Scattering theory for Schrodinger equations
with time-dependent potentials
of long-range type

By Hitoshi K1TADA
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§1. Main results.
In this paper we shall discuss the scattering problem by a time-dependent
potential V(t,x) of long-range type satisfying the following Assumption (A):

ASSUMPTION (A)

i)  For each t€ R, V{(t, a) is a real-valued C>-function of x¢€ R*.

i) For any multi-index «, 82V (¢, %) is continuous in (¢, z) € R'X R".

iii) There exists a positive constant ¢ such that for any multi-index « with
] #0

.1 [02V (¢, o) < Cult)lale,

where {t>=+'141 and the constant C.>0 is independent of (¢, %) € RixXR* We
denote by H{t) the self-adjoint realization of the Schrédinger operator —(1/2)A
+ Vi, x)x in L*R"), where A= 262/6962 denotes the Laplacian. According to
Kato’s theorem [6], [T] generahzed by Kobayasi [11] and Yagi [15], [16], there
exists a family of unitary operators Ul(t,s) ({,s€ RBY) in L*R* satisfying the fol-
lowing properties a)~d):

a) Ult,s) is strongly continuous in (t,s) € R%
by U, U, s)=Ult,s), Uls,s)=1 (¢t r,s€RY.

¢) Let Y={fecL*R"| | fly=(f, f)¥*<c} be a Hilbert space with the inner
product

w2 = 3 [@ofmisi,  @=vITRE

Then U, s)YCY for any ¢,s€RY, and Ut s)f (f€Y) is strongly continuous
n (f,s) € R? as an L*(R")-valued function.

d) For any feY, Ult,s)f is strongly continucusly differentiable in L*R® in
t and s, and ' ‘
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(1.3) (AU, s)f=—1iHGUR, 9)f, (dlds\U(t, s\f=2Ult, s}H(s)f.

(The existence of such Ult, s) is also proved by Fujiwara [2], [3], Kitada [8], [9]
and Kitada and Kumano-go [10] for the special case of Schrddinger equations.)

To state our main results, we need to define the modified free propagator
Ust). For a sufficiently large 7>>0 we shall in Section 3 construct the unique
solution ¢(s, t;x, &) (t=s=T,x, &€ R") of the Hamilton-Jacobi equation

{6,95(8, t;wy S) _H(tv VESZS(S) t;xy E)y s) =0y
¢(S,S;x, E)Zx'gy

where H{t, x, &) =(1/2)|6F+V (¢, 2). Using this ¢ we define the modified free prop-
agator U(t) by

(1. 5) Upit) =Feie 7506 X ICF,

(1.4)

where ¢f denotes the Fourier transformation in L*E"}:

(1.6) Fre=f@=slim| _oorai, oi=Los,

Noowo }lziSN

Tor t<s< —T we can similarly construct ¢(s,¢;z, &) and Uszp(t). Then our main
results are as follows.

THEOREM 1.1. Let Assumption (A) be satisfied. Then there exist the limits
(called “modified wave operators”)

(1.7 p=s-lim U, 0*U3(),

t—doo

and they are unitary operators in L2 (R"). Thus the scattering operator Sp defined
by Sp=(WH* Wy is unitary in L*(R").

THEOREM 1.2. Let Assumption (A) be satisfied. Define for fe L*R")
(1.8) V=) f (@) = 2rit) */2ei¢* ©0) f(nft), t=+T.
Here ¢=(t, %) are defined by
(L.9) PE(t, ) =085~ ¢(= T, 150, 87), t==T,

where EE=¢E%(t, x) are the solutions of

(1.10) 2=Vp(x T, 1;0, &3, 2), t=+T.
Then for any fe L:R") we have
(1.11) im U, 0) f— V=) WH S =0.

t—>too
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Therefore the probability demsity of Ult,0)f converges asymptotically to |2rxt|™
XUSF W3 f)w/t) P as t—co, hence Ult, 0)f behaves like a free state at t—>*oo,

Theorem 1.1 asserts that the modified wave operators are complete. Theorem
1.2 gives an asymptotic behavior as t—=+oo of the solution u{t)=U(t, 0)f of the
Schrédinger equation

1 du

1.12
( ) 1 dt

— - @)+ Htyu(t)=0, w0)=f (€ L*R").

Furthermore Theorem 1.2 justifies the name “modified wave operators” for W3,

together with the equation (1.4) which is the same as in Hérmander [5] used to

construet the modified wave operators for time-independent long-range potentials,
As to the decay rate as t—=oo of the potential, our Assumption (A) is weaker

than that studied by Howland [4, §4]. Furthermore the following examples are

covered by (A).

Example 1.3. Let 3 € C(R") satisfy 0= y(x)<1 and x(x)=1 (| x|=24), =0 (2| 0)
for some §>>0. Let b,(t), ¢{t) € C*(RY) be real-valued and satisfy |b,(t)|SC{E> ¢ (j=
1,...,n) for some constant ¢>0 and C>0, and put B(t, z)= flbj(t)oc,-—kc(t). Let q(x)

=

€ C=(R™ be real-valued and satisfy for any a
(1.13) [22q(@)| = C{ad~m (Il

for some sequence {m(k)}$—. Then V{t,z) in the following examples satisfies
Assumption (A):
i V@)

(> )qle) + B, x), mk)=k+te, e>0.

i) V{, @)=qt)®)+ B, z), a>1, mk)=0 (Fk=1), m(0)ecR.
iii) V@, o)=y(Kt> g 2) + B, x), a<l, mk)=k+te, &>0.
iv) V{t, x)=yx@)qt>°x)+B(t, 2), a<—1/e,, m{k)=k-+e, >0
v) VI, 2)={&"0qKt)2) + B(t, o), mk)=0 (k=1), &>0.

The case ii) covers some of the time-dependent potentials of long-range type
refered to in Kuroda and Morita [14, §4] (see Remark 4.2 below).

Our proof uses the approximate fundamental solution, expressed globally in
time as a Fourier integral operator, of the Schrédinger equation (1.12), and is
completely time-dependent. In this respect our proof seems to be new compared
with the existing proof of the completeness.

In the following we confine ourselves to considering only W5, since Wp can
be dealt with similarly.
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§2. Classical orbits.

Let (q(t, 832, &), p(t, s; 2, &) be the solution of the Hamilton equation

o —g%(t, s)=p(t, s),

b8 ==V.V(t, qt, )
with the initial condition

(2.2) (s, s)=w, pls,8)=¢,

where V.='(@,,...,9,,), a,jza/awj. The equation (2.1)-(2.2) is equivalent to the
integral equation

qlt, S)=w+St p(z, s)dr,
2.8) y
oit, s)=e—g V.V(z, qlz, 8))de.

By successive approximation this equation can be easily solved and we have the
following proposition.

PROPOSITION 2.1. Let Assumplion (A) be satisfied. Then there exists a
unique solution of (2.83). The solution (q,p)(t,s;x, &) is C= in (x, &) for each (£, s)
€ R? and its derivative 8%95(g, p)(t, s;%, &) 18 C in (t,s;%,8).  Furthermore there
exist positive constants T, and C, such that the following estimates hold:

) For any t=s=T, and x, £€ R»

(2 4) { [q(s!t;wy E)—xl+|q(t73;m, E)_m[éCO(t—S)(<S>_£+[§D7
) [pls, t;o, &) —&| | p(t, 559, &) — & = Cods)™%;

2.5) { [V.qls, B2, &) —I|SC(sd7%, V.t 852, &) — IS Cylt—s){sd7*7e,
) [V.pls, t;2, &)+ V.p(t, 853, 8| S Cs)%;

@.6) { [Veq(s, t;, &) — (s—8) | S Cy(t—3)<s>~e,
. [ Vep(s, t;x, &) —I| < Cylt—s){sd~1;

and

Iqu(t: 8%, 5) - (t_s)Ilé Co(t—SKS)—B,

@1 { Velt, 532, &) —I) < Cols)~,

where I denotes the nXn identity matriz.
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i) For any «, B with |a+B|=2, there is a constant C.p independent of
t=s(=T,) and =, & such that

[0%05q(t, s;, &) | = Coplt—s){s)75,

2.8) { [0¢0in(t, 5%, &) | S Capls)™.

iii) More precisely we have for any t=s=T,
2.9) [0¢(a(t, s;, &) —x— (L —9)D(¢, s, £))| < Comin{(t)*~, (t—s)<s)~¢} for |a|=1.
Proor. The existence and smoothness of the solution (g, p)(, s;%, &) and the

estimate (2.4) are easily seen by successive approximation from (2.3). Differenti-
ating (2.8) with respect to z and interchanging ¢ and s, we have for t=s

V.qls,t)=I+ j V,p(c, t)de,

(2. 10) ‘o

V.pls, )= —g V.V, Vi, qlz, 1) Vagle, t)de,
t

where €,=‘V@. From this we obtain the estimate (2.5) for (V.q, V.p)(s, t;%, &) by
successive approximation if we note t=s and IGZVQV(r,q(r, H £C{Hy%¢ by As-
sumption (A)-iii). Similarly we can prove (2.5)-2.7). Then (2.8) is proved by
induction similarly by virtue of the equality

t
0704 q(t, 8)=S 0§ 0£ plz, s)dz,
t
0508 plt, )= ~5 0408 {V, V(c, qlr, 8))}de,

which holds for |a+8]=2. We next prove iii). Writing p{co, s)=p(c0, s;2, &=
1im plt, s;x, §)=E—'rV,V(r,q(z-, s))dr, we have using (2.3) and Assumption (A)-iii),

lq(t, s;2, &) —x—(t—s)p(t, 852, &)
=lq(t, s) —x—{t—s)p(co, s)| +{t—s)| p(oo, 8) — (¢, s)|

2.11) < S S‘”vwwo, alo, 9))do fvﬁV(f, alz, 8))dr

T

dr+(t—s)

< Cst<z'>‘5dr+0(t—s)<t>‘5§_ Co min{(eyi=, (E—s)<s>7.

Similarly writing Vep(oo, s)=Vzp(co, 5;2, §) :{im Veplt, s;x, &) =1— r V.V.V(z, qlz, 8))
X Veq(r, 8)dr, we have using (2.7) and Assumption (A)-iii),
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[Veqlt, s)—(t—s)Veplt, s)]

=|Veqlt, s)— (t—s)Vep(oo, 8)| + (£ —8)| Vep(oo, 5) = Vep(t, 8)]
2.12)

t 00~
g& |Veple, 8)— Vep(eo, s)]dr+(t—s)S V.9.V(e, alz, 5))Veale, o) de
8 t
< Comin{t)!~s, (t—s)<s)~}. O
From this proposition we can easily get the following important proposition.

PROPOSITION 2.2. Let Assumption (A) be satisfied. Take T>T, so large that
C{Ty¢<1/2 for the comstant C, in Proposition 2.1. Then for t=s=T there exist
the tnverse C= diffeomorphisms x—y(s, t;x, &) and &—nlt, s;2,&) of the mappings
y—x=q(s, t;¥y, &) and p—&=p{t, s;x, ), respectively. These mappings y and n are
C= in (x,8) for each t=s(=T) and their derivatives 8¢0%y and 08%0fy are C' in
{t,s;x, &). Furthermore y and v satisfy the following properties:

i) q(s, t;y(s, t;x, 8), &) =, plt, s;m, 9, 532, 9))=E.

ii) { Q(ty S;w, 77(t7 S;x, E))’:y(sy t;wy E)a
pls, t;yls, t2, 8), §)=7(t, 552, £).

iii) There exists a constant C,>0 such that for any t=s(=T) and x,&¢ R

(9, 82, 8) — & = CKsHe,
.13) Uivets £) —a— (t—5)8] < C, min{(Ey™, (t—s)(s)~");
[V.ayls, tym, &) —II<Cis)~e,
2.14) { Veyls, 63, &) — (t—s)1] < Cs min{ty' <, (t—s)<sy-7):
and
[Vzv(t, S;xr g)l éCI<S>—1—€,
2.18) Uivent o & — I =<Cylsye.

iv)  For any a, B with |a+f=2, there is a constant Cup>0 such that for
any t=s(=T) and z,£c R*

[02089(¢, 852, &) L Copls)e,
(2.16) { 10202y (s, t:, £)] < Caplt—s-+1) (3,

PROOF. The existence of the inverse C« diffeomorphisms y and » is proved
from the estimates (2.5) and (2.7) by using the contraction mapping theorem
{see e.g. the proof of Lemma 3.2 of Kumano-go {12]). Then i) and ii) are obvious
by definition. The assertion iii) except the second estimates in (2.13) and (2. 14)
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follows from i), ii} and Proposition 2.1-i). The second estimate of (2.18) is clear
from (2.9) with [«]=0 and i)-ii) above. Also using i)-ii), (2.15), and (2.9) with
|a|=1 we have

[Vey(s, ¢, &) — (t—s)I|
=|Velq(¢, s;2, 9(8, 55, €)) — (E—s)p(t, 8,2, 9(t, 55, €))]1]
=|Veqlt, s;2, 9(t, 85, 8)) — E—s)Ven(t, 552, 9(t, 852, §)) | Van(t, s;2, €)|
=Cmin{t)'™s, (E—s)<s)}

We finally prove (2.16). The first estimate in (2.16) is proved by induction by
using the estimate (2.8) of Proposition 2.1-ii). Then the second estimate in (2.16)
follows from this and (2.8) by using the first relation in ii). O

§3. Approximate fundamental solution global in time.

We begin with the definition of the phase function ¢(s,¢;x,&) of the ap-
proximate fundamental solution.

DEFINITION 3.1, For t=s=T, define

3-1) pls. b3, §)=uls, t;y(s, t;%, §), &),

where

8.2) uls, 4y, 7=y '77+S:L(r, alz, 9, 7), ple, £59, 7))dz
and 7

3.9 Lit, %, &) =¢-VeH(t, v, 8~ Ht, 5, )= 6P V(1 )

PROPOSITION 8.2. Let Assumption {(A) be satisfied. Let t=s=T. Then
é(s, tix, &) defined above satisfies

(3. 4) 0,8(s, t;, &) -+ His, x, V.9(s, ;2, £)) =0,
(3- 5) a¢¢(8yt;xy E)_H(ty V5¢(8» t;w? 8)» 8):‘0;
(3.6) : B(s, 532, &) =x§,
and

' V.6(s, t;2, £)=1(t, s;x, &),
®.7 { Ved(s, t;, &) =y(s, t;, &).
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Furthermore ¢ is uniquely determined as the solution of the equation (3.4) and
(8.6) (or (3.5) and (3.6)).

Proof is done by direct caleulations {or see Kumano-go [12] and Kumano-go,
Taniguchi and Tozaki [13]).

Before defining the approximate fundamental solution, we prepare a proposition.
Let @F~(R™ (k=0, integer) be the space of C~-functions f{y) whose derivatives
92fy) are all bounded on R™ for all « with |a|=k. We often write B~(R™)=
B*=(R™. Further we denote by S the Schwartz space of rapidly decreasing
functions on R*.

PROPOSITION 8.3, Let Assumption (A) be satisfied. Let t=s=T, and let
p(&,Y) € PE2(R*X R} for some integer k=0. Then for any f€S and ycS with
2(0)=1, the integral

3.8) PIf1w)= He w5059, p(E, y) £ (y) 2 (e£) dydlE,

where &= (2x)"d&, has the limit P[fllx) when ¢} 0, which does not depend on
any particular choice of . Moreover P defines a continuous linear mapping
from § into S. We write P[f] as

8.9) P[f1(x)=0s S Sei eE=p 0. (2, y) fly)dyde.

PrROOF. Let t=s(=T) be fixed and write ¢y, &)=d¢(s,t;y,&). Then putting

¢, & y)=n-E—y, &), we have from (3.7) and (2.18) that C(E)S (V> CI(E) for
some constants C,(’>0. Thus the differential operator L=<(V,¢>"%(1—iV,$-V,) is
well-defined, and by integration by parts we have for any =0

8. 10) PIF1) =Hew(tL>’[p(s, W)f ) et dyds,

where L denotes the transposed operator of L. Then taking I>n-+k, noting
€8 and letting ¢} 0, we have

8.11) P[f](w)=SSei¢(‘L)’[p(€, o) ) ldyde,

which is independent of y. From this, taking ! sufficiently large, we can easily
gsee that P:S—§ is continucus. O
Now we can define the approximate fundamental solution.

DEFINITION 8.4. For t=s=T and fc S, we define
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(3.12) E(t, s)f() =04 Sgei (o9 0083. 60 fly)dy .

Then we have the following theorem.

THEOREM 3.5. Let Assumption (A) be satisfied. For t=s=T and f€ S, define

(3.13) Gt 8)f @)= —i(D,+ H{t) Blt, 8)f(x), D,=—18/t.
Then:
i) We have
(3. 14) Els,s)=I
and
(3. 15) Git, 9)f (@) =0s-S [eeseunnognss wswdvte.

Here g(t,s;6,9) € B=(REXRY) for t=s=T.
ii) More precisely, we have

(.16)  gltsi&u= % S os-SSe—w(a,kaz, V)(t, 0y+Vedls, 136, 9, E—1)
L,k=1j0
1
x(S r(0g,02,9)(s, £5, &—m)dr)dydrzdﬂ,
]
where

3.17) Vedls, £, 7})=S:Ve¢(8, £33, +0(&—7))do.

Hence we have for any a, B
(3.18) [82889(t, 55, Y)| = CapE>™175,

where the constant Cas>0 is independent of t=s(=T) and &y € B*. Furthermore
we have for t=s(=T)

(3.19) 1G(, s)ll L2 2SO
and
(3.20) B, s)]p2nr2=C

for some constant C>0 independent of t=s=T.
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PROOF. (3.14) is obvious by definition. We next prove (3.15) and (3.16).
Noting that H(t) is symmetric in L¥R*), we obtain

3.21) H®)Az) =os-“ei w0t Hit, y, & fly)dyde

for feS. (Here OS-SS-u means the usual oscillatory integral. For the defini-

tion see e.g. Kumano-go [12].) So we have

(3.22) HU)E(, s)flz)= Os-ﬁei<x-f—¢<sv B2 E0h(t, 538, 2)flR)d2de,
where
(3.23) hit, s;&, 2) =Os-“e“”‘5>‘ Vst n OV (¢, y, &)dydy.

Making a change of variable T=y—Ved(s, t;7, 2 &), we obtain

(3. 24) hit, 538, 2) =os—“ei<v—f>~vH<t, y+Vedls, i, 2, £), Edydy.

By Taylor’s expansion formula of order one we have

(8. 25) Hit, y+Ved(s, t;n, 2, £), &)= H(t, Vedls, t;n, 2, &), &)
‘ +§‘(%V>(t, 0y +V:dls, t;7, 2, £))d0-y.
9

Then, by Fourier’s inversion formula and integration by parts, we get
(3.26) hit, s; &, 2)=H(t, Vsi(s, t;2, &), &) +iglt, 5:&, z),

where g is the function defined by (3.16). Therefore by the equality (3.5) we
get (3. 15).

The estimate (8.18) directly follows from the expression (3.16) if we use
(2.14), (2.16) and Assumption (A)-iii).

We finally prove (3.19). For fe S we have
{3.27) G, )f 7= @) | F G, 8)f 3= (K (t, s)f, f)r2
where

(3.28) Kt s)fl@) =0s-”e“¢<s' B e 6 80 gt 558, y)g(R, 83 €, 2) fly)dyde.

Noting that ¢(s, ¢; %, £)—d(s, t; 9, &)=(—v)-V.d(s, t; 2, & y) and that &—7=
V.G, t; 2, & y) has the inverse C= diffeomorphism 7—¢(t, s; z, 7, ¥), since
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o L 1

[VeV.dis, B4, &, y)—Il=[S (Ven(t, s;y+0(@—y), &)—I)do | <Cil(s>e<1/2 by (2.15), we
0

make a change of variable p=V.6(s,t;3,&,9) in (3.28). Then we obtain

3.29) Kit, )£ (@) =os-§Sei v ur(t, 30, 7, Y) )y

where

(8.30) 1l 532, 7, ) =0z, 7, ) =g, 8; 6, 552, 7, 9), ¥)g(E, 850(E, 5;2, 9, Y), ®)
X |det Vy(t, 552, 7, Y) |-

Thus by Calderén-Vaillancourt theorem ([1]) we have

(3.31) IK(t, 8)fll2<C  max  sup |880%05 r(x, 7, y) IS ]2,

18ta+B8’ISM =,7,9

where M=2([n/2]+[5n/4]1+2). From (3.30) we have for |Bt+at+pisEM

2
(3.32) lafa‘;ai'r(w,my)IéC{ sup !6“6" (t, 536, )l}
E.

where the constant C>0 is independent of t,s,@,7 and y, and we have used the
estimates (2.15)-(2.16). Combining this with (3.81) and (8.18) proves (3.19). The
proof of (8.20) is quite similar. O

Now we can prove the following proposition, which shows the appropriateness
of the name “approximate fundamental solution” for Eft,s) and plays a crucial
role in the proof of the completeness in the next section.

PROPOSITION 3.6. Let Assumption (A) be satzsﬁed Define for t>sZT
(8.33) D(t, s)=Ult, s)— Elt, s).
Then we have for t=s=T
(3.34) D¢, ) llze-r2e=C<s)™
for some constant C>0 independent of t,s.
PROOF. From (1.8) and (3.18) we have for f€ S

(3.35) Dit, s)f=Ut, s)(I-U(s, Y B(t, 8))f

=U, s)S 9 (175, 6)EL0, 5) f]d(a:S’U(t, 0)G(6, 5)f do.

do

From this and (3.19) follows (3.34). O
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§4. Scattering theory.

In this section we shall prove Theorems 1.1 and 1.2 for Wi, For T(>T,)
fixed at the end of Section 2, we define the modified free propagator U%(t) by
(1.5) for t=T. Then the following proposition holds.

PROPOSITION 4.1. Let Assumption (A) be satisfied. Then for V*(t) defined
by (1.8) for t=T we have

(4.1) lim U@~ V*(@).fl=0, fe L¥R").

PROOF. We give only the sketch, since the proof is done in a standard
manner by the stationary phase method. We write

(4.2)  UHA = je( o fle)de

for f€ S, where ¢(¢, x, &)=(x-6—¢(T, ¢;0, £))/t. Then the critical point &t=_&%(t, x)
of ¢ is given by

which has a unique solution &+ by (2.14). Thus by the stationary phase method
and integration by parts we have for fe D=G1C(R"\[0})

4. 4) W] U5()f~ V+(e)f =0,
where
(4.5) V*(t) f(2) = 2rt) /214 det gsVsso(t, @, £4) [ 2gite om0 At

It is easy to see that }iml] V) f=V+t) f =0 for fe ) by (4.3) and (2.13). Thus
we have (4.1), since V*() and Uj(t) are unitary operators in L3(R*). O

Now Theorem 1.2 follows from this proposition and Theorem 1.1. So we
prove Theorem 1.1.

PROOF OF THEOREM 1.1. The existence of the limits (L. T) is proved in a
way quite similar to the proof of Theorem 8.9 of Hérmander [5] by using the
stationary phase method, the relation (3.5), and the estimates in Proposition 2. 2.
We leave the details to the reader.

So to prove Theorem 1.1, we have only to prove the existence of the limit

(4. 6) st-lim U®)*U, 0).
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For this purpose it suffices to prove for fe L3R that {UhE)*U(t,0)f};zr forms
a Cauchy net in L*R"). For t=r=s=T we have
Use* U, 0f— Ublr)*Ulr, O)f
4.7 =[U5(t)*D(t, s) — Up(r)*D(r, 8)1U(s, 0)f+{UH)* Ust, )+ Us(t, s)*E(t, 5)
—Upr)*Uk(r, s)- Ub(r, s)*Elr, s} Uls, 0)f,

where Ult, s)=F [e-i#@ 100 xIF for t=2s=T and Dit,s) is defined by (3.33).
Then by (3.34) the norm of the first summand in the right hand side of (4.7) is
bounded by a<s)~¢[f] for some constant a>0 independent of ¢,7,s and f. In
the following we shall fix s(=T) so large that ads)~¢[lf| is sufficiently small, and
show that the norm of the second summand in the right hand side of (4.7) con-
verges to zero as r—oco with t=r and s fixed. To do this it suffices to prove
for g € F1C¥(R") that the limit lim Ubt)*Elt, s)g= ltim Ub6)*Uple, s)- Unlt, s)*E(t, s)g
exists in L*R"), since the operat;;or ULt)*E(t, s) is _{;;ﬁformly bounded in t{=s) by
(3.20).
Define for ¢=s(=T) and ge F1ICF(R")

4.8) T, s)glg)=e 0 (FEL, 8)9)(5)=0s-§ge‘“"”"W’””’G)‘W’ 5091 g(n)dydy.

Then we can write
Ub)*E(t, s)g=Up(t)* Up(t, s)- Up(t, s)*El¢, s)g
4.9) =Gt 50 079 B OOIT(E, 5)g.
By (8.5) and (3.7) we have for t=r=s(=T)
(B(T, ;0,8 —9(s, t;0, §)) — (BT, 730, £) — s, 730, )
=(8(T, ;0,8 —¢(T, 130, §)) — ($(s, ¢;0, &) — b(s, 30, £))

(4. 10) =S:[at¢(T, +8(E—1)30, &) —8,8(s, 7+ 6(E—7);0, &1dB- (t—7)

Il

X:[H(Tv y(Ty T;Oy E)’ 5) -'H(Ty y(sy T;Oy S)v s)]f=r+0(t—r)d0' (t—lr)
=S<1>S:(VxV)(r,y(s,r;0, &) +o(y(T, 7;0,8) —y(s, 730, 8))do

X YT, ;0,8 —yls, 30, &) dg-{t—r).

Ta=p+ (t--r)
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Here by Proposition 2.2-1), (2.5), 2.1) and 2.4) we see that y(T, ;0,8 —
T
y(s, 7;0, $)=S 3:yle, 7;0, &)ds is bounded by b(s—T){&) for some constant b inde-

pendent of zjz_rgs(g T). Hence using Assumption (A)-iii) and the inequality
4.11) (t~r)§1(1+r+0(t—r))'1‘2d0§e‘l(l—w)'s, t=r,
0

we see that the limit

(4.12) lim (¢(T, £;0, §) — 8(s, ¢, 0, §))

t—c0
exists for each fixed €€ R* and s(=T).
On the other hand, noting ¢(s, t;y, &) —d(s, £;0, &)=y -V.é(s, t;¥, & 0) and making

a change of variable =y—V,d(s, £;,£0) in (4 8), we get for g€ FC3(R") and
tzr=s(=T)

{4.13) T(t, s)g(&) —T(r, s)g(é) ———Os-ﬂeima(t, 7,839, 7, &) dydn,
where

(419) Gt 7 559,71, 8=+ V.80, £:0, & 0) =gl + V.9l 759, 6, 0))

II

g
S Vfg 7]+Vm¢ S,/I'-’rg(t Ir) y?é! ))

X [afvmsﬁ(sy oY, Sy O)]r=r+0(£—r)d/6' (t—"r).

Here we have from (3.5)

4.15)  a.V.4(s,7;9,£,0)= Sla,v,gs(s, T, 0y, §)do= Slvx{H {z, Vedls, t; %, &), &)} de
0 0

a=by
=[[0V)15, Vegte, w300, - Vante, w300, 6)do.

Therefore from Assumption (A)-iii), (2.15) and (2.16) and using the inequality

(4.11), we obtain

(4. 16) [0505G(t, 7, 8;Y, 7, )| S Ca gy

for some constant C.;s>0 independent of 7,%,s,¥,7 and &. Thus using (4.16) and
(4.18) and noting §€ C$(R*) and (2.18), we get

(4.17) IT(, 8)g(§) — Tr, 8)g(@) S CXrd~(g) ™!

for some constant C,>0 independent of t=r=s(=T) and & Thus the limit
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(4. 18) L(s)g=s-lim T(t, s)g
. t—co

exists.

Therefore by (4.12), (4.18) and (4.9), we easily see that the limit tlirg Ut)*
X Elt, s)g exists in L2(R") for g € L*(R"), hence the norm of the second summand of
the right hand side of (4.7) converges to zero as r—co with t=r and s(=T)
fixed. This proves the existence of the limit (4.6). O

REMARK 4.2. By (3.5) and (3.6) the phase ¢(T,%;0,£8) of the modified free
propagator Uj(t) is written as

(4.19) ¢<T,t;o,s)=j;a,¢(T,r;o,s)dr=—;—|512(t—T>+§;V(r,y(T,z;o,s))dr.

In Example 1.8-ii) with B{, )=0, we can use another modified free propagator
of somewhat more concrete form. Applying the Taylor’s expansion formula of
order N(=1) for Vir,y)=q(z>*y) where y=y(T,r;0,&), we obtain

(4.20) Vie, y)=q>™)

= % Loy uapeq)+N ¥ y—’gla—a)N-l<r>—wa;q(0<r>~ay>do.
lei<N @! =yl Jo

Using (2.13) and (1.13) we see that the second term on the right side ié bounded
by Cu{e)¥ =25, Hence taking N as a>(N+1}/N>1 and defining

w2 W g=glate-T+ B Loz @ T, e
. lal<N a!l [

we see that the limit

(4. 22) lim (¢(T, £;0, &) — Wxlt, &)

tvco
exists for each £ R*. Therefore if we define U}, x(t) by

(4. 23) bt =F e Ta®8 XIF,

then by (4.22) and Theorem 1.1 the modified wave operator
(424 | W.w=s-lim U(t, 0)* Us.x(6)

exists and is unitary in L?*(R*). When N=2, i.e., a>3/2, we can construct an-
other simpler modified free propagator. Define
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Wit &)=(t—T) (—lsl2+q >+X(t,5),
(4. 25)

Xt 8= ST(q«rV—GE) —q(0)de

Then using (4.19) and (2.13) with e=a—1, we see that the limit Iim (T, t;0, &)
— Wit &) exists. Thus the modified wave operator D——s—hm Uit, 0)* Up(t) exists
and is unitary in L*(R"), where Uj{t)=F e~ i7 .01, Note that X{t, &) in (4.25)
coincides with X,(¢) given in Rémark 4.1 of Kuroda and Morita [141°. Further-
more if ¢>2, it is easily seen from (4.25) that we can use U,(t)=exp{—it(H,-+
qi0)}, H(,:—%A, instead of U};(t). This result almost covers Theorem 4 of
Kuroda and Morita [14].

REMARK 4.3. In the above we assumed (1.1) for all a#0. However, as can
be seen by checking the above discussions, this assumption is redundant and it
suffices to assume (1.1) up to a certain finite order.
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