The Galois group $G = \operatorname{Gal}(\overline{K}/K)$ acts on \overline{X} and each $g \in G$ sends an exceptional curve of the first kind to another. Since $\operatorname{Pic} X \cong Z$, all the exceptional curves on \overline{X} are conjugate under the action of G. Thus, there is an element $g \in G$ which induces a cyclic simply transitive action on E.

THEOREM 7 (Theorem 26.2 of [3]).

- (1) The image h(E) of an arbitrary exceptional curve E of the first kind on \overline{X} is one of the following type:
 - (i) one of the points x_i ,
 - (ii) a line passing through two of the points x_i ,
 - (iii) a conic passing through five of the points x_i ,
- (iv) a cubic passing through seven of the points x_i such that one of them is a double point,
- (v) a quartic passing through eight of the points x_i such that three of them are double points,
- (vi) a quintic passing through eight of the points x_i such that six of them are double points,
- (vii) a sextic passing through eight of the points x; such that seven of them are double points and one is a triple point.

(2) The number n=n(d) of exceptional curves of the first kind on \overline{X} is given by the following table:

First, we treat the following cases:

- (i) d=3,
- (ii) d=6,
- (iii) d=8 and $\overline{X}=P_R^1\times P_R^1$.

subcase (i): In this case X is a cubic surface in P_K^3 . Then $X(K) \neq \emptyset$ by Theorem 2.

subcase (ii): Let D be the union of all the exceptional curves on \overline{X} . Then $X\backslash D$ becomes a principal homogeneous space over some 2-dimensional K-torus by Theorem 30.3.1 of [4]. By Proposition 4, it is a K-torus. Thus $X\backslash D$ has a K-rational point (for example, the origin).

subcase (iii): Pic \overline{X} has two generators L_1 and L_2 corresponding to the generators of lines on \overline{X} . Since Pic $X\cong Z$, the Galois group $G=\operatorname{Gal}(\overline{K}/K)$ interchanges them. Put $K_1=K(t^{1/2})$, where t is a uniformizing element of K with respect to the given valuation. Then the unique subgroup $G_1=\operatorname{Gal}(\overline{K}/K_1)$ of index 2 in G acts on Pic \overline{X} trivially. Putting $X_1=X\times_K K_1$, we obtain Pic $X_1\cong Z\oplus Z$. Thus X_1 falls into the class (3) of Theorem 6. Hence $X_1(K_1)\neq\varnothing$. Let $P\in X_1(K_1)$. If $P\in X(K)$, then we are done. If not, let Q be the conjugate point of P over K. There are two cases: (a) P and Q are on a line L of self-intersection zero on \overline{X} . Then L is K-rational and has a K-rational point by Proposition 3. (b) P and Q are not on a line of self-intersection zero. Then, blowing up P and Q, we obtain a del Pezzo surface X' of degree 6 over K. By the subcase (ii), $X'(K)\neq\varnothing$. Therefore, $X(K)\neq\varnothing$.

We shall complete the proof of Theorem 1 by the following:

LEMMA 8. In the remaining cases, X is not minimal.

PROOF. If d=8, then the only exceptional curve E on \overline{X} is invariant under the action of G. Thus E can be blown down.

The elements of E and their intersections give a configuration. We shall show that there can be no simply transitive cyclic action on E which preserves the above configuration, if d=7, 5, 4, 2 or 1. In the following drawings, a terminal denotes an element of E and a cord between them denotes an intersection.

A double cord and a triple cord denote a double and a triple intersections, respectively. Let g denote the simply transitive cyclic action on E induced by the Galois action of G. Thus $E = \{g^k E\}_{0 \le k < n(d)}$ for an $E \in E$, and $g^{n(d)} = \mathrm{id}$.

If d=7, then the configuration of E is the following:

It is trivial that there is no possibility of g. If d=5, then the configuration is as follows:

Let $S=\{k\in \mathbb{Z}/10\mathbb{Z}; (g^kE.E)=1\}$. Then $\sharp S=3$. Since $(g^{-k}E.E)=(E.g^kE)$, if $k\in S$, then $-k\in S$. Thus $5\in S$. Let k be another element of S. Then the set $\{E, g^kE, g^{5+k}E, g^5E\}$ makes a square in the configuration, which does not exist, a contradiction.

Let d=4 and let $S=\{k\in \mathbb{Z}/16\mathbb{Z};\ (g^kE.E)=1\}$ as above. Then $\sharp S=5$. If $k\in S$, then $-k\in S$. Thus $8\in S$. We also know that if $i,j\in S$, $0\neq i\neq j\neq 0$, then $(g^iE.g^jE)=0$. Hence $i-j\notin S$. On the other hand, any $E'\in E$ can be joined with E by a succession of at most two cords. Thus S+S coincides with the whole $\mathbb{Z}/16\mathbb{Z}$. Then the possible S are the following: (a) $\{1,3,8,13,15\}$, (b) $\{1,5,8,11,15\}$, (c) $\{3,7,8,9,13\}$, and (d) $\{5,7,8,9,11\}$. The replacements $g_1=g^5$, $g_2=g^3$ and $g_3=g^7$ reduce (b), (c) and (d) to (a), respectively. Thus we consider only the case (a). Let $E_1=\{g^kE;\ k\in S\}$ and $E_2=E\setminus (E_1\cup \{E\})$. Then we observe that for each $E'\in E_2$ there are exactly two cords joining E' with E_1 . But since $14\equiv 15+15\equiv 13+1$ (mod 16), there are three cords joining $g^{14}E\in E_2$ with E_1 , a contradiction.

Let d=2. In this case there appear double cords. There is only one $E' \in E$ such that (E.E')=2. Hence $E'=g^{28}E$ by symmetry. Let $S=\{k \in \mathbb{Z}/56\mathbb{Z}; (g^kE.E)=1\}$. Then $\sharp S=27$. If $k \in S$, then $-k \in S$. Hence the order of S must be even, a contradiction.

Finally, let d=1. In this case there appear triple cords. We consider only the double cords. Let $S=\{k\in \mathbb{Z}/240\mathbb{Z}; (g^kE.E)=2\}$. Then $\sharp S=56$. The configura-

tion of $\{E\} \cup (g^k E; k \in S\}$ with respect to double cords is as follows:

There are 28 pairs $\{a_i, b_i\}$ $(i=1, \ldots, 28)$ in S such that $(g^a:E. E) = (g^b:E. E) = (g^a:E. g^b:E) = 2$ and $(g^a:E. g^a:E) = (g^a:E. g^b:E) = (g^b:E. g^b:E) = 0$ for $i \neq j$. Pick a pair $\{a_i, b_i\}$. Then $a_i - b_i \in S$. If $a_i - b_i \not\equiv b_i \pmod{240}$, then $\{a_i - b_i, a_i\}$ gives another pair and we have a configuration as follows:

But this is a contradiction. Hence $a_i \equiv 2b_i \pmod{240}$. Similarly, $b_i \equiv 2a_i \pmod{240}$. Thus $3a_i \equiv 3b_i \equiv 0 \pmod{240}$. This contradicts the fact that $\sharp S = 56$. Q.E.D.

References

- Iskovskih, V. A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv. 14 (1980), 17-39.
- [2] Lang, S., On quasi algebraic closure, Ann. of Math. 55 (1952), 373-390.
- [3] Manin, Yu. I., Rational surfaces over perfect fields II, Math. USSR-Sb. 1 (1967), 141-168.
- [4] Manin, Yu. I., Cubic Forms, North-Holland Publ., Amsterdam, 1974.
- [5] Serre, J.-P., Corps Locaux, Hermann, Paris, 1968.

(Received April 9, 1981)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan