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Introduction

Let X be a compact complex manifold of dimension m and f: X—X a holo-
morphic mapping. The holomorphic Lefschetz number of f, denoted by L(f), is
defined by

M3

(1) , L{f)= S (—1)*trace H*f

1l
-3

P

where H?f is the linear endomorphism on the (0, p)th Dolbeault cohomology group
of X induced from f. When X is endowed with a hermitian metric g, we have
an analytic expression of L(f) as follows. Let [1,=33*+8*3: A%?X—>A%X denote
the complex Laplacian acting on the space of smooth (0, p)-forms on X and

¢,(t; @, ¥), t>0, the fundamental solution of the heat operator I:I,,+dit. Then L(f)

is represented as
(2) L(f)="g f (—1)?trace (fX1)*e,(t; =, x) dvol.
X

{See, for example, K.)

Assume that each component Y of the fixed point set of f is nondegenerate, i.e.
Y is a regular complex submanifold and the kernel of I-df:T,X—T, X is exactly
equal to T,Y for any y€Y. Fix a smooth fibration z:Tub(Y)—Y of a tubular
neighbourhood of Y and integrate the (m, m)-form

Ma

o(t)= Y (—1)?trace (X 1)*e,(t;x, x) dvol

Il
o

P
along the fiber. Then by [G1] and [L] we obtain an asymptotic expansion formula

Y

(3) ()= T @il g5 m)tF v +-0(F)

=0

x
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where ny=dimeY and ¢,(f, g;7) is the smooth (ny, ny)-form on ¥ which is uniquely
determined by the behavior of the mapping f and the metric g near Y and a
choice of the fibration z:Tub(Y)—Y. By formula (2) and (3) and an estimate

= —c/t
SX—UyTub(Y)gb(t)‘ O(e!"), we have

(4) LH=3 | eutriom

and

(5) S oulfig;m)=0  for k<mny.
Y

On the other hahd, under the assumption that each component of the fixed
point set is nondegenerate, Toledo and Tong proved

(6) LiH=3 [Todd(Y)H { T (— 1y ch(ApN:‘(Y»}_l][Y].

Y 4 p20

Here Todd(Y) denotes the Todd class of ¥ and ch is the Chern character. {1}
are the eigenvalues of df different from 1 and N;(Y) is the uniquely determined
subbundle of TX]|, by the conditions;

i)  N,{Y) is df-invariant,

ii) the restriction of 1;I—df to N;(Y) is nilpotent,

iii) the rank of N,(Y) is equal to the multiplicity of ;. ([T-T])

Let w(f, g) be the Chern form associated to the cohomology eclass in formula

(6) via the Weil homomorphism. It is natural to ask whether the following equality

(7) zxp(t)=w(f, g)+O(t)

holds or not. When X is a K#hler manifold and f is a holomorphic isometry, es-
pecially the identity mapping, this equality holds, ([G1], [G2] and [P]). In the
case f is the identity mapping and X is not K#hlerian Gilkey showed that the
difference of w(id, 9) and ¢,(id, g} is written by a non-zero transgression form [G3].
Hence ¢,,(id, g) does not always coincide with w(id, g). Therefore equality (7) does
not always hold. The aim of this paper is to give an answer for the following
problem: ‘

(P) For what kind of mappings and their nondegenerate components of the fixed
point set can we construct a hermitian metric g such that equality (7) holds for
some fibrations?

At first we try to obtain a sufficient condition for a hermitian metric g to give
equality (7) for some fibrations. In connection with this we shall give an answer
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of somewhat local nature as follows.

THEOREM 1. Suppose a metric g and o mapping | setisfy the following con-
ditions:

(C-1) gr=g/D(Bh;) where g, is a Kdhler metric on Y and h; is a hermitian
metric on N,(Y). '

(C-2) Let 2= 3 gudz®ANdz® be the fundamental two form with respect to g.
Then for each ycY, dQ(y)=VdR(y)=0 where V denotes the riemannion connec-
tion on X.

(C-8) Let & ¢ and 7 be holomorphic vectors at y€ Y. If one of & { and 7
18 tangential to Y then g(V,.efsl—FfeVel, 7)=0.

Then there is an open covering {Uz} of TublY) and smooth fibrations =,:U,—»U:NY
such that for any partition of unity {n:} subordinate to {Ui:} we have

m*[mgb(t)]:myyw(ﬁ g)+0().

Next we shall give a condition for a mapping f such that we can construct a
hermitian metric which satisfies the conditions in Theorem 1.

THEOREM 2. Let Y be a nondegenerate component of f:X—X. Assume

1) Y admits a Kahler metric,

i) N;(Y) admits a hermitian metric such that the restriction of df to N,(Y)
is o porallel endomorphism,

iii) there is a torsion free conmection V around Y and a subbundle V of TX|y
such that VOTY=TXy and VIf{iVRQVICV. Then there is a hermitian metric ¢
around Y such that g and f satisfy the conditions in Theorem 1.

For some cases we shall verify above conditions.

THEOREM 3. 1) If df induce a semisimple endomorphism of N(Y)=@N,(Y)
then the second condition in Theorem 2 is valid.

2) If I-dfQdf:N(Y)QN(Y)>N(Y)QN(Y) is nonsingular then the third
condition in Theorem 2 is valid.

At first we review results in [G1] and [L] about asymptotic expansion formula
8) (§1). In §2 we construct a nice fibration stated in Theorem 1. Then we can
conclude that a smooth form ¢,(f, g;7) in (3) is determined by a Ké&hler metric g,
on Y, a hermitian metric h; on N;(Y) and a bundle endomorphism df |y : N(Y)
—N(Y) (§3). Finally according to the idea of Gilkey [G2], we can prove ¢,{f, g;x)
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=0 for k<ny and ¢,  represents some Chern classes by the Weil homomorphism
(§4). In 8§5-6 we shall prove Theorem 2 and Theorem 3.

The method in this paper works for other elliptic complexes and sometimes
they are much simpler than ours. For example Donnely and Patodi proved the
G-signature theorem [D-P] and Gilkey proved the Lefschetz formula for the de
Rham complex [G2]. Baisically our proof is somewhat similar with their proves,
however the fact that ¢, v is a Chern form is much difficult to show and our proof
for that is much different from theirs.

Finally the auther would like to thank Prof. T. Ochiai for his encouragement
and advice for this work.

§1 Asymptotic expansion formula

In this section we let (X, g) be a compact Riemannian manifold of dimension
2m and E—X a hermitian vector bundle over X. Let []:I"(E)—I'(E) be a second
order selfadjoint nonnegative elliptic operator and K(:t)e I'EX(E*R2)), t>0,
denotes the fundamental solution of the Cauchy problem for the heat operator
O+ % Here I'{ ) denotes the space of smooth sections and 2 the volume bundle

of X. EX(E*®2)—>XxX is the exterior tensor product of E and E*®2. Let
f:X—X be a smooth selfmapping and @€ I'ERQf1E*). Restrict K{];t) to the
set {(flx), x);x € X}C XX X and regard it as a smooth section of fTERQE*QRQ2—X.

Then by the contraction of F and E*, ¢(@;[1;t)=trace ®K([1;%) is a volume' element
of X. Set .

(L.1) L(@,D;t>=§x¢(¢>,m;t>.

Assume the fixed point set of f consist of only one nondegenerate component of
Y of dimension 2n, i.e. Y is a regular 2n dimensional submanifold and I—df in-
duces nonsingular endomorphism on the normal bundle of Y. Then we have

LemMMA 1.1 ((LI{G2D). For any smooth fibration =:Tub(Y)—=Y of the tublar
netghbourhood of Y,

”*¢(Q; D;t)N kgogok(@’ Dx ﬂ)tk—n: t ‘L 0'

Now we are concerned in properties of ¢ and ¢,. We choose a local coordinate
system Z=(z!, ---,2*") on UcX such that
i) YnU:{zZ’H’l:-..:zgm:O}
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il = Yy)={zi=2'y), 1<i<2n} for any ye Y NU.
Moreover we fix a local frame field of E on U. Then we have

LEMMA 1.2, o (@, 7) is written by a universal polynomial of following
variables;

derivatives of a symbol of [] and components of metric g,

derivatives of components of ® and f by coordinate functions, {22+, ..., 22",

Vet (g;)1zi,izm > Vdet (gig)iziizen S det(I—df lyw) ™

This lemma is direct consequence from the proof of Lemma 1.1.
Next we apply a product data to ¢ and ¢,. Set

X:XIXXz, E:EI&Eg'_)XlXXZ,
=R +1QL L I E) QT (Eo)—> T (E)QI(Es),
J=fiXfor X, x Xp> XXX, and O0=0,X0,.

Then because of the uniqueness of the fundamental solution, K{ 1;t)=K({1;;t)/®Q
K{[1;;t). Furthermore we have

LEMMA 1.3 (Produet formula).

9@, [1;6)=¢(@y, (i3 t) (@, [Tas )
(@, 1, @) =p+qZ=lk<pp(¢1, o 71'1)‘/’q(¢2y ey o).

Let [,=¢?]. Both K{,¢ %) and K{1,t) denote the Schwartz kernel of
the operator ¢~> %2, Therefore we get

LEMMA 1.4 (Weight formula).
$(0,L15t)=¢(®, ;¢7%),
Pul(®@, [, m) =072+, (@, [], 7).
In this paper we apply these formulas to the Dolbeault complex;
E= g0A°'PX, [1=8*9+00* and @=p§) (—=1)2f*,
§2 Local invariants with a data of mappings

In what follows we always use the following convention on indices; indices
@,b,... run from 1 to m, indices ¢,7,... run from 1 to » and indices %, v,... run
from n+1 to m. Also we assume a,f,... denote multiindices from 1 to » and
24y, ... from n+1l to m.
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Let X,Y,9 and f be as in Theorem 1. We choose a holomorphic local coor-
dinate system W=(w!,...,w™ defined on VX such that U=V NY={w"t'=-.-
=w™=0} and fi=0 along U. Here and the following part of this paper we use
the notation;

S aN/ AN/ BN AN/ B
EL L ERAL TTRS
. 0 \aft
b’”_<ﬁ>6w”'

For any ye U, define

D,: :{x= W, ...,w™e€ V) wi+—;—g"’°guk1u(y)w"w”

+l< 9 .>(9“‘guk/v)(y)w“ww" =w'ly)  for any 1, 1§i§n}.
2\ dw?
LEMMA 2.1. The union of complex disks, UUD,,, gives rise to a smooth fibra-
yE
tion of V.
PROOF. Define ¢:UXV—C" by

0
dw?

oily, Wl ..., w™) =wi+lg“‘guk/v(y)w’w+%<

5 >(g“‘guk10)(y)w“w”w" —wHy).

Then go‘1(0)=”gv(y, D,). Identify U with the diagonal setin UXU. Since ¢(U)=0
and Jep=the Jacobian matrix of ¢=(—1I,, I,,0) on U, ¢7*(0) is a smooth submani-
fold of UXV around U. Let zy:UXV—V be the projection to the second factor.
Because Ker JryNKer Jo={0} along U, we take a sufficiently small neighbourhood
Ve, of U in ¢ 40), if necessary, such that =y:V,—V is an into diffeomorphism.
Furthermore the fibration of V,C¢*(0) inherits to one of V by disks D,. Q.E.D.

Let z:V—=U be a projection with z(D,)=v and fix any ycU.

LEMMA 2.2. There 1s o holomorphic local coordinate system Z=(2',...,2™)
around y with Zy)=0 such that

1) z 'y ={el= -+ =2"=0} and UNY={z"t= ... =2"=0}

2) f1=0 along U.

3} ge(0)=04
4) f;v(()) :guilv(o) =f;uv(0) =Giiluv (0) =0
5)  f1(0)=00a/i(0) =Gur/(0)=0
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6) ¢:;1<(00=0 for any « with |«|=2n.

Proor. At first we define a holomorphic local coordinate system Z; by

o1 1/ @
z;=w’+§g’k9uk/u(y)W“W”+—<

o\ aud )(gikguk/'u) ) wrw w? —wi(y)

=",
Then with respeet to Z, we can verify 1), 2) and 4). By a linear coordinate

transformation we obtain a local coordinate Z, with 1), 2), 3) and 4). Define Z,
by

1 .
zi=2} +Egz ik(0)zizt

1 )
2y=23 +'2_92 v ) wl0)2528 + 92 013 (0)2523.

Then we obtain the formula 1), 2), 3), 4) and 5). To complete the proof we define
local coordinate systems Z,, 4 k 2n+2, induetively by
gk—-l(ay 'Z) (

2i=2}_.1+
la|=k~1 a!l

2p—1)® 2E=2%_1,
where g(a, i) denotes g;is, (38)=a. Now the lemma follows by the direct compu-
tation. Q.E.D.
Fix a holomorphic local coordinate system as in Lemma 2.2, Let
7l ...,2MeV—=(,...,20,0,...,00eU

and define a smooth funection 7:D,—R with 3(y)=0 by dv=»dv’. Here dv (resp.
dv’) denotes a measure of the fiber D, induced from the fibration = (resp. #).
Then for any 7, € C=(V), we have

@.1) ﬂ*[vo¢(t)](y)=[Su 7 #j{xdv]dvoly

=[S i o(t) dv']dvoly, [=707.

D, dvoly

- Construct a parametrix of the heat kernel under the coordinate Z and apply the
asymptotic expansion formula in Lemma 1.1, we have

n

2.1)= 3 Pun(g, f, 7, Z)t** dvoly+O(2).

k=0

By Lemma 1.2 P+ is a polynomial of variables;
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Guvtabusy Sin ﬁﬂy J=|det(I-f4) [ and 7um.
Moreover in consequence of the lemmas in §1 we have the following

LEMMA 2.3. P7» satisfies the following conditions:
(imvariance) Let W be a holomorphic local coordinate system obtained from Z by a
Un)x Ulm—mn) linear coordinate transformation. Then

Pyr(g, f, 7, Z) =P, [, 7, W).
(homogenity) Define the order of variables by

ord (gupsase) =l |+ B+l +v], ord (f§)=[x| and ord (7.s)=|p|+|v|.

Then P7* is a homogenious polynomial o f order 2k.

(regularity) Let g, denote the flat metric on C. Assume g is locally isometric to
the product metric g, X gy on MyXC and f=fiXide: My X C—>M,XC. Then
Pynig, f, %, Z)=0.

PrROOF. The invariance is obvious by the definition of P%". For the proof of
the homogenity we are sufficient to verify Pyr(2%g,f, 7, 1Z)=1"%*Pr(g, f, 7, Z).
Because [e,=27%"],, this formula follows from Lemma 1.4. As for the regu-
larity, by Lemma 1.3, we have

P91 X 9o, [1X1dc) (8) =gy, F1) (8} A Dlgo, 1de) ().
Then it follows the lemma by ¢(g,, idc)(£)=0. Q.E.D.

§3 Reduction to the normal bundle

In this section we treat the regular invariant polynomials more abstructly.

Let G be a set of germs of hermitian metries g at 0¢ C**¢ and holomorphic
mappings f:(C™, 0)—(C™*4,0), which satisfy the following conditions:

i)  d@=VdQ=0 along C*={(2%,...,2%0,...,0lcC,

i)  flz5,00=(2%,0) and f+=0 along C".

iii) giw=g.u=0 along C».

iv) the lower derivatives of the components of g and f at 0 satisfy the equa-
tions in Lemma 2.2.

We regard getjases and f§. as variables which take complex values over §.
We say P:G—C to be a regular invariant polynomial homogenious of order 2k iff

P is defined by a polynomial of derivatives of metrics and mappings satisfy the
conditions in Lemma 2.3.
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PROPOSITION 3.1. Let P be a regular invariant polynomial homogenious of
order 2k=2n. Then tf k<n, P=0, and if k=n P is a polynomial of variables;

Gistt, Guoris, S amd fu.
To prove this proposition, we prepare some notions of variables. At first we
divide variables into three types as follows;
(type 1) the variables which are invariant under the symmetrization of indices
1,...,m);
Gijlaips With [a|=0 or I;z]—i—[v]éz
Ginjeps With [@]=0 or [p|+|v|=1 or both [u|+(v]=2 and |p|=1
Gualabus, fj‘/#, m, J%. and .?72/—/4
(type 2} the variables which are not invariant under the symmetrization of indices
1,...,m);
Qialappes Which is not of type 1
(type 3} the variables which do not contain indices %, 1<i<n.
Let A be any monomial. Define
deg;(A) =the number of times an index ¢ appears in A
degi(A)=the number of times an index ¢ appears in A
iA)=2 degil4)  i{A)=3 degi(d)
L,(A)=the number of variables of type 1 contained in A

L,(A)=the number of variables of type 2 contained in A.
Then we have

LEMMA 3.2. Let P be a regular invariant polynomial. Then for any mono-
mials A in P, deg;(A)=1 for any 1, 1<i<n.

' PRrROOF. Divide P into two polynomials, P=P,+ P,, where P, consists of mono-
mials A with deg,(A)=1 and P, consists of monomials A with deg,(4)=0. Apply
a product data g,Xg, and id¢Xf; in Lemma 2.3 and choose a local coordinate Z
such that 2! is a canonieal coordinate of C. Then

PlgyX gy, ide X f1, Z)=Pslg, JuZ).
Since P is regular, P,=0. Q.E.D.

The next lemma will be proved in an appendix.

LEMMA 8.3. Let P be a regular invariant polynomial. Then for any mono-
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mials A in P, we have
deg;(A)=deg:(A) for any 1, 1<i<n, Ly(A)+2L,(A)=n.

Now we return to the proof of Proposition 3.1. Let A be any monomials in P.
Put
A=TX,11Y,11Z,

where X,, Y, and Z, are variables of type 1, 2 and 3 respectively. Then by
Lemma 3.3, we have

0=4(4)—i(4)
= T((X,) —UX) + ZE(Y)—i(T,) + (—(Z,).

LEMMA 3.4. i(X,)—1(X,)=22—ord(X,)
i(Y,)—1(Y,)=b5—ord(Y,)
—i(Z)= —ord(Z,).

PROOF. Let X=qijiais & variable of type 1. Assume ¢(X)}—i(X)=|a|—|B|=
2]+ gl y|—ord(X)<1—ord(X). Then |a|=0 and |g|+|v|<1. Because gijj.i=
gu;18=0 and gi5=0, X=0. As for other variables of type 1 we obtain the in-
equallity by the same argument. Let Y=gisasus and assume (Y)—1(Y)<4—ord(Y).
Then Y satisfies one of the following;

i) |a|=2, [gl=lv]=0 and b=j

i) |al=1, [#]+]|v|=2 and b=j

i) lal=1, [pl+»I=£1 and b=wu.

For any cases Y is a variable of type 1. Q.E.D.

Then we have

0=2L,(A)+5L.(A)—ord(A)
22n+Ly(A)—ord(A) = L,(A)=0.

Therefore L,(A)=0, ord(4)=2n, ord(X,)=2 and ord(Z,)=0. Thus proof of Propo-
sition 3.1 is completed. ,

QOur polynomial P7* include other variables %, and J. But variables s
appear in each monomials of P7* exactly one time. Hence we can conclude

Prr(g, .5, Z)=0 for k<m, and
Prn(g, f, 7, Z)dvoly=7,P™(g, f).

P
Here P™ (g, f) is a polynomial of components of curvature tensors with coefficients
f% and f* which independent on choices of local coordinate on Y and local frames
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of N(Y). Then we have

Telneg (W) 1=1,P™" (g, f} +O(1)
and L(f)= SY Pmg, f).

§4 Representation by the characteristic forms

Let Y be a closed complex manifold of dimension » and V,, 1<i<k, be a
family of holomorphic vector bundles of rank d; over Y. Let P be any map from
Kéhler metrics on Y hermitian metrics on V; and bundle endomorphisms of V; to
smooth (n, n}-forms on Y. We say P to be a regular invariant form iff P is de-
fined by a regular invariant polynomial in terms of components of the curvature
tensors and bundle endomorphisms. Let Py;q,,...,¢, denote the set of such regular -
invariant forms. For any positive integers (n,;20,, ..., %) with i}ofni=n, we define
a map Paga,,..., nk%@nonnl;dlx Xan;dk as follows. Here (J,.s denote the set
of all invariant forms in terms of components of the curvature tensor for V and
bundle maps of V. &, denote the set of all regular invariant forms in terms of
components of the curvature tensor for 7Y.

Let (Yo, 90) be a Kéhler manifold of dimension n, and (Y, g,) a flat Kéhler
manifold of dimension n;. Let (V,, h;, T:) be a family of a hermitian vector bundle
over Y; and a bundle map of V; covers the identity mapping of Y,;. For any
Pe {P,.o;,,l ,,,,, 2, We apply a Kéhler metric g=gyX ¢, X -+ Xg; and 1:[lill(hi, T,). Then by
the invariance of P, we have

PlgoXgiX <+ Xgu; by, Ty, oo oy By, T)) =Pol@e) AQulhy, TSI -+ AQulby, T
where P,¢ P, and Q,-eQni;di. Define

Magingeeron,(P)=(Po; @1y v+, Qu) € PagX sy X -+ XUupia,.

LEMMA 4.1. H:2® Hno;nl ..... nk:g.,‘)no;nl ..... nT>
n;=n
2@ g,DnOXin;le Xan;dk

is an ingective endomorphism.

PROOF. Let P be any regular invariant forms. Decompose P

P= Z P’”D;”lr“-»"k

Sng=n
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where Pujn,,...,n, consists of monomials A such that the components of the curva-

ture tensor for h; appears in A exactly n; times. Obviously Puj;a,,...,s, is an in-
variant form. Assume Py=Py;n,,...,n, i8 @ non zero form. By the argument of
Gilkey in [G2], we can find a monomial A in P, such that A=A,A, --- A, with
deg;(A)=deg;(A,) for i, ne+ - -+ +n;1+1=Zi<me+ -+ +n;. Then A, can be regarded
as a monomial of P, component of II(Py) and A; of Qﬂi;di component of TI(P,).

Therefore II(P,)+0 and II is injective. Q.E.D.

Let Q€ (u.e and (b, T) be a metric and mapping on V. Then there is a
polynomial map @:Myx -+ XM, —C,
QUF, Fos W, ..., W) for F,, W;e M,={dxd matrices}=C%,

which is symmetric multilinear for the latter n matrixes such that Q(h, T)=Q(T,
T#:Q,...,2). Here T* denote the adjoint of T, T**=h*T th, and £ denote the
curvature tensor for h. Moreover @ is invariant under the adjoint aection of
GL({d;C),

QuFu, uFu i uWau™, ..., uW,u ) =QF, Fp; Wi, ..., W,).

LEMMA 4.2. LetQe€ Q,.;d. Assume for any hermitian vector bundles :{V,h) >Y
and any semisimple endomorphism 7T:V—V with vI'=0, Q(h, T)[Y1=0. Then
@=0. '

Proor. Tix y,€ Y and choose a local frame such that fhe connection form w
vanishes at y,. Then by the formula

VI=wT+dT—Tw=0 and doT—wdT—dTw—Tdw=0
we have Qo) TWo)=TW.)2¥,). Hence we can diagonalize both 2 and T simul-
taneously. Let {1;} and {g;} be the eigenvalues of 2 and T respectively. Then

Q(k, T)=§Pj(/~t1,l'yu')2{ with '=(2,...,22) #'=(pa ..., pta).

Assume @=0. Then for some j, P;(py, 2, #)#0. By induction, we choose (Y, V,,
ho, Ty) such that P;(gy)(he, To)[Yol=0. Let Y,=CP; be the complex projective
space and V,; the hyperplane bundle over Y;. Set T,:V,—V, a scalar multiplica-
tion by g;. Therefore

Q(hoDhy, ToD T Yo X Yi1=P; (2} ke, To)[ Yol (Cy(V1)) 1Y 1120.

Thus @ vanishes for any semisimple endomorphisms 7. Because the set of all
semisimple matrixes is dence in M;, there are no algebraic relation between the
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components of 7. Hence @=0 as a polynomial. Q.E.D.

Now we return to the problem to determine the formula P™*, By the defi-
nition of TI (P™) =P, Q.4 " Q”k; 1, We have

P, (g)=P"(g)
Qualh, T)=Prrar(flat®h, T),

By Byyeens ny,

where flatPh denote a hermitian metric on the total space of V over the flat
Kahler manifold. It should be noted that for any Kéhler metric g we can find
the invariant form Qu;s(h, T) in P**%"(gDh, T).

Assume T:V—V is any semisimple holomorphic endomorphism of the holomor-
phic vector bundle over Y. We set

T=®2,1:V,;—V,; and h; a hermitian metric on V.

Then Q..s(Ph;, T) is an invariant polynomial in terms of the components of cur-
vature tensors for h; with constant coefficients. By the Gilkey’s theorem in [G2],
Qn;e(Dh;, T) is a linear combination of the Chern forms for V,. Because the local
index, SYPM(Q’ £), does not depend on the choice of metrics, Qu.alk, T)[Y] is in-
dependent on h with V7T'=0. Therefore by Lemma 4.2, Quak, T) is a linear
combination of the Chern forms for h with coefficients of the eigenvalues of 7.
On the other hand P, is the Todd form for the Kéihler metric on TY, [P1j[G2].

Hence we can regard P, Q.4 --- @u,;4, a5 an element of @,,;dl,,.,,d By the
injectivity of II, Lemma 4.1, we obtain

an(g!f)=znz=npno(go)AQn1;d1(hl, dfl)/\ et /\anQdk(hky dfk)-

P

We set ¥ P,=Todd and Zan;d?—Qd. Then we have
nz0 n=

anz[TOdd le e Qdk](mn)

and the proof of Theorem 1 is completed.

§5 Proof of Theorem 2

In this section we use the convention on indices in §2.

Let Y be a nondegenerate component of f:X—X. We say a holomorphic
local coordinate system Z=(z},..., 2™ defined on V around y€ Y to be admissible
iff
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U=VnY={z*=...=2m=0}
f1=0 along U.
Let g, be a Kihler metric on Y and h; a hermitian metric of N,(Y) with
df,=0. Let V be a torsion free connection such that dfIN(Y)QN(Y)}CN(Y).

Fix any admissible coordinate Z={z¢}, then we have
i 0 —_ s £1 .4 k3 i
Vd’f - Z (fufvwst+wuv—fuv)'—-_
0z* 02" 02"
0

+<terms of %, and ? >,
07" ozv 0zY

0
z

where o denotes the components of the connection V. Therefore we obtain

fifiohtol,~fi.=0.

(6.1)
Now we will construct a hermitian metric on the coordinate neighbourhood

of Z, V, which satisfies the conditions (P-1), (P-2) and (P-8) in Theorem 1.

Step 1. We define g, on U=VNY by
) gule, 0)=gu;(2)
i) ginlef, 0)=0
ifl)  gw(#i, 0)=(Dh;)uw(z).
Then ¢ satisfies (P-1) in Theorem 1.

Step 2. Set

(%) Gvate=Geais
(#x)  fEASEf T —fil4.=0 with I'{,=g"g,a..
We consider these two equations dividing into some cases according to the indices

a, b and ¢ are whether tangential or vertical.
1) The case (a,b,¢)=(¢,5,k):
(%) Gin=0si;
(#%) Ti,—I%=0.
(#) follows from the assumption that g, is a Kihler metric.
2) The case (a,b,¢)=(u,1,7):
(%) Ginn=gru;
(x%) ST~ 3L3,=0.
Because giz=0 along U, giz;,=I"%=0. Furthermore since Z is admissible f%.,=
Thus we obtain both equations.
3) The case (a,b,¢)=(,7,u):
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(%) Giu=4guil;
Since g.i;;=0 on U, we need to define
(5.2) Giiu=gizn=0.
Then we obtain (++) because I'},=g%*g;,,=0.
4) The case (a,b,¢)={1,u,v):
(%) Guire=4silu
(**) f;v_*-f;fqtzpit—[,'zv:o-
By (5.1), we are sufficient to define
(5.3) Juil,=griok, and gip=g;0k,.
Sinee V is torsionfree, we obtain both equations.
5) The case (a,b,¢)=(u,v,1):
(%) Guuri=Ginso
(**) %‘*’fﬁp?s—f?rfs:o
{(#+) follows from the assumption Vdf;=0. For (x), we define

(5.4) Ginly=0oas; AN  Guijs=Guori.

For the case (a,b,¢)={u, v, w), we construct a hermitian metric § on the neigh-
bourhood of Y such that with respect to any admissible coordinates Fusiw= Juriu
along Y. Set
Juwiwly=Dww and Fuswly= Dusm.

Define g.; by

932, 2*)=guj(z%, 0)+0( 2" )

gia(2', 2) =Qonsi(#', 0)2°+gizol, (21)2"+ 0| 2* )

G2, 2% =gu(2, 0) + Dinu(2)2” + Disa(2)2° + O 2* F).
Then g and f satisfy the conditions (P-1), (P-3) and dQ=0.

Step 8. Because d2=0, the equation Vd2=0 is equivalent to

(#5%)  abj,a=0objoa NA Gabjea=Gaclsa-
Let Cio=gjwil,ly and h=Ph,;. Define

oy L 17—,

9i5=goij +Puoj1;22" + Ec’juu/iz“z” +E tuo) BB

U U 1 U W Ul
gia=huﬁliz +Cluvz +E‘Du‘ﬂwliz Z +Du‘ﬁwliz 2

Guyp= h/uf; + Duvwzw + wazw.
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Then the equation Vd2=0 follows by direct computation.

Let W be an another admissible coordinate and ¢’ a hermitian metric con-
structed for W. Since the second order derivatives of the metric determined by
the globally defined data g,, %, and §, g’ coincide with g up to third order terms
in #z*. Therefore using a partition of unity, we obtain a hermitian metric around

Y which satisfies each conditions in Theorem 1. Thus the proof of Theorem 2 is
completed.

§6 Proof of Theorem 3

Assume N(Y)=@N.,(Y) and dfly,;»=24,1d. Let h; be any hermitian metric
on N;(Y) and h=¢&h;. Then Vdf=0 and we obtain the first assertion of Theorem
3.

To prove the second assertion, we fix a holomorphic local ecoordinate system

Z as in §5. If I-df®df is nonsingular we can find a family of smooth functions
{C:,} such that

Caiv'—f;fécit:fzu'

For another coordinate W, we also obtain a family {D:,}. Then these two fami-
lies satisfy the following equation;

= ow’ 0z’ ow’' 02* 02Y

Hence we can construct a connection such that its components I'%, is equal to Ci,.

uy

By definition of C}, we have Vdf(VQV)CV and the proof of Theorem 3 is com-
pleted.

§7 Some remarks

1. This results can be extended to the following situations. Let X and f be
as in Theorem 1. Assume we are given & a holomorphic vector bundle over X,
and ¢:f*¢—¢&, a holomorphic bundle endomorphism on & For the Dolbeault com-
plex over X with coefficient in &,

ST (A XQE) s (A XRE)—s,

we can define the Lefschetz number L(f,¢). Then we have the same results for
L(f,¢) as in Theorem 1. There are no difficulty in our proof for this generaliza-
tion.



Holomorphic Lefschetz formula 233

2. In [P2], Patodi announced the same results about the holomorphic Lefschetz
formula. Instead of our econdition (C-3), he assumed that N,(Y) is decomposed to
holomorphic subbundles,

N, i(Y): ZEr
such that df;—2,J maps E;; into Ejj,, I can not understand the meaning of this
assumption and of course I do not have a chance to know his results in detail.

But under such assumption we can construct a hermitian metrie of N(Y) such
that Vdf=0.

Appendix
Let V be a hermitian vector space of dimension n. Let PV denote the set
of all unitary basis of V and ¢V the set of covariant tensors

TV=BR@VRRT*).

¢
We say a map P:BVXIV—~C to be a polynomial map iff P is defined by an
element of a polynomial algebra

o C[X(a, B), Y(ia,jB); o and 8 denote multiindices from]
1 to » and 154,75 n.

where X(a, ) and Y(ia,jf) are regarded as variables which take complex values
for (e, Te BV XYV by

X(a, B)le, T)=T(e*®z*)

Y(ia, jB)(e, T) = T(e;Qe*®e;Qe").

Let we UV)=Uln). We define uPc & for any Pe P by

uPle, T)=Plue, T).
If wP=2P for any uec Uln), P is said to be an invariant polynomial. Let A be a
monomial in ,CP,

AZX(CH: &1') - Xla, &a') Y(ilﬂlr .7—.1[9—1') Tt Y(itﬁnﬂ_'nétl)-
Define .
L,(A)=s=the number of variables X(a, f) contained in A
L,(A)=t=the number of variables Y(ia,jB) contained in A

deg(A)= £ i) + 2 (6410 +3s.)
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M-

degi(A)= 3 ai(i)+ X (Bil6) +04).

k=1

LEMMA A.1. Let P be an invariant polynomial and A a monomial in P.
Then for any index 1, 1<i<n, '
deg;(A)=deg;:(A).
ev=18 0

PROOF. Let u= 1 e Uln).
0 .
1
Then uA=¢v-1(eg ()-degita) A, Since @ is arbitrary and P is an invariant poly-

nomial, deg,(A)—degi(A)=0. Q.E.D.

LEMMA A.2. Let P be an invariant polynomial. - Assume for each monomials

A in P and i, 1=<i<n, we have deg,(A)>0. Then P consists of monomials A with
L (A)+2L,(4) =n.

To prove this lemma we prepair the following

SUBLEMMA. Let A be a monomial in P and A, a monomial which is obtained
Jrom A by changing a single index i to j. Then there is o monomial B#=A in
P such that B is obtained from A, by changing a single index j to i or © to j.

PrROOF. Set

U= 1 with ss+ti=1.
1
Then #A is a linear combination of some monomials with coefficient in polynomials
of 5, § t and £. Exchange s5 by 1—¢f. Then

uA=A+13 7, c;A;+ (higher order terms in £, %)

Here A; is a monomial obtained from A by changing a single index 1 to 2 or 2
to 1. By Lemma A.1 A; is not a monomial in P. Because wP=P, it proves
the sublemma.
PROOF OF LEMMA A.2. Assume
A=XQ1, ..., L%y - Xk, ..., k%) X(E+1,..., k+1,4,...,%)A’
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is a monomial in P. By the sublemma there exist a monomial B in P such that
B=X(1,...,L5) - X(ky ..., b, %) X(k+1, ..., b+1, b+1,...,%)B.
We use this argument successively to obtain a monomial A4, in P,
A=X{1,...,L%) - X(8,..., 8 F) Y (4101 e s J0u ) oo Y000 ooy Jur ® ) AS

where A, is a monomial such that each indices ¢ which appears in A, is contained
in (1,...,8 %, ..., % J1,---,7:). By the assumption deg;(4,) >0 we have L,(A4,)+
2L,(Ag)=n. Since L, and L, are invariant under the action of Uw), L.{A)+
2L,(A)=n for every A in P. Thus the proof is completed. Q.E.D.
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