The quasi-classical approximation to Dirac equation II,
scattering theory

By Kenji YAJIMA

§1. Introduction, Theorem.

This paper is a direct continuation of a preceding one [9] referred to as [I]
hereafter in which we studied the quasi-classical approximation for the Dirac
equation in finite time. Here the same subject is discussed for the associated
sceattering operator.

We consider the Dirac equation with static external electromagnetic field

(A%a), ..., A¥x))=(g(x), A(x)),

(1.1) itiouot= jéaj(—iﬁa/awj—eA"(x))u+mﬁu+e¢(x)u
=H*y,

We assume that the potential {A#(z)) sé.tisﬁes the following.

AssuMmpTION (VSR). (i) For any p#=0,1,2,3, A#(x) is a real valued C=-function
of ¢ R® (ii) There exists a constant ¢>0 such that for any multi-index «

Ho/ox)e A#(x) |S Coll+] )2 leims,  xe RS,

Under the assumption (VSR) (or milder conditions) the scattering theory for (1.1)
was established as far as the existence and the completeness of the wave opera-
tors are concerned ([3],{11]). We write the free Hamiltonian as

3
H} = 3, o~ ifiofox;)+m§.
=
H?" and H{ are selfadjoint operators on J{=L2(R?, C* with the domain D(HI =
DH®»=HYR? C*%.
THEOREM 1.1 ([3), (111). The wave operators
s-lim exp(itH" [h)exp(—itHE[f)y=WE
—stoo

exist and are complete:
RWLH=R(Wh)=4(..(H"),

where H(H? is the absolutely continuous subspace for H*. The scattering
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operator S* is defined as S*=(WEH*WE and is a unitary operator.

In the quasi-classical limit, as was shown in [I], associated with the equation
(1.1) are the Hamilton equations for classical relativistic particles

dﬁ_m—i(xivei)’ ,dit___ @(m:&’&i)

1.2)= dt ~ ae dt ~ ox

with the Hamiltonians

(1.3)= H#(g, &)=+ ((E—eA@))?+m?) 2 +eg(x)

and the equation

1.4)= PE(t)(df=dt) + T (i |4 Fpula™(t) /=) =0

for a four vector f*(t) which may be interpreted as describing the internal degree
of freedom of the particle, where pk(t)=H*(x=(t), £(t)) —ed(x=(t)), o** is the spinor
tensor and F,(x) is the field strength tensor. Equations (1.2). {or (1.4);) and
(1.2)_ (or (1.4)_) are respectively corresponding to the positive and negative energy
parts of the solution of (1.1) and they can be treated separately in the quasi-
classical approximation. In this paper we restriet ourselves to study the positive
energy part only and accordingly omit the suffix + indicating the positivity of
energy in the expressions.

The scattering theory for relativistic classical particles (1.2) is studied in [10]
and the results corresponding to the existence and the completeness of wave
operators in the quantum case are known. We write as v(p)=n/H*+m?/2,

THEOREM 1.2 ((10). () For any {a,n) € '=R*X (R®{0}), there exists a unique
solution (z+(t,a,7n), ExE, a, 7)) of (1.2) such that

lim [x+(t, @, 7) —to(n) —a|=0 and tlimlé.f(t,a,v)—vl=0-
—too

>t

{ii) There exists a closed null set eCI’ and a smooth canonical mapping Sla,n)
={ay(a, 9), 7:la, 1) defined on I'\e such that

@i (t, arla, ), 7ela, 7)) =a_(t, a, ) and  &.(, arla, ), 7:(a, 9)) =E&-(L, a, 7).

{il) If K is o compact subset of I', then for any multi-index o« and B there
exists a constant C.s>0 such that

(1.5) | (0/0a)=(8/07)A(x(t, a, ) —tv(n) —a) |S Cap(1+[]) 17,
(1.6) | (0/0a)(0/07)(§(¢, @, 7) —7) |< Cap(L+ 27>
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Jor {a,n) e K and =t>0.

In this paper we study the asymptotic behavior of S%{exp(wm-n/f)f) as 0
for ¢ R*\{0} and suitable fe 9. To state the main theorem, we introduce some
terminology. We take and fix ¢ R*{0} which we assume without loss of gener-
ality to be »=1{(»,0,0). Since 7 is fixed throughout the paper, we often omit the
variable 7 in the expressions. R? is the plane containing the origin and perpen-
dicular to . For a set DCR?® D, is the projection of D to R:. For acR?
ar= (05, a3) € RZ is its projection to RZ and a,=a-7/[n}; a=(ai, ar). ep)={acR*:
{a,7) € e}

By the first statement of Theorem 1.2, a--tv(n) §e(n) for all te R if agely)
and for such a,

1.7 2(a+tv(n), ) =70, ), - arla-+tvln), n)=a.la, 9) +tvingla, 9)).
By the conservation of energy
(1.8) [7:(a, 7) P=In .

By (1.7) and (1.8), it is natural fo define a mapping 2, from R%e(y), to the unit
sphere S? as

Qo(an)=n.(a1, a1), 9)/I9], @ €R™.

det 2, is the determinant of 2, with respect to the natural surface elements (and
orientations) of R? and S%. |det 24{(a;) [ is known to be the differential cross
section in the scattering theory of classical particles.

1.9 o) *={(as, az} € R*\e(y): det Qz{an)=0}Ue(p).
If fe C=(R%e(y)) satisfies

(1.10) Dinfia)=( -+ m8 ) oy = T fla),

we will show that the equation (1.4) (replacing =z(t) by z_(, a,7) has a unique
solution f{t,a,n) such that tlim fit, a,p)=fla) and that lim f, o, 9)=Ff.(a,7) exists.
—>—cO -0
S(a,7)= lim {StL(x_(a, @), é_(o, a))da+(t—s)m(l—v(ﬂ)z)”z}+a-77

t—co s
8§—>—00

where L{x, :fc):—m(l—abz)”z—l—ez(zb)-9'c—e¢(:x:) is the Lagrangian. Indy(a,7) is the
Keller-Maslov index of the orbit :

{it, —H_(¢, o), §_(f, @), o_(¢, @), 6_(¢, @)) : —oco<t< o0} and Indyyle, n)
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is that of {(t, —®®+m%'?, twin.la, ) +arla, 1), 7ul@, 7)) :0=Lt <o), |||, is the m-th
Sobolev norm. For a subset A of {1,2,3}, say A={1,2}, z,=(x, x;); A°is the
complement of A; [A] is the cardinal number of A; % is the partial Fourier
transform:

(FAN (@ ger &) = @) 141 ZSeXp(—%’wA- FUONICTE IR T

For fe 4, frix)=explix-n/f)flz). If supp FCRQCR® and the mapping 253 a—
(@1 (@, 7) 400 7:{a, ) 4) 18 & diffeomorphism for some AcC{l, 2,3}, we set as

exp(i(Sia, 7) —a+(a, 7) 4+ 94(a, 7)) /A—iz(Ind rla, ) —Ind rola, 7+
(QF A f) (@0 £2) = Inert(0a+,/07:.4) (@, 77))/2.+737rl Al/4) |det o(a.(a, 1) 4,
7:(@, D) A8 a, 1), i (wae, £4) = (04, 4%(a, 7), D, ala, )
0, otherwise.

Now we can state our main theorem in the paper.

THEOREM 1.8. Let Assumption (VSR) be satisfied and let K be a compact
subset of R*\e(n)*. Then there exists a finite open covering {2,} of K so that the
Jollowing statements hold.

(1) For each I, 2,cR®e(n)* and there exists a subset A, of {1,2,3} such that
the mapping 2,3 a—(a.(a, 7) 45 7:{, 9)a,) 18 a diffeomorphism.

@) Iy feCr(@) satisfies (1.10), then

{1.11) i (gfilsﬁfvﬁ) (m;y Ea)— (Qvﬁ,Azf) (@19 ER)ISCRI | £,
where the constance C is independent of £ Cr(R,) and >0 is that of (VSR).

REMARK 1.4. (1) If KcR™e(y)*, then by (1.8) the matrix (y.(a, 7), 87.(a, 7)/0a,,
on.(a, 7)/das) is non-singular on K. Since

(8a.;. [6a) (a+1tv(n), 7) = (v{n:la, 7)), tOv/an) (1.{a, 1) - (Bn./0a,) (@, 7) + Ba.foar) (@, 7)),

we see that if K is replaced by K--tv(y) with large >0, we may choose A=
for all I. (@ is the empty set.)

{2) The quasi-classical approximation for the scattering operator associated with
non-relativistic Schrodinger equations was studied in [6], [7] and [8]. In [6] and
[7], it was studied in the momentum space representation and the decay of the
potential at the infinity was assumed only (1+{z[)"'¢ in [6] and (1+]z])~ in [7).
On the other hand in [8], it was studied in the configuration space and our tech-
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nique required the decay (1+|z|)7®>° of the potential. The technique employed
here is similar to that in [8] and we assume the assumption (VSR).

We refer to [1], [4] and [5] for other approaches to the quasi-classical approx-
imation or the classical limit of quantum scattering theory.

The rest of the paper is devoted to proving Theorem 1.3. Several lemmas
will be prepared in Section 2 which will be used in Section 3 to complete the proof.
The theorems, formulas and ete. of [1] will be referred to as Theorem 4.1, (2.1,1)
and ete. and the notation in [I] may be used without any comment.

§2. Lemmas.

We collect several lemmas here which will be needed in Section 3 for proving
the theorem. We assume in this section that (AK): KeRe(n)*, K is convex
and 92, is o diffeomorphism on K,. As a convention, a_(a, n)=a, 7_(a, n)=1.

LEMMA 2.1. There exists a constant R.>0 such that the mapping K>a—
z_(t, @, 7 and K3a—tv(n=la) +asla) are diffeomorphisms on K for all +t>R..

ProoF. TFor lower signs the statement is obvious by (1.5). We prove the
lemma for upper signs. By (1.7), (1.8) and (AK), the matrix

M(a)= (7" +m*) 2 (s (@), (074/0az) (@), (07+/00s) (@)

is independent of a,=a-7/|7] and is non-singular on K. Writing as I, the diagonal
matrix with diagonal elements (1, 1/t,1/t), we have by (1.5) that

(2.1) | 0/0a)*{(02-/0a) (t, @, 7) I, — M(a)}|<Ct".

It follows that for large enough ¢, %_(¢t,a,%) is a local diffeomorphism on K and
we have to show that x_(¢,a) is one to one on K for large enough t>R,. If not
8o, there exist sequences {t,}a-1, {a,}, {a,}C K such that t,—o0, a,a} and 2_{t,, a,)
=x_(t.,a;). We may assume, by passing to a subsequence if necessary, that a,—a
and a,—a’ for some a,a’ € K. It is clear by Theorem 1.2 that #.(a,7)=%.(a’,7)
and by (AK) ay=a},. Hence by (1.7)

SlM(an0+(1—0)a;)d0—>M(a), Moo

0
1
and by 2.1), S(aoc_/aa,)(t,,,0a,,+(1—0)a,’,)d0 is non-singular for large enough .
0
However this cannot happen since

0=x_(t,, Qn, 7) —2_(£,, A%, 1) =<S (0_/0a) (¢, 0an+(1—0)a£)d0>(an—aé)

1
0
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and a,—a.#0. This proves the lemma for x_(f,a,7). A similar proof clearly ap-

plies to tv(n.(a, 7)) +ala,n). Q.E.D.
Since z_(t,a+svy), p)=2_(t+s, a, ), Lemma 2.1 irhplies the following.

COROLLARY 2.2. Let K and R. be as above. Then the mappings x_(t, a, %) and
tv(n(a, 7)) +arla, p) are diffeomorphisms on. K+ Ryv(y) for t=0.
For +t>R., we write the inverse of z=x_(,a,7) as a=a(t,x). a(f,x) is defined
on 2_{t, K).

LEMMA 2.8. For any multi-index «a, there exists a constant C. independent
of +t>R.. such that

2.2) | (0x_[oa*)(t, a) |ZCelt|, ac€K;
2.3) | I 0%a/ox) (t, 2) | Ca, € (t, K);
2.4) | (3/8a)* | det(dx_[0a)(t, a) /2| < Cuf det(d_[0a) (¢, @) [72/2.

PrOOF. We prove for t>R, only. The other case may be proved similarly.
By Theorem 1.2, the estimate (2.2) is obvious. Differentiating the identity x=
x_(t, alt, x)) by x, we have

2.5) I=(0x_[8a)(t, alt, x) (Bafox) (L, ).

By (2.1) and (2.5) we have

(2.6) | I (0afox) (t, ©) — M(a(t, 2)) "1 |< Ct Y,

and (2.8) is proved for |«]=1. Suppose we already have (2.3) for all f<«. Dif-
ferentiating (2.5) by z, we have

2.7 0=2S2139l (0%x_[0a?) (t, a) (0™ a/ox") (¢, &) - - - (07%a/ox" ) (£, x)

+ (0x_/oa)(t, alt, x)) (3xa/ox) (¢, x),

where summation runs over fZa, ay+ -+ ta,=a, [a;|=1.
Since

(2.8) | (Pfx_{oaf) (¢, a}(0™a/ox™) (¢, x(¢, a)) |ZC,

by (2.1) and the assumption of the induction, we obtain (2.8) for « by 2.7). To
show (2.4), we note that any derivative of |det{dzx_[oa)|"*/2? can be written as
|det(ox_{oa)|"1/% times a polynomial of the derivatives of In|det(dx_/9a)(t, @)|. Since
Injdet(dx_/a)(t, ¢)| has uniformly bounded derivatives by virtue of (2.1) and
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det M{a)+0, we obtain (2.4). Q.E.D.
COROLLARY 2.4. For any k=0 and «,
(2.9 | (8/at)*(8/6x)a(t, #) | £ Cun, Lt>Rs, w€a_{t, K).

Proo¥. For k=0, (2.9) is proved in Lemma 2.3.
Differentiating the identity ws=x_(¢, a(t,#)) by t and using the equations (¢, )
=v(E_(t,a)— Alw_(t, ) and E_(t, a)=—(@H/o2){x_(t, @), £_(t, @), We see that the
derivative (3*a/at*)(t, ) may be expressed as a polynomial of (8jot)}{8/ox)%a(t, %),
(08&_[pab)(t, @), (07 A*fox")(x) and ((E_(Z, a)—eA(x_(t, a)))?+m?) V2 with ISk—1, |k,
[BI€k—1, |7|1€k—1 (k=1). Thusif we have (2.9) for all ISk—1, we obtain (2.9)
for k& by the assumption (VSR), Theorem 1.2 and Lemma 2.3. Q.E.D.

Let us write the inverse of z=u,+(, @)=tv(7=(a, 7)) +axla,7) as a=al(t, ») for
+t>R..

COROLLARY 2.5. Let K;cK. Then for large enough £t>Rs,

w-(t, Kl) U xo,i(t, Kl) C.’)C_(t, K) ﬂ WQ,i(t, K)
and

(2.10) | (0/a2)(alt, ) —a=(t, ) SCU+E), v ea-(t, K) N2ox(t K).

PrROOF. Let us write a=a(t, ) and d=al(i, x).
Since x_(£, alt, ) =20+ (t, al(t, ), we have by (1.5) and Lemma 2.8 that

(2.11) [ 0/02)*{t(v(n:(a)) —v(7=(@))) +as (@) —a=(@}= Call+[E) 717
Hence as |t|>oo, |7:(@) —7+(@) |0 and hence |a,—d,|—0. Since
t(w(7<(@) —v(7=(@)) + (@) — a+(@)
:{S‘M(emr(1—0)a)do+0(t-1)}1;1(a—a)

0

and M(a)~! is bounded on K, we obtain (2.10) for «=0. The case a+0 is obtained
by using (2.11) and Lemma 2.3. Q.E.D.

For s<—R_ and t<—R_ or t>R, we define as

8

(2.12) S(t, s, x) =StL(w_(o, a), ¢_(z, a))de+a-n—sm(1—v(p)3)*

for z=w_(t, a,n) € x_{t, K, 7).
LEMMA 2.6. Let Sit, s, x) be defined as above. Then



378 Kenji YAsmma

L lim S(t, s, x) =S(t, z) ewists in the C=-topology.

{2) [S(E, @) +Etm(1—v(n)?) 2 —alt, x) IS CAH[E) 1 for t<—R_, vca_(t, K, 7).
(3) }im {S(t, x_(t, a)) +t(1—v(n)?)1%}=S(a, y) ewists in the C>-topology.

) For t>Ry, |Sla, n)—t—v(n)%)*2—S(t, o-(t, a)) S C(L+)7.

ProOOF. We first prove (1) and (2). Since _(t, a,7)=(0H/08)(x_(t, a), £_(¢, @),
(1.5) implies

(2.18) [B/oa){@_{t, a) —v(M}SCA+-[E) 2, t<—R_.

Writing explicitly, we have
t

2.14)  Sit,s,v-(t, @)= —tu—mzpm-me (L~ (L —_(s, 0)%) o

3

+e§t{21'(x_<a, 0) (0, ) — e (o, a))}do.

Hence the assumption (VSR), (1.5), (2.2), (2.13) and the Lebesgue’s dominated
convergence theorem show that lim (3/6a)*S(t, s, z_(¢, a, 7)) exists uniformly on K

s—>—00

and the estimate (2) holds. By (1.5), we have
(2.15) [0/6a){5_(¢, @) —v(7+(@) H= C(L+8)71e.
Since 72=7n,(a,7)?, we see that
S(t, x_(t, a) +t1—v()) 2= S(Ry, z_(Ry, @) + R (1—v(n)) 12
+S;+ {m(1—v(r. (@)1 2 —m(l—&_{o, 0)2) 2+ eA(w_(0, @) - 3_(0, a)
—ed(x-(o, a))}do.
Thus (VSR), (1.5), (2.2) and (2.15) show that the limit
lim (S(t, z_(¢, @) +t(1—v(7)%)"%) = S(R}, _(Ry, a) +R:(1—v(7)?) /2

t—co
+r {mA—v(7)) 2 —m(l—i_(, a)) 2 +eA(v_(c, @) - d_(0, @) —ep(x_{o, a))}do
Ry
exists in the C*-topology on K and

)

| Sla, 7) —t(l—v(n)2) 12— S, x_(t, @) |§S Cl+o) T edo=C1+8) 1=,

t

Q.E.D.

LEMMA 2.7. For any f_(a) € CO(K) such that D@)f_(a)=m2+m2Lfla) there
exists a unique solution f(t,a) of the transport equation
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(2.16) Do (t, a)(dfIdt) (E, @) + X tlo*[4) Funlo_(t, a))f1E, a)=0
satisfying tlign fit, a)=F-(a), where po,_(t a)={(E-(t, @) —eAla(t, @)*+mAV2  f(t, a)
satisfies the following properties.

1) tlim Fi&, @) =fi(a) exists in the C=-topology and

(2.17) | @/0a)=(f{t, @) — fula) IS Call+IT ) fligral, £>0.
@) (8/ot)*(0/8a)f(t, @) IS Carllfll go+iat.
(3) D(x—(ti a’), S— (t: a))f(t! a) =Po,— (ti a’)f(ty a’)'

PROOF. Let B, a)= ¥ (0" /dpy,—(t, @) Fu(x_(f, @)). Then by (1.5) and the con-
dition (VSR),

2.18) | (0/6a)2B(t, a)|= Call -+ 7>,
(2.16) can be written as
dfidt+B(t, a) f(t, a)=0.

Thus from a well-known theorem ([2], Theorem 8.1) the existence and unigueness
of f(t,a) follows; statements (1) and (2) are obvious consequences of (2.18). By
Lemma 2.8.1, P.(x_(t,a,7),&_(t a,7)ft, @) is also a solution of (2.16). Since
lim Py (z_{t, @, 1), E_(t, a, 7)) f(¢, a)=S_(a), the uniqueness part of the lemma shows

t—>—oo

that P.(z_{, a, 1), &_(t, @, P)f(, a)=/(t, ¢). This implies (3). Q.E.D.
COROLLARY 2.8. Let glt, )=ft, alt, ) on x€a_(t, K,7), +i>R.. Then
2.19) | (@/at)*(3/0x)2g(t, 2) |£ Cray 1> R

The following lemmas are concerned about the propagators and have different
characters from the previous ones.

LEMMA 2.9. Let S(x) be a real-valued C=-function on R® satisfying
1 @)eS@IsCa for |alz2;
@) there exists a constant 6>0 such that |grad S(@)[=6 for all x€R®.
Suppose y€C=(R? be such that (& =1 for ISIE%(F and 1(&)=0 for [E|£d/2.
Then for any n=0,
(2.20) I x(&) —0F * (exp(S(@) NS CoFm Il F

ProOF. By conditions (1) and (2),



330 Kenji Yarma

(2, &)= (1—x(€))(e-grad S(x))(6-grad S(x))~* € B(R*x RY.
By integration by parts, we have for any integer n that
— (€N * (exp(iS(x) /%) f) (£)
= (2af) o1 (ife)" geXp( i(S(x) — - &) ) (, &) -8/0m)*]" flw)dww

Applying Theorem A.1.1I, we obtain (2.20) for any integer n=0. For non-integral
n, (2.20) is obtained by the interpolation theorem. Q.E.D.

We write as V(e)=H"—Hf=—¢ f_‘,lafAj(w)-l-eqS(x).
=

LEMMA 2.10. Let S(x) and x(&) be as in Lemma 2.9. Then
(2.21) | Viz)exp(—itHo |BH)F "*7(&)F* (exp(iS(x)/7) f) [=CAH[ 2o L+ zh2Her].

PRrOOF. Let w(y) € CT(R? be such that w(y)=1 for |y|<1 and w(y)=0 for
ly|22. Write 3(s)=s/(m*+s9)12, @ly)=1—w(y), fy)=wBy/ts(3/2)f) and Fy)
=S —Sfily). It is clear that
(2.22) LHS of (2.21)

< | Viz)exp(—itHs I)F "*1(©)F " lexp(iS(@) 1) f) |
+lw(dw/t5(6/2)) Vi)exp(—it He [H)F **1 (&) F " (exp(iS(x) /#) £,
+|[w(4x/t17(5/2))V(w)exp(—itHJi/fi)EI«h*x V" (exp(iS(a) [7) £,

=L+L+1,
and that
2.23) LECIAISCIL+y b8y ta(/2) | el (L-+]y )]
SO+l A+ 2= f1,
(2.24) L= (1w (4w/t5(6/2)) V)| ool LIS CAH[2) 72| 1]

We estimate I, P.(£) are the orthogonal projections to the eigenspaces of D(¢)
with eigenvalues = (&2+m*!%.  As an oscillatory integral,

It, @) =t*1%w{4x/5(0/2)) (exp(— it H [H)F " 4 (&) F " (exp(iS(x) /1K) £,)) (tx)
=X @) Sexp{w(x E—y & (€ m¥ 2+ 115(ty)))

X1 (€)wldn[5(8/2))w(By/5(5/2)) P=(&)t* 2 f(ty)dyde,

where v=t/fi. Since a=(w, &, y)=y1(&)w4w/5(5/2))w(8y/7(5/2) P=(g) € CY(R*X R*X R?)
and on supp a.
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lgrade( & —y - FVE+m?) [Z0(5/2)/4>0,
the integration by parts with respect to &€ and Theorem A.1.I show that
(2.25) 1@, HN=Co I I=C@ s
Since LZCIG, <), (2.22), (2.23), (2.24) and (2.25) imply (2.21). Q.E.D.
LeMMA 2.11. Let S{z) be as in Lemma 2.9. B=2/2+e) and y=e/2-+e).
Then for any fe Cy(RY,
(2.26) . tS>11ﬁp_ﬁ I W L (exp(iS(@) /%)f) () —exp (it H " [h)exp(—it H [#) (exp(iS(a) /) f) ()]
SCH (1L =) B9 LT+ 1A,

where the constant does not depend on fe€Cy(R?).

ProOF. By virtue of Lemma 2.9 and the isometry property of Wi and
explitH * [fyexp(—itHE %), it suffices to show (2.26) for

w" @) =F & F " exp(ES(@) /7))
in place of exp(iS(x)/#)f(x). Since u®* ¢ DIH"=DHE), we obtain by (2.21) that
sup [ Whut —exptH* [Hlexp(—itHE | B)ut|

stz B
+co

<+ ﬁ'IS— _p 1 V(@exp(—itHS [Byw"|dt
E3
<CHt :_ﬂ @+t el (L 2] N dt
SCH L+ 2?71l
Q.E.D.

§3. Proof of Theorem 1.3.

Since the mapping 2,:Rie(n);—S? is a local diffeomorphism, for any
KcR¥e(p)** we can find a finite open covering {K};—1 of K such that K; cR%\e(y),
K; is convex and £, is a diffeomorphism on (K}), for each j=1,...,l. Clearly it
suffices to show the theorem for each K;. We take and fix one of the Kj's and
denote it as K. R.>0 are the constants appeared in Lemma 2.1 associated with
K. By the intertwining property of the S-matrix,

St fi=expliR, HEIH)S "exp(— iR H [H)

and by Theorem 4.1 we have
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lexp(—iR.Ho [B)fy (&) —exp(—iRsm](1—v(n)®) I *H)explia-n/h)fle— RBiom)
ZCHllfY -
Hence by virtue of Theorem 4.1, it suffices to show the theorem for f¢
CY(K+R.v(n), and therefore by replacing K by K+R.v(7), we may assume that
the mappings z_{t,a,7) and t(n.(a, 7)) +a.{a, ) are diffeomorphisms on K for all
t=0 by Corollary 2.2. We write for fc Oy (K) with D{p)fla)=#*+m?2f(a) as

Z1(t)f(w)=exp(—itm[(1—v(7)?) V2 h)exp(iz-n/f) flw—tv(p) for ¢<0;

exp(iS(t, x_(t, @) [h)] detdx_(t, a)/oa) 713 (py,~(t, @) (7 +mE) N2, a),
Z*(t) flw)= if x=x_{t,a), ac K, t<—R_,
0, otherwise, for t<—E_;

exp(tS(t, x_(t, a))/fi—iz Ind y{a, n)/2)|det(0x_(t, a}/oa) |"!/2
ZHt) flw)= X (P, (t, @) (p2+-mA 2~ Lzf(t, a), if x=%_(t, a), a € K, t>0,
0, otherwise, for t>0;

exp(i(S(a, ) —tm(l—v()?)*?)/fi—1x Ind rla, 7)/2)
x| det(d/oa) (tv(n+(a, 7)) +ala, 7)) [T 2 F (@),
if 2=tv(p.la, ) +asla,n), a€ K,

0, for t>0;

ZEWfla)=

exp(tS(a, n)/fi—ir Ind rla, 7)/2)| det 8a.[oala, 7) [ 2f1la),
Q1 fla)= if x=a.(a,7), a€K,

0, otherwise.

LEMMA 8.1. Let K be as above and f€ CT(K). Then the following estimates
hold.

(3.1) lexp(—itHs [B)f7 (@) — ZL B @IS CHE IS 1< 15

(8.2) lexp(—itH* ) Z*(s)f—Z*(s+1)fI < CHt]| [l s<—R_ and t<—1;
(3.3) lexp(—itH "B Z* (5)f— Z *(s+8) IS CHE[| fllo, 520 and ¢21;

(3.4) lexp(—itH? /5)Q7 fle) — Z. 0 f@) | < CAI | fllz £21,

where the constants in (3.1)-(3.4) do not depend on t,#i and fe CT(K).

PROOF. Since the proofs of (3.1)-(3.4) are similar, we only prove (3.3) with
s=0 as a prototype. We write Z*()flx)=exp(S{, 2)/H)filt,x) and folt,z)=
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18(20,,(t, a(t, 2))) "1 df1(t,x). The calculations of §2. I show that

3.5) (ifiofot— H *){exp (iS(t, %) 1) (fi(t, x) +Fifa(t, o))}
=1p#*% exp(iS(t, o) [H) 3 13(t, x)

Since the functions appearing in (3.5) are 4{-valued smooth functions of £=0,
du Hamel’s principle implies,

exp(eS(t, x) ) (f1(t, x) +Fifst, o))
=exp(—itH* [#){exp(aS(0, x)/7) (f1(0, ») +#£2(0, z))}

—l—fiSexp( i{t— o) E* ) (8 exp(iSla, )W) fla, *)

Hence by the unitarity of the propagator, we have
(3.6) lexp(—itH*[R)Z #(0)f— Z ") fl
<ﬁ<||fz M+t u+§ N3 flo, -)uda>.
By Lemma 2.3, Corollary 2.4 and Lemma 2.7, | f2(t, )| Clfl; and [afz(t, HJI=Clifll.

for t=0. Hence the right hand side of (3.6) is bounded by C#H|t{lf). for large ¢.
Q.E.D.

LEMMA 3.2. Let 0<=t<#? be sufficiently large. Then
3.7 VZEf-Z* ALt R) L.

PROOF. Let us write fE(t, a)=|det(8/6a)tv(n:la, 1) +ala, 7)) 73X fela), and
filt, %) is as in the proof of Lemma 3.1 with exp(—izIndy/2) being removed for
t>0. We prove + case only and omit unnecessary -+ signs in the expressions.
The other case may be proved similarly. Clearly

(3.8) 123 ) @) — 2" (&)@l
=lexp(i(S(t, ) —S(a’ (t, ©), 7) + tm(L—v()2) %) /) X filt, &) —folt, a4 (t, )]

(recall a’(t,x) is the inverse of z=tv(y.(a))+a.(e). Write %, @) =tv(n.(a, 1)
+a.(e, 7). By (1.5) and (2.1)

(3.9) || det (90,4 (¢, a)/oa) /% det(0x-(t, a)/aa) ['*— 1= C(L+8)77,
(3.10) | Do, (£, @)/ (P> +mA) 12— 1|< CL+1)"1¢, for a €K, t>0,

and by Corollary 2.5 and Lemma 2.6,
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(8.11) |S(t, ) — S(a’ (¢, ), ) +tm(L—v(n)?) 12| ,
<[8(t, z)—S(alt, x), p) +tm(L—v(n)) V2 |+| Slalt, ), n) — Sla’ (¢, %), 7) |
<C(L4t)te

for >0 on supp fi(¢, -) Usupp folt, -). By (3.8) and (3.11),

(3.12) 1ZE0)f@) = ZF Of @< CO+) 7+ £l 2) — folt, @b (£ 0)]
SO f I+ AR, @) = folt, alt, @)+ folt, alt, 2) —folt, a%(E 2.

Using a change of variables, Lemma 2.7, (3.9) and (3.10), we see

(3.13) LAl &) — folt, alt, x)]]
=(po.-t, @)/ (7* +mA) 11212, 1)
—|det(0x_(t, @)/oa) [* det(dxy,o(t, a)/oa) [7/2f (@)
< H(wo.-(E, @)/ (p?+m?) 2 21} (L, )| + 1|12, @) — fr (@)
+1{| det(@x_(t, a)/oa) /% det (0.0 (t, @)/0a) 72— 1} f1(a)]
SO+l £l

By Corollary 2.5, we have

(3.14) Ifolt, alt, z))— folt, a% (¢, @)

1
o

< C<1+t>-1-e§ (0, /oa)t, Oalt, =)+ (L—0)aS% ¢, =) |d.

For large t>0, a%(t, ») is a diffeomorphism and by Lemma 2.3 and Corollary 2.5
| (pa’s /o) (¢, 2) 1 (Balt, %) jox— (Bad Jox) (¢, ) |< C(l-}-t)"e. Therefore for any 0<6<1 the
mapping y=40a(t, x) +1—06)a%(t, ) is a diffeomorphism and

(3.15) 1@fof0a)(t, 6alt, ) + (1—B)ax &, @) | < ClI 1.,

since 9/ox(0alt, x) +(1—0)ak (¢, x)) = a’ (t, 2)[6%) (1 +0(0a% &, ®)[o2) " (da(t, z)/oz
—aa'k (t, ) 02)),

| @fo/0a) (¢, @) |< C| det (0.0 (¢, a)/oa) [71/2() f1 (@) |+ [0.f+/0a )
by Lemma 2.3 and
|det{o/ox(0alt, x) + (1—0)a.(t, x))} |=|det(a, (t, x) /o) [(1+£7¢).

Summarizing (3.12), (8.13), (8.14), (3.15) and (3.16), we have the desired result
3.7. Q.E.D.

LEMMA 3.3. Let R_ be as in Lemma 2.1. Let fcCy(K). Then
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3.17)  lexpGR_H"[B)Wf} (@)~ Z" (—R)f@) | SCR|\fllo 7=¢/2+e).
Proor. By 3.1), (8.2) and (3.7), we have for —t>0 large enough
lexp(—4(R-+t)H" %) 2" (— R_) flw) —exp(—itH{ [B) f7 (@)
ZCH| |+ 1A T[] flle
In particular, setting t=—#%"8, 8=2/(2+¢), we have
(3.18) | Z*(—R_)f(x)—exp((R_—7#) H" [R)exp(i#i A H{ [B)f 7 (@) | < CHT| £,
Estimates (3.18) and (2.26) clearly imply (3.17). Q.E.D.
By a similar argument, we obtain
LEMMA 3.4. Let R.=0 and f€Cy(K). Then
(3.19) lexp(—iR H" ) WiQF fla)— Z" (R)FIZCHS ..
Completion of the proof of Theorem 1.3.
By Theorem 4.1 and the definition of Z%(t), we have
(3.20) lexp(—(Ri+R)H*[B)Z " (—R.) f(@)— Z*(B.) S| = CHI f 1.
Combining (8.17) and (8.19) with (3.20), we obtain
(8.21) I WiQ7 fle)— WEf @IS Carlfl..
Since (WhH*Wi=Iand (Wi*W2=S", it follows from (3.21) that
1Q7 /@) —S " f) | S CH | 1z

which is our desired estimate. Q.E.D.
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