On the propagation of micro-analyticity along
the boundary

By Akira KANEKO®

In this paper we give results on propagation of miero-analyticity of the solution
of a class of linear partial differential equations with constant coefficients p(D)u=0
up to its boundary values. Let us shortly recall the former results. Assume that
p is of order m and with respect to which ;=0 is non-characteristic. Let p, be
the principal part of p, put »=(1,0, -+, 0) and let Vi 4(p)cS*? be the closure
of the set of points & € S* % for which a root of the equation p,(, &)=0 for &
has positive imaginary part. This is ecalled the set of boundary characteristic
directions from the positive side. The set of points added by the closure operation
is the so called glancing region. Then the result in the most generic case says
that the singular spectrum (S.S. for short) of the boundary values of real analytic
solutions of p(D)u=0on x,>0 is contained in V% ,(p) (see Kaneko [6]). There are
also results corresponding to the equations with real analytic coefficients where
Vi 4(p) should be replaced by the set Vi, with S={x,=0} defined in a more
complicated way. (See Kaneko [7]. See also Schapira [17], Kataoka [11].)

It is known that some points in the glancing region are superfluous in the
above estimate of S.S. of boundary values. For such delicate results see Schapira
[18], Kaneko [81, Kataoka [11].

Here we give a new phenomenon which takes place fairly generally in the
glancing region. Let us explain it in a fixed system of coordinates: Assume that
the frozen operator p(D,, 0, D,) is semihyperbolic to 2,<0, that is, assume that
all the roots of p,(Zy, 0, 1)=0 have non-positive imaginary part. Let u be a local
real analytic solution of p(D)u=0 on z,>0, and let u;(»’), j=0, +-+, m—1 be its
boundary values. Then

(0.1) mL—Jl S. 8. u;(¢”) N ({w,=const.} X {,/ =1 dw,o0})

F=0

cannot be compact. That is, the micro-analyticity propagates along the level sur-

face x,=const. in the boundary.
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This assertion is best possible in the sense that if there exists a root of
PmlCs, 0, 1)=0 with positive imaginary part, then we can construct a real analytic
solution on ;>0 for which (0.1) is compact. We can miecro-localize this assertion
to the obvious form (Theorem 2.5), which improves definitively our former work
Theorem 4.1 of [8]. Also we can somewhat specify the way of propagation under
a stronger assumption on the operator (Theorems 2.6-2.7). For the wave equation,
however, Theorem 4.2 in [8] is naturally ultimate, because it asserts the prop-
agation in the bicharacteristic level. (See also note 2 of [8] added in proof.)

There are vast studies on the propagation of micro-differentiability up to the
boundary which have its origin in the work of Lax-Nirenberg [15]. There are
detailed studies on the glancing region mainly for operators of the second order.
See e. g. Ivrif [1], Melrose-Sjostrand [14], Wakabayashi [20] ete. Recently these
studies are extended to the case of micro-analyticity. See e. g. Sjostrand [24], [25].
There are also studies concerning the propagation of micro-differentiability along
the boundary. See Andersson-Melrose [21], Eskin [22] where the infinitely flat
case is not contained. Sjdstrand [24] treats the micro-analytic version seemingly in
more general situation. It should be noted that the characteristic feature of our
study is that a priori we do not pose any boundary conditions on the solution
throughout. This is because the starting point of our study has been the problem
of continuation of regular solutions, and not the boundary value problem itself.

The method of this paper is based on the Fourier analysis which extends those
developed in[4]or{6]. Especially [ 61 will be considered as the direct predecessor
of the present article, although §4 of [8] is the one as for the treated problem.

The deepness of our present result can be known by its application to the
continuation of real analytic solutions given in §3. That is, all the results hitherto
obtained by the method of Fourier analysis can be explained by our result from
the standpoint of local theory, but except for the only one process: the irreducible
decomposition of the operator. A survey lecture about this subject will be found
in [23].

§1. Review of representation of boundary values via Fundamental Principle.

First we rapidly recall a part of our preceding paper stating the relation
between the hyperfunetion boundary value theory and the Fundamental Principle
of Ehrenpreis-Palamodov. See §1, §2in[6]. From now on, however, we abandon
the notation of Palamodov which we have employed in our previous papers.
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Consequently there will be some changes of signs in the formulas related with the
Fourier transformation.

Let p(D) be a linear partial differential operator of order m with constant
coefficients, where D=(D,, «--, D,) with D,=—+/_"7 8/ox;. Assume that z,=0 is
non-characteristic with respect to p(D). Let U be a relatively compact, convex
open neighborhood of the origin of R*. Put

Us=Un{x2,>0, K=Un{x,=0, L=K.

We denote by U’ the set K considered as an (n—1)-dimensional open set in R* .
Now let v be a hyperfunction solution of p(D)u=0 on U*. Then there exist a
unique extension [u]€ B(U), called the canonical extension of u, and unique coef-
ficients u;{z) € " P(U’) satisfying

supplu]C {2, >0},
L1 pUD)ui="E, w,(o/) Dyl

The coefficients u;(2’) are called the boundary values of « (with respect to a
certain boundary system which we will not specify). Here as usual we have
distinguished the hyperfunction of n—1 variables a/={(x,, --+, 2,) by the symbol
’ @

Let now [ule PB(U) be an arbitrary extension of w satisfying supplulc{z, >0}.
Then we have supp p(D)[ulCK. Let ov=[[p(D)ulll€ B(R*) denote one of its
extensions which is in the space B[L] Qf the hyperfunctions with support in L.
This gives rise to the following well defined mapping

B,(U*) 3 ur—> [[p(D)[w]l] mod p(D) BILI+ BILK]
€ BILY/(p(D) BIL1+ PILK]).

This is “locally” injective in the sense that, if the image of w is equal to zero in
the quotient space, then 4=0 on a neighborhood of K by virtue of Holmgren’s
uniqueness theorem. (And, what we need in fact is the information of % in the
very neighborhood of K.) The Fourier transform and the restriction to the
variety:

N{p)={LecC*; pl)=0},

give another description of this mapping. Namely, we obtain an entire function
F()=9() and then a holomorphie funection F({)|y., on the variety N(p), satisfying
the following inequality: Given >0, there exists C:>0 such that
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(1.2) | F(€)|<Cs exp (e[c] +Hz(Im ),

H (Im¢)=sup (—Re4/ 1 2-)=sup2x-Im .
zE L z€EL

(Note that we are now employing the standard definition for the Fourier transform:

R"™

F@:@(@:X vt y(m)da.)

The function F({)ly( is determined from % modulo the image of BIL K] as the
ambiguity which, however, does not allow the characterization by the growth
order. To each representative F({)|y, corresponds a unique entire function of
the form

(1.3) FO=R0) +G AL + -+ )

satisfying (O v =FQ) v and still the inequality (1.2). This is a very special
case of the Fundamental Principle. In fact, in this case the coefﬁcients fj(c’) are
determined from F{) |y, via the roots ;=r;(¢), j=1, -+, m of the equation
(g, ¢)=0 by means of the usual interpolation formula. (For the sake of simplicity
we are describing as if p(D) were irreducible. For the modification to the general
case, see Remark 1.4 in [6].) Hence the coefficients fj(C’ ) satisfy the same inequality
(1.2). Note that H,(Im ) is in fact a function of Im ¢/, because L is contained
in %;=0. Lemma 1.1 in [67 asserts that fj(c’) agrees with the Fourier transform
of an extension of the boundary value u;(x’) to / PION.

The above deseription of the boundary values permits us to obtain f(&) by
various ways. In fact even the ambiguity of the form p(D}$B+(R"*) vanishes when
restricted to Ni{p) after the Fourier transform, where (B+(R") denotes the space of
all the hyperfunctions with compact support. Thus let [u] be any modification of
% on a neighborhood of K; more precisely, let [u]€ B(U) be such that

supplu]ciz, >0},
[w]=u on a neighborhood of U\ K.

Then we obtain as yet an extension v=[[p{D)[»]]] with compact support, whose
ambiguity is only in p(D) B« R+ PIL~K]. Therefore F({) |y =2 vy agrees
with £2) v in (1.3) module _@TL\\K][N(,,). Choosing [u] in a suitable way we can
thus reflect the information of the regularity of the solution % on 2,>0 upon ),
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that is, upon the boundary values. In the preceding paper [ 6], for a real analytic
solution u, we have employed the cutting (1—y)u by a Gevrey class function y as
an example of such an extension.

In this paper, we introduce a more delicate construction for such an extension.
We essentially consider two typical situations. The first is the following:

(1.4) U=U"x{—-r<z,<r},

where U” is a relatively compact convex open neighborhood of 0¢€ R%72, z"=(x,,
««e, %,_,), while the real analytic solution wu€ _A,(U*) can be continued real
analytically on a neighborhood of the part of the boundary:

{1.5) 0}xaU" X {—r<z,<r}.

In this case, to utilize this regularity assumption we specify the way of defining
F(¢) as follows: On a neighborhood of (1.5), the canonical extension [u] is of the
form Y(x,)u, where we are writing u also for the extended real analytic function.
Hence, for the characteristic function xy.(x”) of U”, the product yy. (2")p(D)u]
is meaningful there. Let [[xy.(@”)p(D){ulll€ BIL] be an extension with minimal
support. We then obtain

——-——’/\
(1.6) F©) =[xy (") pD)[u]l],

as a special representative. From the definition formula (1.1} we see that

m—1
Yo (&) p(D){u]= onw(x”)uj(w’)DT‘l‘fﬁ(wl),

hence that
FO v =8 vm,

with f(0) of the form (1.3), where the coefficient f;(¢’) is the Fourier image of
some extension f;(&’) €’ _@[ﬁ’] of xg.(2")u;(2’).

Now let ¢,(x;, #,) be a Gevrey class function defined in {—#<x,<r} such that
supp ¢, is contained in a neighborhood of {0}x{—r<x,<r} and that ¢;=1 on a
smaller neighborhood of this set. Choose also a Gevrey class function ¢,(x”) on

»7% such that

supp ¢s(@”) U,
¢.=1 in U4={a” e U”; dis(x”, 8U")> o},

where ¢ i3 chosen in such a way that u admits the analytic continuation up to the
part of the boundary {0}x(U”~U%)x{—r<=x,<r}. Clearly we can choose them



324 Akira KANEKO

in such a way that, setting y=¢,¢.,

supp p(D){((1—x)u) NoU*C L K,

where K,={0}xU%x{—r<z,<r}. Choose an extension [[p(D){((1—yx)u)l] of »(D)
X ((L—x)u) € BU*) with minimal support such that

supp [[p(D)((1—x)u)lIc{z; >0},
[Ip(D) (1= 0w )= Y(x)p(D) (L —x)u)
on a neighborhood of {0} (U\U%) X {—r<z,<}.

Then the argument in §2 of [ 6] shows that

AO=FQ=1pD)(1—ull mod PIL-K,]

on N(p). The reason why the ambiguity is not in B[L~K] as in §2of [6] is that
our function y is not equal to 1 on a whole neighborhood of K. We will show
below that in view of the present construction related with the mentioned regu-
larity of u, we can assert a little more concerning this ambiguity. With a slight
abuse of notation, introduce the following sets for later use:

0. K={0}xU" X {x7},
o, K={0}xaU" x{—r<z<r}.

Then the original difference
g (@) p(D)lul]—[[p(D{(L— )]

is a hyperfunction in p(D) PR+ PBIL~K;] such that along (I~Kp) N{—r<w,<r}
the direction of the singular spectrum of the second component is contained in
£,=0, where £ denotes the fibre coordinates of v —1 SR". We will show this in
a little more general situation.

Let therefore J(D') be a local operator with constant coefficients in D’E(Dz,
«++, D,). (For a short account of this notion see §1 of [21.) Then J(D')u is again
an element of _J,(U). Hence we can apply the above construction to this solution.

LEMMA 1.1. We have
wn JIFEQ) =Up(D)((1— ) JIDu)] -+

on N(p), where w is a hyperfunction such that suppwCI~Ks; and that along
(LK) N {—r<x,<r} it has the form

(1.8) w= MZ_)I w; (@) DP9 ()

=0
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with supp w;{z’)C (U"\U7) % [—r<e,<r}, S.8.w;a)c{&,=0}.

Proor. Since we are specifying the ambiguity only along the lateral part, it
suffices to examine in —r<x,<r. Thus we can replace [[yy.(x")p(D)[ul]] by
xv (@) p(D)[%] and [[p(D{(1—x)J(DVw)T] by Y(x,)p(DN(1—x)J(D')u). Thus we have

J(ID) gy (") p(D) ] —Ip(D) (L— %) J(D)u)]]
=J(D')(tw (2" ) D(D)[u]) — xr (3") (Y(@y) p(D) (L— ) J (D))
=1u (&) (D)D) [u)+ (D) (p (") p(D)[u]) = xgro: (") J (D) p(D)[we])

— (tw (@”)p(D)(Y(ay) (L—x) J(D')u)

— (Y(z)p(D)(1—x)J(D")u) — p(D)( ¥ (2,) (1 — ) (D')u)).

Here the second term in the last side has support in {0}x8U”X R, hence p(D)u]
can be replaced by p(D)(Y(x;)u) there, because of the analyticity of 4. Consequently
this term is singular only by the factors yy.(x”), Y(x,) or their derivatives, and
only up to the order m in D,. Hence it has the form (1.8) with the coefficients
w;(x’) singular only in the micro-directions satisfying £,=0, i.e. lacking the term
with dz,. Similarly, the fourth term has support in L~K; and satisfies the same
regularity.
Finally the first and the third terms combine themselves to
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(1.9) 2w (@) p(DIID") ) = 2o (") (D) Y (1) (1 —x)J (D))
=p(D) (o {&") (JDNul— ¥ (@) (L—2)J (D))
+ (- (") p(DY(J (D)) — p( D)y (") J (D) [w)))
= (g @) P(D) (Y (@,) (1= 1) J (D)) — p(D) (s (27) Y {ees) (L= 2) S (D))

Here the hyperfunction under the operator p(D) in the first term has support in
supp xN{z,>0}. Hence this term belongs to p(D)B«(R") (modulo Pre, KUs_KJ).
The second and the third terms have supports in {z,>0}x3U” X R, because the
factor yg.(x”) is at least once differentiated. Since the support of the whole
hyperfunction (1.9) has been contained in suppxMNi{z,>0}, we conclude that the
sum of these terms has support in fact contained in {0} x8U”XR. By the same
reason as above, this sum is singular only in the micro-directions satisfying £,=0,
and of the form (1.8). Thus applying the Fourier transform and restricting to
Nip), we obtain the lemma.

Now let ¢ be a Gevrey class function such that suppe is contained in the e-
neighborhood of 3,K{J3_K and that ¢=1 on the ¢/2-neighborhood. Put

=1—¢) Y(z)p(D)(1—2)J(D)u),
wh+w=[[p(D)((1—x)J (D")u)]}—v,

where w* indicates the component whose support is contained in the e-neighborhood
of 3.K respectively. Then v is a Gevrey class function except on z,=0 only by
the factor Y(xz,), with

supp vC{0<y, <e} X mx{—r<xn<r}.

(We are assuming in the same time that supp ¢, is contained in the e-neighborhood
of {0}x{—r<x,<r}.) We can choose the Gevrey regularity of ¢;, ¢,, ¢ so that
9(¢) satisfies, for given A>0, 0<g<1,

(1.10) |9(0)1<C exp(—AlRe ¢’ [*+¢(Im &1) + Hi(Im £')).

Also, by virtue of Lemma 1.1 we can assume, by modifying w* if necessary,
that

(1.11) JEFQ)=0(0) + Q)+ (L) +#HQ)

without ambiguity on N(p), where w!(zx) is a hyperfunction with support in (L Kj)
N{—r+e<s,<r—e} such that it hasthe form (1.8) with the coefficients w,(z/)
modified on x,= = (r—e), hence micro- analytic except only the directions in&,=0 along
(LN N {—r+e<a,<r—e}. Let £, §;), k3, RL), j=0, ---, m—1 be the
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coefficients of the interpolation polynomial in ¢; corresponding to F({), 9(g), #*(),
W) respectively. Since this correspondence is ¢-linear, we have

JENFHE) =g R R () +REED,  §=0, -+, m—1.

As mentioned before, f,»(c’) is in fact the Fourier transform of a hyperfunction
Fila’y e’ B U] extending u;{z’) €/ P(U’). This is the same thing as for Rig). In
fact it is the Fourier image of hj-(x’)' which is the indicated modification of w;{x’).

On the contrary, §;(¢"), ﬁ?(c’) have no primitive images as hyperfunctions with
compact support despite the notation. This is because the support of v{z), w*(z)
are not in x,=0. Employing the interpolation formula we can estimate them as
follows:

Lemma 1.2. Under the above construction, §;('), ﬁ%(c’) satisfy the following
estimates

(1.12) g, I<SCAFIL ) exp(—AJRe (' +e sup (Im 7,.(£), +H{Im £1)),
(1.33) [R5 I<Cr exp (1¢ | +e sup (Im 7,.(¢")+ + Hopx (Im &) +elm '),

where t,({’') are the roots of P&, &)=0 for {;, M is a constant depending only on
p(D) and C; is a constant depending on >0 which may be arbitrarily small.

The proof will be obvious. These estimates are our fundamental information
to the next section. Remark that they imply that these entire functions are rather
the Fourier image of analytic functionals with support compact but not contained
in the real axis. ‘

Now we consider the second typical situation. This time we assume the
following form:

U={—r<a,<r}x U*,

where U* is a relatively compact, convex open neighborhood of 0¢€ R?:2, with z*=
(X3, +++, %,). We also assume that the real analytic solution we J,(U*) can be
continued real analytically on a neighborhood of the set 9,K=91K{J9;K, where

(1.14) K ={0} X {my=+ 1} X U*,

Let ¢i{x;, 2%) be a Gevrey class function in RX U* such that supp ¢, is contained
in a neighborhood of {0} x U* and that ¢;=1 on a smaller neighborhood of this set.
Let ¢,(z:) be another Gevrey class function on R such that
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supp ¢ (we) Tl 2 [ <1,
=1 in {x|<r—odl.

Here >0 is a constant chosen in such a way that ¥ admits the analytic continua-
tion up to the part of the boundary {0} X {r—é<|z,;|<r}x U*. Let y=¢¢,. Then

by a similar argument as above we obtain that
T ——

I
FQ=[[Y{r*—=3)p(D)u]l]
and that

FO=MpDN(1—nw] mod FLKs)

on Nip), where now K;={0}x{z,|<r—08}x U*. Introduce the notation
8. K={0} x{—r<z,<r}xaU*.

In place of Lemma 1.1 we have now

LemMA 1.3, For any local operator J(D') with constant coefficients, we have

—————_—/\
(1.15) JEFQ=MpD)((1—-0)J D) w)]l+d

on Nip), where w is a hyperfunction such that supp wCI~K; and that along
{0} x {r—o<| %, |<r}xX U* it has the form (1.8) with the coefficients w;{x’) satisfying

supp w; (@) C{r — o< Jag <7y X U¥,
S. 8. w;(z")C{&,=0}.

The proof is similar. Now let ¢ be a Gevrey class function such that suppe
is contained in the e-neighborhood of 3,K and that ¢=1 on the ¢/2-neighborhood.
Put

v=(1-0) Y(z)pD)(1—x)J(D)u),
w=[[p(D){1—x)J(D)u)]]—v.

Then v is a Gevrey class function except on z,=0, which satisfies
supp vC{0<a; <6} X {— 1 <a, <7} X U*

and (1.10), if we choose the size of supp ¢, and the regularity of ¢y, ¢;, ¢ in a
gimilar way. Put

Ur={x* c U*; dis(z*, 0U*)>¢l.
By virtue of Lemma 1.3 we have now instead of (1.11)

JENFQ)=0() +D(0) +B7(0) +D.(C)
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Fig. 2. {of K, where the x;-axis is not written)

without ambiguity on N(p), where wi(x), wi(z), w,(x) denote hyperfunctions with
support in {0} X {r—a<m <X UF, 0} X {—r<a<—r+dx U*, {0<z,<e}x{—r<u,
<fr}><(ﬁ“\U’§) respectively, whose sum reproduces w(z). Let fj(c’), g;&", ﬁg(c’),
ﬁ?(c/) denote the coefficients of the interpolation polynomial in {;, corresponding to
FO), 9(Q), #,(0), 5 respectively. Again £;(¢), h5(¢') are the Fourier image of
some hyperfunctions fi(z’), h¥(z’) of similar nature and especially h3{zx’) are miero-
analytic outside the directions &,=0 along {0}x{r—ao<x2,<r}x U* respectively.
On the other hand, we have

LEMMA 1.4. §;(¢) satisfies the same estimate as (1.12). On the other hand,
N

given any decomposition dU*= ) L%, there ewists a corresponding decomposition

i=1
N .
AGEDNIA
such that
(L17) R I<Crexp (1T |+ sup(Im 7;(¢')) 4+ Hen ey (Im L) +7{Im & |+ Im '),

where C, is & constant depending on the small parameter y>0, and ch{.) denotes
the convex hull.

The last assertion follows from the corresponding decomposition of w,(x).

§2. Propagation of regularity up to the boundary.

Now we examine the fundamental estimates given in the preceding section.
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The non-characteristic assumption of p(D) gives the estimate

(2-1) lz-k(cl) ]<M] CI L ]‘;:1, cry m:

for some constant M >0, but nothing better in general. Therefore the existence
of the term esgp(lm 74{{"))+ does not allow us to consider g§;(¢’), ﬁ?(c’) as the
Fourier image of hyperfunctions as the notation may imply. To overcome this
difficulty we pose some condition on the roots z;(¢’) and employ a damping factor

related to it. To explain our way of argument in a simpler situation, we will first
pose a stronger assumption:

PrOPOSITION 2.1, Let U'=U"X{—r<z,<r}. Assume that the roots z,({’),
k=1, ---, m satisfy the following estimate: There exist positive constants b, c, C
and o positive integer N such that

2.2) Im 7)) <bIm ¢ |4+¢|Re L, | U¥| g MY +-C,  for ¢’ e Cr .
Let u be a real analytic solution of p(D)u=01in U*. If all the boundary values of

u are real analytic on a meighborhood of aU” x{—r<x,<r}, then they become

micro-analytic to the direction ++ —1 dx,00 everywhere in U,
Here we have coherently written "=1(&, -, Cu-1)-

PROOF. Let u;(x’) be the boundary values of the given solution. Employing
Proposition 1.6 of [8] as in the proof of Theorem 4.1 in [8], we can assume without
loss of generality that S.S.u;@’), j=0, -, m—1 contain only the direction
v/ =1dz,, and show that they are in fact void. Apply the construction of the

ﬁfst type of §1, and let fj(q’), §;, fﬁ(c’), ﬁg(c') be the coefficients thus obtained.
Then put

E(&', &) =exp(—2ee(v T+ & BH¥ (VI P17),
and consider
2.3) TEENEE, )
=4, B, ) +R5ENEE, o +h7(EEE, o +hiENEE, <),
where >0 i3 a parameter common to the construction of §1. Put
Efe',o)="F B, o),
where we have written 'S the (n—1)-dimensional Fourier transformation. This is

a function of »/ in some Gevrey class and, in view of Lemma 2.3 in [4] (or by a
direct consideration), real analytic except along the hypersurface 2,=0. It is
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even micro-analytic there outside the direction ++/ =1 dx,00. Note that as a
hyperfunction of 2/, ¢, E(x’, ¢) contains ¢ as a complex holomorphic parameter for
Res>0. Then (2.3) is in fact the Fourier image of the following Fourier hyper-
function of n—1 variables z’:

(2.4) JD) (fiz') = Ela’, €)),
(For a short account of the notion of Fourier hyperfunction see §1 of [21])

In order to see the analyticity of this hyperfunction, let us examine the right-
hand side of (2.3). The last term of (2.3) is also the Fourier image of

(2.5) w;la’) * B, ¢),
which, by the studied regularity of w;(x’) (Lemma 1.1), becomes real analytic in

Ulx{—r+e<x,<r—e} as the standard calculus of 8.8, shows. On the other hand,
in view of Lemma 1.2 and (2.2) the function §;(&’) satisfles the estimate

(2.6) |6,(ENEE, &) ISC/(1+ |8 ¥ exp(— A|& 7+eel &, [N &7 MY
—2cs (VI BN W IH[E BT,

This shows that §;(&")E(&’, ¢) is the Fourier image of a Gevrey class function on R
Finally, concerning ﬁ’f(c’) we have the estimate

|2 B(, ) |<C, exp (r1¢ |4 Hopx Im Z/) +e(b+1)| Im '] +ce[Re C, [HNL” Y
' —92¢e Re((W 1B UN(W/T1-M2)UN)),

where we have written ¢”?={3+---+£2_; ete. Let 2>0 be a small constant. On
the complex neighborhood {[Im ¢”|<iV|Re’F+1, Im¢,|<iv[Rel,F+1} of the
real axis R*'CC*!, we have

" Re(l+¢")=1+Re " P—|Im " F>(1—2%)([Re {" F+1)

22
1-—2°

|Tm (1) |<2|Re "] - Im {"| < Re (1+2"%),

and, since |[Im ¢’|<i1v|Rel P42 there, we have similarly

42
1-2 22

[Im 1+%)[< Re (1+£7).

Then we have
arg (v ITTH N (T I

1 1 22 1 22
= 1—-—-— -1 — -1 =
2{( N)tan 1_222-1-1\/, tan 1_12} 0(2),
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hence,

Re (VI+L# MV IFL 18 > cos 0()(VITHTE) ¥ (v [TH T2
>(1-2 22) cos 02) (VI+[Re TP 1¥ (VT[T P)LIN,

Since cos 6(4) approaches 1 as 1 tends to 0, we thus conclude that, in such a neigh-
borhood for small 2, we have

c|Re &, [N 27 NN —2¢ Re((VI+ ) - UN (VI g7Eun)
<—o'(VI+HRe U UN (vIF]gBun
<—¢|Re ",

with some ¢’>0, hence,

@7  |A5CIEL, & I<Cy exply I/ |+ Howx(Im &) +e(b+1)| Im '] —c’e[Re £7]).

In view of Lemma 2.3 in [4], we see from this estimate that A=(£")E(&’, ¢) is the
Fourier image of a Fourier hyperfunction which is real analytic outside the e(b+1)-
neighborhood of the hyperplane z,= %7 respectively.

Summing up, the hyperfunction 2.4) of #’ is in fact continuous in U”%x
{—rd+e<w,<r—e}. Since J(D') is arbitrary, this implies that

(2.8) Sila') = B, €)

is real analytic there by virtue of Theorem 3.8 in [2].

Now we will examine the uniformity of this analyticity with respect to e.
The elementary proof of the estimation of S.S. via the deformation of the contour
of integral shows that, if ¢ runs in the set {s<e<<6} for some &>0, then (2.5)
for J(D')=1 is holomorphic in a fixed complex neighborhood of U}x{—r+dé<n,<
r—0} with a modulus uniform in . On the other hand, the estimates (2.6), (2.7)
hold uniformly with respect to ¢ in this region, if we replace ¢ by 6 or ¢. Thus
the function (2.4) is bounded on every compact subset M of Ui X{—r+dé<a,<r—a}
locally uniformly with respect to e. Therefore in view of Proposition 2.4 in [2]
(see Lemma 2.2 below) the family of real analytic functions (2.8) constitutes a
bounded set in the space of real analytic functions _A(M), when ¢ runsin {e<e<
d}. Thus by the structure theorem of the bounded sets of the (DFS) space (M),
(2.8) becomes holomorphic on a fixed complex neighborhood of M independent of
s in {g<e<\d}. Since (2.8) is clearly holomorphic with respect to ¢ in Ree>0 for
fixed real &/, we can apply the Malgrange-Zerner theorem (see e.g. [13]) to
conclude that (2.8) is real analytic in the joint variables (a/, ¢) in Uix{—r+i<uz,
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<r—d}x{e>0}. Note that this conclusion is valid also for complex values of the
parameter e satisfying Re e>0. ‘

Recall that if we let ¢ tend to 0, then the Fourier hyperfunction (2.8) converges
to f(x’). Employing the compactification S*'=R*U{co} asin[4], we see there-
fore that fj(2’) is the first boundary value to e—>-+0 of the real analytic solution
(2.8) of the following equation:

azN
2.9) [T+ (=1L =A ) Vi, =0,

(See Corollary 2.6 in [51. For a more general comparison of the cohomological-
topological boundary values see also §2.3 of [10].) Thus in order to conclude that
fi®") is real analytic in '

=T x{—r+i<la,<r—0o},

it suffices to show that V{#’, ¢) admits the analytic continuation up to this set in
the boundary. This will be done in the sequel employing the local Bochner
theorem. Recall first that S.S.f;(x/) contains only the direction V=1 dg,o0 in
Q. This implies that f;{#’) admits there the boundary value expression by unique
term of the form Fj(»’--+/—1 I'’0), where I’ denotes the half space {y,>0} in
R7' and F;(?) is a function holomorphic on an infinitesimal wedge with this breadth.
To fix the idea let this wedge be of the form

(2.10) f=a"+4/Z1y"; 2’ €%, My"<y.<B},

where 1(f) is a non-negative convex continuous function of {>0 such that 1(¢)>0
for t>0, 2(0)=0 and 2(t)/t—0 as t—0. Note also that by virtue of the micro-local
regularity of E{z’, ¢) remarked before S. S.f;(z’)  E(2’, ¢} contain only the direction
/=1 dzx,0o as a hyperfunction of z/, . Further a closer study of Vi{z/, ¢)=/f;{x’) *
E(o’, <) shows that it admits similar expression of the form V({z/, &) +4/ Z1 "X RO),
where I'" X R denotes the half space {y,>0} in R27*XR. and V(2/, ¢) is holomorphic
on an infinitesimal wedge of the product type (2.10) x{Ree>0}. The studied real
analyticity of V{(z/, ¢) then implies that this defining function V(¢/, ¢) admits the
analytic continuation up to the real axis. This is why we have employed the same
notation to the defining function.

On the other hand, V(a’, ¢} is a solution of the differential equation (2.9).
Thus the boundary value expression by unique term implies that the defining
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function V(2/, ¢) itself is a solution of the corresponding holomorphic differential
equation

2.9y { B 20 (A, —1) (1—A,,)N-1}V(z', =0,

6&“’

where ¢ is considered complex. Thus by virtue of Leray’s precise version of the
Cauchy-Kowalevsky theorem, V(z/, ¢) can be continued up to a domain of the form

{27, e) € C"; @’ € 2%, 2{y"])+E(—Re ¢)+<y.<B'},

where k is a constant depending on the operator. Together with the above infor-
mation of analyticity, V(z/, ¢) is therefore holomorphic on a domain of the form

@11) {2, ) eC™; o’ € 2%, 2(y” ) +E(—Ree)s—p((Re &))<y, <B”, Reel<d},

where p(t) is a function of the same type as A{t). Note that this domain is in-
dependently defined of Im e.
We will now show that the domain (2.11) ean be improved to

(2.13) {(z/, 9 eC; 2" €%y, w(y”|+(—Ree)y)—p((Ree)y) <y, <B”, [Ree|<d},
where x(t) is another function of the same type as i(f). For this purpose consider
Via!, e)y=f;{z') « E(z’, &) more in detail. For the sake of simplicity we will first
make a reduction to assume that S.S.f;(&’) contains only the direction ++ —1 da,c0
everywhere on R* . In fact this is permitted by considering if necessary

(2.14) V@', &) * J(Do)) W', &) lar=sr

instead of V{x’, &), where

' o (n—2)1 dla!, o)e ="
@15 W @)= oy 1t Wl FV =T o= (@) )V I 54 V=10

is the component of a curved wave decomposition of 5(z’) employed in Lemma 2.2
of [6] and J(D.) is a local operator with constant coefficients with respect to a
system of local coordinates near o’=y'=(0, ---, 0, 1). If this new solution (2.14)
of the equation (2.9) can be continued up to e=0 in the set 9%, then its first
boundary value f;(z’) f,J(Da,,) Wi(x!, o) |w=» will be real analytic. Since J(D.) is
arbitrary, f;(@’) will then be micro-analytic there to the direction +v =1 dz,0 by
virtue of Lemma 1.1 in [8]. Because f;{x/) has been micro-analytic to the other
directions, it will actually become real analytic on 2%;. Remark that on Ree>0
the hyperfunction (2.14) enjoys the same regularity property as V(z’, ¢) indicated
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above. Note also that in view of the property of the component (2.15) studied in
Lemma 2.3 of [6], we can even assume as a result of the above reduction the
following estimate for the Fourier transform of f;(x"): For every y>0 there exists
C,>0 such that

1756 1<Cre 181107 on |&7| >7E,,

whereas on the whole R%? f,.(E’) satisfies the infra-exponential estimate.
Now consider
Via!, =" N fi(ENEE, €)
1

:WLH@@'EU%’)E(&', &g’

for Ree<0. Let 2’ run into a complex 2/ with y,=Imz,>0. For every y>0 we
will have

lev=ize f;(& E(E, o)
<O, exp(—y'&' — |&/|/Cr—2¢ Re e(VI+[E7[HHY (VIFH[ET) M) on [£71>7¢

Hence the integral on the region [£7}>7¢, will become holomorphie on the neigh-
borhood 2¢|Ree|+|y’|<1/C; of the real axis (depending on 7 but indifferent to the
sign of ¥,). On the other hand, for y>0 sufficiently small we have

lev=tze fi(e B, ¢)|
< C exp(—y"&" —y,&,— 20Re o(v T [E7 [ (v TH[ET19)
<O exp(—Wa—rly”|—Ber[Res)I&l)  on 18 <rtn.

Thus the integral on the region |£”|<7ré, will become holomorphic on the wedge
¥.>7|y"|+3¢ 7|Re ¢| which approaches the half space y,>0 as y—0. Summing up
we conclude that there exists a convex continuous function «(t) of t>0 satisfying
£(t)>0 for >0, £(0)=0 and x(t)/t—0 as t—0 such that V(#/, <) can be prolonged up
to a domain of the form

(2.16) {(#/, e) e C; klly" |+ |Ree|) <y, <B'"}.

Now the union of (2.11) and (2.16) gives a domain of the form (2.13).

Finally we apply the local version of Bochner’s tube theorem just as in the
proof of Theorem 3.1 in [8], with the role of Ree and Ime interchanged. Then
we conclude that V(#/, ¢) can be prolonged from (2.13) to a neighborhood of ;%
{Ree=0}. Since & is arbitrary this ends the fairly long proof of Proposition 2.1.

q.e.d.
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The following lemma should rather be given in [2].

LEMMA 2.2. Let As(K) denote the topological linear space of real analytic
functions on a neighborhood of the compact set K, endowed with the semi-norms

2.1 |fe)l=sup |/ (DI (@)

Then the bounded sets are common to _A+K), AK), ol AK), BIK). They come
Srom bounded sets of holomorphic functions on some complex neighborhoods of K.

The proof is similar to Proposition 2.4 in [2]. In fact, a subset Bc J4(K),
on which the semi-norms (2.17) are bounded, produces a bounded set in ol Az},
Plize}]) for every fixed x, € K. Then by the (DFS) property of the space Az},
the functions belonging to B can be continued to a fixed complex neighborhood of
2y, where they are uniformly bounded. Sinee z, is arbitrary, the assertion follows.
(Recall that  Ay(K)>e( AK), BIK] is a delicate (maybe false) conjecture con-
cerned with the representation of hyperfunctions by measures with accurate
support. See pp.332-333 in [21].)

Now we will improve the above result in various points.

REMARK 2.3. )
1) It suffices to assume the inequality (2.1) only for Re,>0 (hence equiva-
lently for Re{,>2|Re”| for some 1>0):

2.2) Im o) <bIm | +c|Re &, Y| ¢”|Y¥+C for Rel,>=2|Rel”|.
In fact, let W(z’, ') be the component (2.15) of the decomposition of 4(z’). Put

L={0,>2 2l0"|} and W, A’):j W', o')do.
4'ng™?

Then in order to prove the micro-analyticity of f;(z/) to the direction -++—1 dax,o0,
it suffices to show the micro-analyticity of f;(a’) = W(x/, 4’) to the same direction.
We then consider f;(x’) * W(z’, 4’) and hence f;(¢’) W, &) ete. instead of Jila)
and f(¢/) ete. Since W(¢’, 4') decreases exponentially in the region Re L. <A|Rel”|
on a conical neighborhood of the real axis (¢f. Lemma 2.3 in [6]), it annihilates
there the influence of es%p (Im z4{¢"))+, which may produce ¢ M|¢’| in view of (2.1),
for sufficiently small e. Thus the estimate (2.2) assumed only for Re(,>1|Re”|
will be sufficient to follow the above argument to deduce the real analyticity of
(2.8).

2) Instead of the real analyticity of the solution v on U*, and of the real
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analyticity of the boundary values of % on a neighborhood of U”X{—r<w,<7},
it suffices to assume their micro-analyticity to the directions p~*{++v —1 dz,o0) resp.
++ —1dz,, where p denotes the projection from S+ \{++/—1dz,} to the
equator £,=0. This follows directly from Theorem 1.10 in [8].

3) The set U” need not be convex. In faet, first of all for general U’ we
can still assert, instead of Lemma 1.1 in [6], that fil&’)e’P [ch(ﬁ)] and that
fi@') |y, agrees with the boundary value w;(x’). Further, in the argument of §1,
we have given an explicit construction (1.6) of F({) along the non-convex part of
the boundary {0} xaU” X {—r<x,<r}. By this construction we still have f;(z’)¢
'PLU], and we can follow the remaining part of §1 as well as the proof of Prop-
osition 2.1, with trivial modifications such as to change 3.K to ch{3.K). Finally,
Theorem 1.10 in [8], which we have cited just above, holds also for a non-convex
open set U”. (See the note 1 added in proof of [8]. In the proof of the corre-
sponding Proposition 1.8 in [ 8], we should then use a non-characteristic hypersurface
of the form w,=t(z’) which is no more convex, or choose a bounded domain X’
such that W eX’ eV’, surrounded by a real analytic hypersurface not necessarily
convex. The essential point is, however, that the hyperplanes x,=const. can be
tangent to e.g. 8X’ only near x,= 7. This prevents the propagation of singularity
inside W/, and allows us to follow the same argument.)

In order to formulate our first main result, let us recall the definition of the
following class of operators.

DEFINITION 2.4 {(cf. [8], Definition 2.9). Let »' € R* ! be a unit vector. We
say that p(D) is partially v —1 v/ dw'co-semihyperbolic to x,<0 (resp. to x,>0) if

the roots z(v"), 5=1, ---, m of the homogeneous characteristic equation p, (&, v’
=0 satisfy

(2.18) Im 3 ()0

(resp. Im 73 (V) =0).

A differential operator p(D) which is partially v/ —1v’dz’co-semihyperbolic to
%,<0 is partially —+ =1 v/da’co-semihyperbolic to ;>0 as is easily seen by the
substitution ¢——>—¢. Recall also (Lemma 2.10 and its proof in [8]) that when
p'=(0, -++, 0,1}, the partial v —1 dx,co-semihyperbolicity to z,<0 is equivalent
to the inequality {2.2)/ for the roots 7,{¢/) of p({, ¢')=0 or again to the inequality

(2.19) Im o) <¢|Re &, ]+ b Im &, |+ Core, i Re £, >0,
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for them (maybe with a different constant b).
Summing up the above remarks we obtain

THEOREM 2.5. Let p(D) be an operator which is partially v —1 v’ da’co-semihy-
perbolic to ©,<0. Let u be a local hyper function solution of p{D)u=0 on x,>0 which
s micro-analytic to the directions o (v —1v/dx’co). Let u;(a’) be its boundary
values to x,—+0. Then the set

m—1 - )
(2.20) S.8.u;(a) N {(@!, vV —1v'da’oo); v'a’=const.}
j=0
cannot be compact. The same conclusion holds for a solution in ©,<0 of the

operator partially v —1yv/dx'co-semihyperbolic to 2,>>0.

In fact, assume that (2.20) is compact. Then choose a system of coordinates
of the hyperplane z,=0 in such a way that v'=(0, .-, 0, 1), and choose a neigh-
borhood of this compact set of the form U” xX{—r<x,<r} such that the boundary
values u,(x') are micro-analytic to the direction v —1dax,o0 along dU" X {—r<z,<r}.
In view of the above remarks we can apply Proposition 2.1 to conclude that (2.20)
is void as a matter of fact.

In a similar way, from the latter part of §1 we can obtain the following
result a little precise concerning the mode of propagation. This is our second main
result. For the sake of simplicity, we will give it in a fixed system of coordinates.

THEOREM 2.6. Assume that the roots () of p(ty, &) =0 satisfy
(2.21) Im 7, (¢) <e|Re | +bIm /| +Cr, s, for Rel,>ejRel”|.
(Here {¥*=(Zs, +-+, C.).) Let u be a local hyperfunction solution of p(D)u=0 on
@, >0, which is micro-analytic to the directions o '(++ —1da,00). Let u;(x’) be
its boundary values to x:—-+0. Then the set

(2.22) | mL—Jl 8.8y N {2, ++—1 da,o0); x*=const.}

=0

cannot be compact. The same conclusion holds for o solution in x,<0 if the
inequality (2.21) holds for —Im «,(Z).

The proof is similar to that of Theorem 2.5. This time we employ the damping
factor

1GF-1(exp (—2ce(V I+ ERUN (VI T &) 11wy,
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By a construction intermediate to these two situations, we can prove in general
the following result.

THEOREM 2.7. Assume that the roots =,{") of p(&, ) =0 satisfy

(2.28) Im 7, (") <ellRe Lygia| + + + - +IRe L) +0Im [+ Crs, .. tag &,
for Re,>c|Re”|,

Sor some my 2<ny,<n—1). Let u be a local hyperfunction solution of p(D)u=0
on z,>0 which is micro-analytic to the directions o '(++ —1dx,o0). Let u,a’)
be its boundary values to x,—>+0. Then the set

m—1
(2.24) '!0 S. S.u;(@) N{a’, +v =1 dx,0); Tpy="** =T, =const.}

cannot be compact. The same conclusion holds for o solution in x,<0 if (2.23)
holds for —Im z,(Z').

Ezxample 2.8. Theorem 2.5 is applicable e. g. to the operator
(2.25) (D,++'—1D,)(D}—D}+D.D,)+D}  (n>5),

of the general feature. Recall that if the roots c}(¢’) satisfy Im<{(&)<0 for &
in a neighborhood of u’ instead of the only condition (2.18), then (2.20) always
becomes void by virtue of the propagation of miero-analyticity up to the boundary
(Theorem 8.7 in [8] or a corresponding work of Schapira). Therefore the interest
of Theorem 2.5 lies in the region where some of Im¢f(»/) vanish, that is, in the
so called glancing region. Note that the case where Im z}(»/) all vanish is already
covered by Theorem 4.1 of [8]. In view of Theorem 2.7, the conclusion for the
example (2.25) can he improved up to the non-compactness of (2.24) for ny=3.
Since, however, we do not utilize here the properties of the operator other than
the estimate of the roots, Theorem 2.7 is far from the ‘sharp propagation along
the boundary bicharacteristic strip when we apply it e. g. to the wave equation to
which a precise result is known {see Theorem 4.2 in [8] and the note 2 added in
proof thereafter).

The argument of this section relies much on the Fourier analysis. One may
think that an argument of more local character would be more satisfactory in
relation to the extension to the case of variable coefficients. On this point we will
give the following remark.

REMARK 2.9. 1) We can prove the real analyticity of f;(z’) *+ E(z’, ¢} in Q%%
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{Re >0} by virtue of Green’s formula coupling the given solution #(z) and the
solution Fi{x,¢) of the following boundary value problem:

‘p(D)F;(z, ) =0,

DiF;(@, €)oo= 0m—j—1.6l (Do) Wo (&', @) |or=0r % B’ )}y’ —a7),
k=0, +++, m—1.

(2.26) {

Here W,(2/, »’) denotes the component of the plane wave decomposition of §(z’),
v/'=(0, --+,0,1) and y’ denotes the parameters. The defining function of the data
is holomorphic on

{2, ¢ €C*; Im2,<0, Ree>0},

that is, on the half space y,<0 with the parameter ¢ aside. The solvability of
(2.26) for such data under the assumption of partial —+/ —1 dx,00-semihyperbolicity
to x,>0 of *p is just guaranteed by Proposition 2.11 of [8]. On the application
of Green’s formula, we must fully utilize the micro-analyticity of u(x) to the
direction v/ —1 dg,c0 even up to the part aU” x{—r<z,<r} of the boundary and
the fact that the convolution by J(Da)Wy(#’, @)|w= * E(x’, ¢) causes the propaga-
tion of 5.S. only along the conormal bundle of x,=const.. The use-of the plane
wave decomposition tends to the constant coefficients. Note, however, that the
defining function of the —+/—1 dx,co-component of E(y’—z’, ¢), which may be
obtained e. g. by

(Ve Jexp(—2ee(v TF [E7F) ¥ (v TF &P 1) (g —a),

is holomorphic only on the domain of the form

Co
(Re ¢)¥

{(z’,a) EC"; —c, Ree<y, <~ |[y” ¥+, Re e>0},

When we forget the parameter ¢, this is an infinitesimal half space y,<0 of fairly
general type. The problem (2.26) could not be solved in general for such data.
(See the example given in pp.428-429 of [87].) The situation cannot be much
improved by the convolution with the component of a curved wave decomposition,
e.g. (2.15), of 6(z'). Hence the above argument via the Fourier transformation
does not seem to be paraphrased by a local argument on the real domain. This is
the reason why we have unified the method of this paper by the Fourier analysis.

2) When N=1, the equation (2.9) becomes the partial Laplacian lacking D,.
Hence the real analyticity of fj(a/) » E{a’, ¢) implies the micro-analyticity of the
boundary value f;(z/) to the direction v —1 di,oo, just by the local theory on prop-
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agation of micro-analyticity up to the boundary (Schapira [18], Kaneko [81]).
When N is general, the equation (2.9) does not seem to have such property. We
might, however, utilize instead the ‘‘pseudo differential equation”

{—a%—+2c(«/1—A,,,)llN(«/l—A,,)l—uN} Via’, &)=0.

The operation of this operator is global along the conormal bundle of z,=const..
Therefore we will have to prepare anyway a kind of global theory to treat such
an operator. The latter part of the proof of Proposition 2.1 just studies for this
operator the propagation of micro-analyticity up to the boundary for a special
solution.

§3. Applications to the continuation of real analytic solutions.

Now we apply the above results to the continuation of real analytie solutions.
We have introduced in [ 61 a method for proving econtinuation of real analytie
solutions based on the Holmgren type theorem and the propagation of micro-
analyticity up to the boundary. First we will improve it in the following form
for the full use of our results.

LEMMA 3.1. Let plx, D) be a linear partial differential operator with real ana-
lytic coefficients. Assume that x,=0 is non-characteristic with respect to p. Let ()
=0 be a non-singular hypersurface of class C* in R ={z,=0} passing through
the origin. Assume that the operator enjoys the following propagation of micro-
analyticity along the boundary concerwing the local real amalytic solution u of
ple, D)u=0 on *x,>0: If the boundary values uf{x’) of w are real analytic on
o{x') <0, then they become simultaneously micro-analyiic at either of the points
0, v —1dplx/)oo) € V=1 StR*1.  Then every real analytic solution u of plz, D)u
=0, defined on a neighborhood of 0 except on {x,=0, ¢(x") 20}, can be continued
as a hyperfunction solution up to a wmeighborhood of 0.

The proof is just the same: Let [u]. be the canonical extension of u|w,;>0.
Then we have
m=1 .
plx,D)([uls+[ul)= Jgouj(x’)DT““’ﬁ(wl) ,
where u;{z')=ut{z’)—u7{z’) have supports in ¢(x’)>0. From the assumption of
propagation of micro-analyticity, they become micro-analytic at either of

(0, =+ —T1dp(x’)oo). Thus the Holmgren type theorem shows that 0¢ suppu;,
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hence that (], -+[u]- is the required extension of % as a hyperfunection solution.
As the first application we will reproduce Theorem 2.7, 2) in [31 which was
obtained by a global process based on convex Fourier analysis.

DEFINITION 3.2. We say that p(D) is partially v/ —1v/da’co-hyperbolic if the
roots (v}, k=1, -+, m of p,({, v')=0 satisfy

3.1) Im 2 (") =0.

The partial v —1 v da’co-hyperbolicity is equivalent to the partial v/ —1v/da’co-
semihyperbolicity to both sides =2x,>0. Therefore when »'=(0, --.,0,1) it is
equivalent to the following inequality for the roots z,(¢)) of »(¢, {')=0:

8.2) |Im 7, (¢} | <¢|Re &, +b|Im &, | +Cev.e on Re L, >0.

THEOREM 3.3. Let K be the intersection of a convex compact set in the hyper-
surface x,=0 with its half space {v'&’<<0}. Let U be a neighborhood of K in R™.
Assume that p(D) is partially v/ —1 v/dx’co-hyperbolic. Then we have

A (UK ALU)=0.

In fact, by virtue of Theorem 2.5 we can assert that the difference of the
boundary values u;{z/)=ut(2x’)—u;(’) is micro-analytic everywhere to the direction
v =1 y'da'co. Thus we can apply Lemma 3.1 to every hypersurface of class C*
in 2,=0 which is convex below and equal to v’#’=const. near K. By the method
of sweeping out, we conclude that u;{z’)=0, hence that % can be extended to an
element of P,(U). It remains to recall that the convexity of K guarantees the
propagation of interior regularity B,(U)NAUNK)=,(U) (see e.g. Kawai [12],
Theorem 5.1.1).

One may notice that the above theorem requires the inequality (8.2) only on
Re¢,>0 whereas Theorem 2.7, 2) in [3] requires the same inequality only on
Im,>0. These restrictions naturally come from the respective methods and
might be significant for pseudo-differential operators. Since however we consider
here only differential operators, both restrictions are superfluous as is easily seen
by the substitution {+—— —¢.

More generally, our argument gives us the following result.

THEOREM 3.4. Let L be a compact subset of R with n>8 contained in the
hyperplane {x,=0}. Let 2<n,<n—1 and put

K:Lﬂ{x,2,0+1+ e +w,2,<1}.
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Let U be an open meighborhood of K in R*. Assume that the roots <,(C), k=1,
--, m of the equation p(&, ¢'Y=0 satisfy

3.3)  [Im () <e(|Re Lupl+ -+ +IRe Lul) +0Im ' +Cr,, .. tng1.e  for ' €C
Then the image of the natural mapping

(3.4) AAUE) | A, (U)— B, (UNK) B, (U)

is zero. That s, a real analytic solution u of p(D)yu=0 in UK can be continued
(uniquely) to U as a hyperfunction solution.

ProOF. We will prove that u;(z)=ut(z’)—u3(x’) all vanish on K. We can
apply Theorem 2.7 to our operator p(D) with respect to every micro-direction in

8.5 V=1 (Rdz,y+ - - - + Rdw,)oo € V=1 SE .

Thus the spacial trace of ?LZE:S. S.u%(z’) with these directions cannot have compact
intersection with x,,=---=u,=const. Since we have sing supp w52 )CK by the
assumption and K has compact intersection with such a level variety, we thus
conclude that S.S.u%(z”), hence S.S.u;(x’) do not contain these directions anywhere
in wia+---+ai<l

On these informations we now employ the method of sweeping out combined
with the Holmgren type theorem. Consider the following family of real analytic

hypersurfaces:
1
S:x,,= -
0 1“(51’/'72»0+1+ etk

By what is shown above, u;(z/) are micro-analytic at the conormal elements of S;.
For 1<0, S; do not touch K. Thus we can sweep out suppu;(x’) to conclude that
u;(x')=0. This establishes the required continuation of w as a hyperfunction

solution. qg.e.d.

This time the interior propagation of real analyticity cannot be expected in
general. Remark that on the other hand we can assert the same conclusion for
the subspace of @B, (U~K) consisting of those which are micro-analytic to the
directions (3.5).

The special case n,=n—1 (i. e. the eonsequence of Theorem 2.7) is the follow-
ing which improves Theorem 2.1 of [41.

COROLLARY 3.5. Let L be a compact subset of R* with n>3, contained in the
hyperplane {z,=0}. Put K=LN{—1<z,<1}. Let U be an open neighborhood of
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K. Assume that the roots 7,(0), k=1, ---, m of the equation p(&, ¢')=0 satisfy

(3.6) [Im 7, (¢") | <e(lRe Loyl + [Re &) +0(Im &y |4 Im ul) +Cty .. tamee,
for e,
Then the image of the natural mapping

AUE) [ A (U) > B, (UK) | B, (U)

18 zero.

Recall that in Theorem 2.1 of [4] we assumed the inequality

3.6)  [Im (") [<a(|Re L)'+ Re Lul) +0(Im Loy [+ Im &) +€{[Ce] + - - - 4 [Cue) +C
for ' eC* 1,

with ¢g<1 (where the constant C is forgot). This one is far stronger than (3.6).
The article [ 4] has been our starting point to the study of the estimation of S.S.
of boundary values in connection with the problem of continuation of real analytic
golutions. In order to explain the result of [ 4], we have extracted from it the
following conjecture: “Under the assumption on the roots

3.7 Im 7, () <alRe L,|*4+b[Im &.[+¢l¢”[+C, for Rel,>0,

the boundary values of the local real analytic solutions of p(D)u=0 on ,>0 will
become micro-analytic to the direction v —1 dx,o0”. ‘

It is true (see Schapira [18], Kaneko [8]) that in some cases even in the
glancing region, the same phenomenon as in the reflective region (z2(¢/)<<0 for
&~} holds, that is, the propagation of micro-analyticity up to the boundary,
which is stronger than the phenomenon of the propagation of micro-analyticity
-along the boundary. Here, however, the basie result for the conjecture is clarified



Propagation of micro-analyticity 345

by the latter phenomenon unwillingly to the author’s intention. The examination
of the condition (3.7) is made in [8] to some extent, but not yet satisfactory.

§4. Remarks concerning pseudo-differential operators with constant coefficients.

The results of §2 as well as our similar ones in the previous papers can be
translated with little modification to pseudo-differential operators with constant
coefficients. Here we will shortly explain how to formulate it, especially in con-
nection with the Fourier analysis. A more systematic treatment will be given in
a forthecoming paper with the preparation of the theory of Fourier hyperfunctions
with hyperfunction parameters. Also at the end of this section we will eonstruct
a solution of the boundary value problem showing that Theorem 2.5 is best possible
in some sense.

The operator which we treat here is of the following form:

4.1) p(D)=D1+a,(D)\ DT+ - - +an(D),

where ;') are (algebraic) funections of ¢/, holomorphic on
4.2) Re ¢, >c([Re”[+1), [Im C’l<%(lRe gi+1),
and there satisfy

(4.3) la; () IS ML 1+1)7.

It is easily seen that such p(D) defines a pseudo-differential operator in the usual
sense on the corresponding neighborhood of the direction +4 "1 dg,c0. In fact,
the inequality (4.3) combined with Cauchy’s furnishes the necessary estimate for
the derivatives of a;{¢’). (See e.g. S-K-K. [16]. In order to neglect the verifica-
tion of the asymptotic expansion a more wide class given in Kataoka [9] will
also be convenient.) Here we will introduce a simple definition of this operator
via the partial Fourier transformation.

Put
(4.4) Ale)= W&;«fwe'ai ez,
where

E={¢' e R &,2c(8"+1)}

LEMMA 4.1. A;() is a temperate distribution with the following regularity

property:

(4.5) S. 8.4, Cl0}x v/ =T 4°dx’co U R x v/ =T 04’ °da’ o,



346 ) Akira KANEKO

where 4'°={g' € R*™; £,>c|&” |} is the dual cone of 4’'={y’ € R*'; y,> 1)y’ |}, and
04'° is its boundary. (We are denoting A'°dx’co instead of (4'°NS*%)dz'co elc.)

In faet, A;(x’) is the boundary value of the holomorphic function Az e QR
++/ =14’) which is defined by the same integral (4.4) with 2’ in place of »’. A routine
argument by the deformation of the path at the interior of E shows that it is
micro-analytic to the direction Int (4’°) outside 0. Thus the integral operator
a;(D')=A;(x’), to the hyperfunctions with compact support gives rise to a micro-
local operator in R**xInt(4’°). Hence the operation of p(D):jzz a;(D'yDr to a
hyperfunction % with support eompact in =’ can be micro-localized in the region
R X o HInt(47°)), where p: SE x4+ —1 dx,co}—S%*2 is the projection along the
meridians. It is also clear that this operation in the micro-local sense on the very
neighborhood of R*x o~(v/—1 da,c0) does not depend on the choice of the neigh-
borhood 4’° of (0, --+, 0,1) or the corresponding integral region E in (4.4).

DEFINITION 4.2. We say that a hyperfunction u with support in 2,0 defined
on a neighborhood of 0 is a solution of p(D)u=0 at the boundery on z,>0 if for a
(in fact any) cutting-off of % into [#] with support compact in =’ (say supplu]lC
{zy >0} % fJ—/, where U’ is a neighborhood of 0¢ R*!), we have

4.6 PIDII='E f@) Dr—So(a) +,

where f;(z) e’ g}[ff_’], and the remainder term v is such that
supp vC{x: 20}, 8. 8.0[puy CR" X (SE o~ (Int (47°))).

Remark that fj(z') |y, gives the boundary values of u as micro-funetions, that
is, as hyperfunctions which are determined modulo those micro-analytic in the
directions Int(4’°). The uniqueness of the boundary values in this sense follows
from the proof of Lemma 1.7 in [81.

Let W', »’) be the component (2.15) of the decomposition of &(z’). Choose
another closed conic neighborhood 4°c4’® of (0, ---,0,1) and put Wia’, 41°)
:Ss”‘znai" Wi, o’')do’. If we convolute W(x’, 4/°) to both sides of 4.6), we will
obtain

(D) ([ul* W/, A{°))=':Z_: (fil@’) = Wia’, 41°)) Dy 798 (w) +vx, Wi/, 4(%),

where now

S.8.(vx Wi, 41°)) laxg- CR" X {=V =1 d,c0}.
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Now assume that w is micro-analytic in {2, >0}X e 1(Int(4’?)). Then we can cut
off the support of [u}* Wix’, 4{°) in @, <<e in such a way that the modified hyper-
function, denoted by [[u]], satisfies

supp [[wllC{0<w <s},
Hull=[ulx W', 4°) in =<2,
S. 8. (]l taymorsn CR* X { £V —1 daso0}.

In fact, in this case we have

S. S.[u] ’;‘, W(.’I},, A{o)] {z1>0} )(UICRnX {i'\/-—?]v. dwloO},

hence, by the flabbiness of the sheaf of microfunctions we can first choose a
hyperfunction v; such that

sing supp v, C{0<x; <3 ¢/4} X—T_]_’,
S. 8.01] o>t xor C{B, KB /4 X (v =1 dx;0},
[u]f,W(x’, 4°)—wv, is real analytic in ,<<3¢/4.

Then it suffices to choose as [[u]] a modification of
([ulx W(a', 4°)—vy) Y{e/2—z)+v Y{e—2y)

with support in {0<z:<eJX U’ (employing the flabbiness of aBh.
Summing up we obtain

m—

4.7) p(D)[[u]]= JZ:(J%(x’) « W', 41°)) D6 {w,) +w.

Cutting the supports again, if necessary, in V7c U’ in a more delicate way accord-
ing to the demand of the problem (see e.g. Lemma 1.1 where the use of yxy{x”)
or Y(z,) is allowed also in the present case under the same regularity assumption
for the boundary values), we can apply the Fourier transformation to both sides.
Thus we obtain

s Mol e T — i
(4.8) pOlUull= jgfjm’) *Wia!, 41°)¢r 7+ (0).

(Here we have conserved the same notation for the sake of simplicity.) The left
hand side disappears when it is restricted to p(¢)=0. Thus we can deduce the
regularity information of f;(’)* W(x', 41°) from @(()|xy. Note that for any
W/'cV’ we can decompose w(x) in a way

4.9) w(x) =w,(x) + Iéwk(w)
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such that
a} wp is a rapidly (i.e. exponentially) decreasing real analytic function outs1d¢
{O<x1<e}><W’ on a conical nelghborhood of the real axis, and

S. S.wyC R X {++ =1 dz,00},

b) VAW’ = U L%, where L, CR* is compact and w, is a rapldly decreasing
real analytic functlon outside {0<x e} X L. (If V7 is not convex, U L,, may go
out into a small neighborhood of V’.) Here a rapidly decreasing real analytic
function on a conical neighborhood of the real axis means a section of the sheaf
Q discussed in Kawai [12] (see pp. 494-495). The construction of this decomposition
is carried out in the following way: Let ke GB(RY be such that

S.8. hcS.S. Wiy, (w—h)|gsw: € ARXW).

Then % can be considered as a section with compact support of the quotient sheaf
Bl A, which is also equal to Q/O on R", where (J is the sheaf of Fourier hyper-
functions. By the cohomology vanishing property for (9, we ean find a global

......... ¢ +UL ¢an nnha a

representative in Q which we will again denote by h (see the cited part of {121.
Then h is a section of () outside {0<z, <} X W', S.8.ACR X {£+ —1 dzyo0} and w—h
is a section of Q oﬁtside {0<x1<e}><(7’\W/). Further decomposition of w—h
conformed to that of VW’ is similar.

Coneerning the estimate for @,() recall the following Lemma due to Kawai:
((12], Lemma 5.1.2. See also Remark to Lemma 2.8 of Kaneko [417.)

LEMMA 4.3. Let KCR" be convex compact. For ue B(R") the Jollowing are
equivalent.
a) u extends to a section of Q outside K.

b) The Fourier transform 4() is holomorphic on a conical neighborhood of
the real amis. Further, for any >0 there exists 6=5(c)>0 such that on 1 Im ¢ <
d(|Re|+1), 2{¢) satisfies, for every r>0,

(4.10) [0} < Cyeritit HrAmp +ellmy]

Remark also that for any >0 there exist 6=6(y), 6’=6'(y)>0 such that Well)
satisfies

{4.11) [%,(¢)|<C exp (e max {Im &;, 0} + He(Im ) +7/Im ¢|—6[Re Z])

on the domain
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Im <o’ (Rell+1), [Rel|<3 M(jRe('|+1)

where M is the constant in (4.3). This follows from the properties of w, listed up
in a) above. (See the proof of Lemma 2.3 in Kaneko [61.) Since ¢ <2M(|Z']+1)
holds on N(p), (4.11) certainly holds on N{p). Remark that we can voluntarily
choose §/< 4.

Shortly speaking, we are pursuing the argument of §1 with the notion of
support replaced by the support modulo Q Accordingly, we consider the objects

in the Fourier image on the following co;plex domain instead of the whole C":
4.12)  {eC; IGI<2M(['1+1), Rel,=c{[Rel”|+1), lImC’K%(lReC’Hl)}.

(Here ¢>0 may have been replaced by a greater constant.) The remaining part
goes parallelly and we can obtain results corresponding to Theorems 2.5-2.7 for
the pseudo-differential operators p(D) of the type (4.1)-{4.3). The Fundamental
Principle to such a function p() on a domain of the form (4.12) will be proved in
the same way as the usual one for a polynomial p({) on the whole space. We need
here, however, only its trivial part.

REMARK 4.4. The argument becomes even easier than §1, because we need
not employ J(D’) in the step corresponding to Lemma 1.4. In fact the use of Q
instead of C% cutting-off functions gives the factor ¢~?R<tl in the estimate (4.15,
which allows us to deduce the necessary estimate implying the real analyticity for
the results of the substitution of the roots {;=7,(&’) of p(, ¢)=0. This way can
be considered as an alfernative proof even for the differential-operator p(D). On
the other hand, in the present case we cannot remove the final ambiguity term w
as in the proof of Lemma 1.3 in [8], because our operator p(D) (and even
g)oaj(D’)W(D', 4°)Dr3) is not defined on the very neighborhood of +=4/—1 dw,co.

To conclude this section we will construet an example showing that Theorem
2.5 is best possible. :

PROPOSITION 4.5. Let p(D) be a differential operator with respect to which
2,=0 1s non-characteristic (or a pseudo-differential operator of the type (4.1)-(4.3)).
Assume that it is not partially v —1 v'da’co-semihyperbolic to 2,<0. Then there
exists a local hyperfunction solution w of p(D)u=0 at the boundary on x,>0
satisfying the following conditions: ‘

a) % s real analytic on x,>0.

b) 8. S.u;ci0ixV=1vda'oo} for Vj, and the equality holds for some j,
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where u; are the boundary values of wu.
That is, in this case the propagation of micro-analyticity to the direction

V' =1 v'da’co does not hold in any sense along the boundary.

Proor. Choose »'=(0, ---, 0,1). The assumption implies that the equation
DPulls, v')=0 for & has a root z{(v') such that Im<3(’)>0. Grouping such roots
if this one is not simple, we can obtain a pseudo-differential factor q{¢) (say, of
order p<\m) of p({) of the type (4.1)-(4.3) sﬁch that all the roots (&), k=1, -+, g,
of q(¢,, ¢)=0 for ¢, satisfy

Imrk@')%is'l for & € B={£,>C(le"]+1)},
hence
(4.13) Imrk<<')>%lRec'1 for Re¢,>c(Ret”|+1), Im¢'|<d[Rel],

for a suitable constant ¢. Put 4’°={¢,>c|¢”|}. Thus ¢(D) is an elliptic pseudo-
differential operator in R"xp~1(Int (4’°)) for which the boundary value problem is
micro-locally solvable to z,>0. The construction from now on is routine. We will
shortly indicate it. Recall Wi{a’, v/) as in (2.15), and consider the following Cauchy
problem for the ordinary differential equation with parameters:

Dlélal:zl:():oy O<k<ﬂ_2’

{ q(D,;, &)4=0,
Dgflmxﬁoz W(E', v)ye€’).

-Here W(g’, v’} is the Fourier transform of Wi{z’, v/) and yz(&) is the characteristic
function of E. The solution @(x,; &) is given by the well known formula

1 e 1
74(&’) e (&)
e"/:ffl(f')xl seae e‘\/jrﬂ(f’)o;l
Alwy; &)= Wi, v)1e(e).
1 Cees 1
7§ 7u(&")
Ty (§N)FT a8}t
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(The right hand side can be given a suitable meaning even for & giving multiple
roots.) Owing to (4.13), #(x,; &) is exponentially decaying in &’ for x,>>0. Hence
the inverse partial Fourier transform [u] of Y(z,)a(x;; &) gives a real analytic
function on x,>0, which satisfies the following equality (even in the distribution
sense):

(4.14) gD\l =a-"FHW(E’, v') 1) 3 (@),

@ being a non-zero constant. The technique employed in the proof of Lemma 4.1
shows that

S. S/F YW, ) 1sle”) =0} X (v —Tv'da’co}.

Finally we let the remaining factor operate to both sides of (4.14) to obtain p(D)
in the left. Then to the right hand side appear the boundary values which are
more complicated but anyway whose S.S. are contained in {0} {v —1v'da’co}
and in total containing this set. In order to verify this, the cutting off of support
with respect to 2’ is not necessary: We can simply make this composition in the
Fourier image, where the factor yz(¢/) restricts the operator to the domain on
which the decomposition takes place with regular coefficients.
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