Nonincrease of the lap-number of a solution for
a one-dimensional semilinear

parabolic equation™®

By Hiroshi MATANO

1. Introduction.

Let w=w(x) be a real-valued function on the interval I=[0,1]. We say w is
piecewise monotone if I can be divided into a finite number of non-overlapping
sub-intervals Jy, J, -, Jm< G J=1I ) on each of which w is monotone. Naturally

i=1

such a division of I is not unique, but there is the least value of the numbers m
for which we can find a division {J;} as above. This value is called the lap-number
of w, and we shall denote it by I(w). As an exceptional case, we set [{w)=0 when
w is a constant function. And, for convenience sake, we understand that l(w)=o0
if w is not a piecewise monotone function. Thus I{w) can be regarded as a kind
of functional whose value ranges over nonnegative integers (possibly infinity), and
l{w)=0 if and only if w is a constant function.

Another equivalent definition of l(w) is as follows: Suppose w is not a constant
function. Then we can choose distinet points 0=%,<z,<---<x,=1 such that
wlx,) E=wlr,e) for 1=0,1,---,k—1 and that the sign of each w(x..)—wlx;) is
opposite to that of wix,)—wx;_). It is clear that the number &k above cannot be
arbitrarily large when w is piecewise monotone; and we define I(w) by the su-
premum of the possible numbers k. This new definition of lap-number is easily seen
to be equivalent to the former one so long as w is continuous. And when w is
discontinuous, I(w) will be understood in the latter sense throughout this paper.
For example, let w(x)=2z for 0=2=<1/2 and w{x)=2—1 for 1/2<x<1. Then we
have l(w)=3 (while I{w)=2 in the former definition; see Remark 6.1 and Example
6.2 for further details).

If w=ulz,t) is a function of two variables x €I and t€ R, we can define the
lap-number of % for each fixed value of ¢, and then l(u(-,?)) becomes an integer-
valued function of t. In this paper we shall show that the lap-number of any
solution for the one-dimensional semilinear parabolic equation

% Partially supported by the Sakkokai Foundation.
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2
(1) —%?’—:a(x, t)%—l—b(m, t)—g%-i—f(t, u, %)
will not increase as time passes; moreover, what is important, the non-increasing
property is “stable” under a small perturbation to the initial data (Section 5).
(Note that the nonlinear term f in the above equation does not depend on % ex-
plicitly. This is an essential requirement, and we shall impose no further specific
assumption on f.) Asa corollary to this result, it holds that if the solution wu(z, t)

converges to some equilibrium state v{z) as t—co, then
(2) L) <o),

where u, is the initial data for #. Since the lap-number Il(w) roughly evaluates
the complexity of the shape of the graph of w(z), the above inequality can be
interpreted that the final state always exhibits a simpler spatial pattern than the
initial state. This fact is in marked contrast to the case of parabolic systems
{see Fife [2] for instance).

The basic method to be employed in this paper is the maximum principle;
and some elementary topological discussions in the zt-plane based on the Jordan
curve theorem (Lemmas 2.5 and 2.6). One finds a similar discussion in Serrin
[12; Theorem 4, p. 92]; and also in Matano [6], in which the dynamical structure
of one-dimensional parabolic equations has been studied.

First we shall discuss the problem under the Neumann boundary conditions
(Section 2). This is the simplest case. Then we consider the cases of the Dirichlet
boundary conditions and the third boundary conditions (Section 3). As a matter
of fact, the lap-number of a solution is not always nonincreasing under the
Dirichlet or the third boundary conditions. In certain circumstances, the lap-
number may grow fairly larger (see Example 6.5). In order to exclude such a
situation, we shall put in Section 3 the additional assumption fif,0)=0 or the
assumption #=0, u,#0. These additional assumptions, however, do not reduce the
applicability of our results considerably, for they are fulfilled practically in many
important equations.

In Section 4, we study the autonomous equation

ou 9*u ou
3 —=q(r)— —
(3) 5 =@ +bi) - +flu)
as a special case of (1). The results for the Dirichlet and the third boundary
conditions are then improved somewhat. That is, without putting any assump-
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tion such as f(0)=0 or as u=0, we shall show that the increase of the lap-number
L(u(+, t)) does not exceed 2 in value. Consequently we always have

L) =Huol +2,

where v, u, are the final and the initial state respectively. Of course I(u(-,t))
never increages under the condition f(0)=0 or the condition %#=0, u,%0, or if the
boundary condition is homogeneous Neumann; hence in these situations the stronger
assertion (2) holds.

In Section 5, which forms the most crucial part of this paper, we shall inves-
tigate the long time behavior of the lap-number of a solution of (3) when its
initial state wu, gets a spatially inhomogeneous small perturbation. Such a per-
turbation may cause a sudden increase of the lap-number, but in the long run
this increase will be reduced entirely, except when %, is a constant function.
More precisely, we shall show that for any nonconstant function w,(x) and for any
t.>t,>0 there exist positive numbers ¢ and ¢, with #,>%,>¢, such that

l(W( *y t())) él(u(' ’ to))
holds for any solution w(x,t) of (3) whose initial data w, satisfies

sup |welm) —u(x) | <8,
=21

In particular, we have

(4) l< lim w(-, t)>§l(uo)

t—o0

either in the Neumann case or in the Dirichlet case with f(0)=0, if the limit on
the left-hand side exists (it exists if w is uniformly bounded; see [6]). As a matter
of fact, the assertion (4) remains true even if u, is a constant funetion, provided
that it is not an unstable constant equilibrium solution of (3). (When u, is an
unstable constant equilibrium solution, we have a counterexample as shown at the
beginning of Section 5.)

In Sections 2 to 4, we shall also prove that if [{u)>0, then [(u(-,))>0 for
all t=0. This is a consequence of the uniqueness theorems for backward para-
bolic equations. Note that the above assertion does not execlude the possibility
that u(x, t) converge to a constant equilibrium state as f—co.

As for one-dimensional single equations of the form (3), any equilibrium solu-
tion v(®) with [(v)=1 (i.e. nonconstant solution) is unstable in the case of the
Neumann boundary conditions (see Chafee [1] for instance), while any equilibrium
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solution with I(v)=38 is unstable in the case of the Dirichlet boundary conditions
(see Maginu [5] for instance), provided that the coefficients a(x), b(x) are constants
in either of the cases. These results imply that, in one-dimensional single equa-
tions, there virtually (i.e. experimentally) occurs no complicated spatial pattern
formation, while such phenomena are often observed in parabolic systems. How-
ever, these assertions do not apply to the situation where a, b depend on %; and
in fact, in this case there sometimes exists a stable equilibrium solution with a
large lap-number (Example 6.6). Nonetheless our results in the present paper
still apply to this case, showing that simple initial data never yield complicated
spatial patterns. '

Some of the results in this paper, namely Theorems 1 and 3, were first ob-
tained by M. Tabata [13] through the method of finite difference approximation.
He first established similar theorems on the solutions of difference equations which
approximate (1), then he proved the original assertions by the limit process. His
proof therefore reveals that the nonincrease of lap-number is a property that can
be inherited to approximate solutions. This fact is of importance from a numeri-
cal standpoint. We, however, treat the equation (1) directly, which makes our
discussions fairly shorter. And our work covers many topics and results that
have not been discussed in [13].

Lastly, in Section 6, we give some examples and counterexamples. Most of
them are elementary, but they will probably be instructive.

The author wishes to express his gratitude to Professors Hiroshi Fujita, Seizd
I1t6 and Masaya Yamaguti for valuable advice. He also thanks Professors
Yoshinori Kametaka, Masayasu Mimura and Masahisa Tabata for many stimulat-
ing discussions.

2. Case of the Neumann boundary conditions.

With w(z) being a piecewise monotone function on I and with l(w) as defined
above, we introduce some more notation: Let 0=x,<x,<.--<x,=1 (k=l(w)) be
points such that

{w(2;) —wl;_)Hw@ ) —wlz;)} <0
for ¢=1,2, .-+, k—1, and set

I*(w)=the cardinal number of the set
fieN; 1<i<k, wlz)—w(@;-1)>0};
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I~ (w)=the cardinal number of the set
{ieN; 1§'L§k, W(xi)_w(wi—1)<0}:

where N is the set of all natural numbers.

Sinee we are assuming k=I(w), such points {x;} really exist by the definition,
and the two sets on the right-hand sides do not depend on the choice of the points
{;}; so both I*(w) and I-(w) are well-defined. And we understand that I*(w)=
I7(w)=0 when w is a constant function. Note that if w is continuous, I*(w) (resp.
I-(w)) equals the number of maximal sub-intervals of I on which w is monotone
nondecreasing (resp. nonincreasing) and is not identically a constant. (By a maxi-
mal sub-interval we mean an interval JcI such that w is monotone on J but no
longer monotone on any interval J’2J.) For example, if w,(z)=sin nzx, we have

o wen)=m+1, (W) =m
and
I (Wam—t) =1 (Wopy) =M
for m=1,2,«--.
From the definition it immediately follows that
)= (—w),
[ (w) — 1~ (w) |1
and

LHw) =1 (w) +1(w).

Let us now consider the equation

2
(5) O o, )2 b, -2 fw) i IX (0, T)
ot ox? 2%
together with the initial and the boundary conditions
(6) wlx, 0y=uelx) in I,
(1) B% _o on aIx(0,T),
ox

where I=(0,1), aI={0}U {1} and 0<T< +oo. All the coeflicients and the solution
are real-valued, and we assume

(A1) alx, t)=06 in Ix[0, T) for some constant d>0;
(A.2) a € CY{Ix[0, T));
(A.3) be C*(Ix[0, T)) for some 0<a<1;
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(A.4) SeCH[0, T)XR).

Assumption (A.1) implies the uniform parabolicity of the equation (5). Smoothness
conditions on the coefficients may be relaxed somewhat, for which we do not care
in this paper. By a “solution” we mean a classical solution; therefore u belongs
to CY{IX (0, T))NC:HIX (0, T)) and satisfies (5), (7) in the classical sense. The initial
condition (6) is understood in the sense that

(6") li{I(']l u(x, t)=u,(x) a.e. xw€I (bounded convergence).
t

We shall always assume that u, is piecewise continuous and bounded; so that
the initial-boundary value problem (5), (6), (7) has a local solution. We do not
discuss how far this local solution can be continued. Instead, we always under-
stand that the value of T is taken appropriately so that the local solution can be
continued until t=7T. Note that the convergence in (6/) is automatically a uni-
form convergence if u, is continuous on I.

Now we are ready to state our main results in this section:

THEOREM 1. Let (A.1)~(A.4) hold, and let u(x) be a bounded and piecewise
continuous function on I (not necessarily piecewise monotone). Then the solution
w(z, t) of the initial-boundary value problem (5), (6), (7) satisfies

(8a) luls, t) = (ul-, t)),
(8b) s, ) 21 (u(-, t2)
Jor any 056, <t,<T.
THEOREM 2. Let the conditions in Theorem 1 hold. Suppose
(-, £) =0

Jor some t,0=t,<T. Then
Hu(-, £)=0
Jor all t,0<t<T. Consequently u,(x) is equal to a constant for a.e. z€l

REMARK 2.1. Note that the nonlinear term f in (5) does not depend on x
explicitly. This is an essential requirement. But our results can quickly be ex-

tended to the case where f=f (t, u, Z—u>
2

REMARK 2.2. In the statement of the above theorems (and - throughout this
paper) we understand that H(w)=1+{(w)=I"(w)=co if w(x) is not piecewise monotone.
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REMARK 2.3. The conclusions of Theorems 1 and 2 remain true if the bounded
interval I is replaced by the entire real line (—oo, +o0), s0 long as bounded

solutions are concerned. The proof will be almost the same as that of Theorems
1 and 2.

REMARK 2.4. If w,(@)—w(x) as n—co for all z€ I, then, as is easily seen,

lim inf I+ {w,) =1+ (w),

B0

lim inf I~ (w,) =1~ (w).

Consequently, given any continuous function h(x,t) on Ix (0, T), both I*(h({+, )} and
I=(h{-, t)) are lower semi-continuous in 0<t<T. In view of this fact and Theorem
1, we see that both I*(u(-, t)) and [~ (u(-,?)) are monotone nonincreasing in 0Zt<T
and right continuous in 0<t<T. (If, in addition, u, is right or left continuous
in I and continuous at x=0,1, then I*(u(-, t)) and I-{u(-, t)) are continuous at t=0.
In faet, in this case, from (6/) follows

lim inf IF(u(-, 1)) =1 (uy) ;
tN\o
hence

Hm %=+, ) =1=(u,).)
[N

Before setting about the proof of Theorems 1 and 2, we present some notation
and preliminary lemmas, which will be needed in this and the next sections.
For any funection w on IX[0, T'), we set

(9a) Ar(w)={(z, 1) € IX[0, T); wiw,)>0},
(9b) A-(w)={(z,t) € Ix[0, T); wie,t)<0}.

We shall also use the notation

(10a) 2.,=1(2, 1) € IX[0, T); t.<t<t},
(10b) L=Ix{t}, L=Ix{f}(=2..),

(10c) 24,=02, 1, \ L,

(10d) Sy=1{0} % (0, T), S;={1}x(0, T).

2,1, consists of two vertical segments {0} X[%y, 8.1, {1} X[#y, 2] and one hori-
zontal segment I,. For convenience sake we regard X,, as an ordered set:
Given P, Q€ %,,.,, we say P<Q if either P coincides with @, or P and the point
(0, t;) belong to the same component of X,,,\{Q}. Clearly the above relation <
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is an order relation, and in a similar manner we introduce into I, an order rela-
tion, which we again denote by <. That is, two points P, @ on the line segment
I, satisfy the relation P<@ if and only if P either coincides with @ or lies on the
left-hand side of it. Finally we introduce the notation

(11) P<Q,

which represents P<@ and P=+Q. It will be clear from the context whether
P<Q represents the usual order relation between two real numbers or the rela-
tion just defined in (11).

LEMMA 2.5. Let w=w(x,t) be a continuous function in Ix(0, T) having con-
tinuous derivatives owlox, 0%w/ox? and dwjot in IX (0, T). And suppose w satisfies
the parabolic equation

2,
(12) —-:a’].(x7 t)T"'bl(xy t)%%_*'cl(xy t)w 'i'n’ IX (07 T)y

where the coefficients a4, by, ¢, are bounded in IX (0, T) and a,>8, for some constant
5:>0. Then for any 0=t,<t,<T and for any (nonempty) connected component
C of A*(w)N§y,..,, it holds that

CNZy.,#D.
The same is true for any connected component of A~ (w) N2y,

PrROOF. Suppose CNZ,,,,=@. Then w vanishes on 8C\I,,. Hence, by the
maximum prineiple (see for instance [9; Chapter 8]), w should vanish in C, which
obviously contradicts the supposition CCA*(w). This contradiction proves the
lemma.

The above lemma, though elementary, plays a fundamental role throughout
this section, and in the next section as well. As a corollary, we have

LEMMA 2.6. Let the asswmptions in Lemma 2.5 hold. And let P, P,,---, P,
be any points on I, such that
P <Py <P, (see (11))
and that the sign of w(P;.,) 18 opposite to that of w(P;) for 1=L1,2, ---, m (in other
words, Py, P, +--, P, belong to A*{w) and A~(w) alternately). Then there exist
points
Q: <@ <+ - <Qn

on I,,.., such that for each i=1,2, ---, m the pair P, Q; are contained in the same
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connected component of At(w) N Q,,.., or of A~(W)N 24y Im particular, w(@Q,) has
the same sign as w(P;).

PrROOF. Suppose P;€ A*(w). Then, by Lemma 2.5, P; can be connected to
some point @;€X,,,, by a path I';in AT (w)N2,y.0, Similarly, if P;e A~(w), then
it ecan be connected to some point @;€ 2, ., .
by a path I'; in A~ (w)NR,.s,. Thus, for A
each 1=1,2, .-+, m, we get a path I'; lying
in the rectangular region £, ., and connect- t

ing the point P; to some point ;€ 3,,,.,; Ti
and that w does not change sign on each I,

r,. Since Iy, ---, ", are contained in At(w)

and in A~(w) alternately, I'; and I'y, do

not intersect, where 1=1,2, ---, m—1. Using t

the Jordan curve theorem we easily get
Q,<Q.< - <Qn. (See Fig. 1.)

This proves the lemma. 5 %

The following lemmas are needed for

Theorem 2 and also for Theorem 6 in Fig. 1. Apply the Jordan curve
theorem to the eclosed

Section 3. curve indicated above.
LEMMA 2.7. Let w=w(x,t) be & continuous function in IX0,T) having con-

tinuous derivatives dw/oz, 0%w/[dx? and dwfot in Ix (0, T), in Ix (0, T) and in Ix (0, T)

respectively. Suppose w satisfies the equation (12) together with the boundary

condition

W _0o on aIx(,T),
ox

where we assume o, € CHIX0, T)), a.>8, for some constant 8,>0 and that b, ¢,
are bounded on Ix (0, T). Suppose finally that w vanishes everywhere on I jfor
some 0<t*<T. Then w vanishes identically in Ix(0,T).

LEMMA 2.8. The conclusion of Lemma 2.7 remains true if the boundary
condition ow/ox=0 is replaced by

w=0 on 2IX(0,T).

Lemmas 2.7 and 2.8 are consequences of the uniqueness theorems for para-
bolic equations and backward parabolic equations; see Lees and Protter [4] and
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Friedman [8; Chapter 6].

PROOF OF THEOREM 1. For a while we assume that da/ox, 8bjox € C*(I%[0, T)),
that 9fjou € C+{[0, T) X R) and that du,/6x is a continuous function vanishing on 8L
These additional assumptions will be removed soon later.

By the assumption above, dufdx is continuous in IxI0, T). The continuity at

t=0 follows from the fact that w=du/dx is a solution of the equation (obtained
by differentiating (5) by z)

2
a—w—a@—w—i-bl

w
ot ox* )

+ew in Ix(0,T),
x
under the conditions w(0, £)=w(l,t)=0 and w(x, 0)=0u,/ox, where b,=da/oz-+b and
¢=0b/ox+0f/ou. (The differentiability of (5) follows from [3; Theorem 10, p. 721.)
Let P, P, ---,P, be any points on I,, (here we assume t,>>t, since in the case
t;=t%; the theorem is trivial) such that

P<P<---<P, (see (11))

and that the sign of w(P,;) is opposite to that of w(P,) for 1=1,2, .-, m—1.
Then, by Lemma 2.6, there exist points

Q<<+ <Qn

on X, such that w(@) and w(P,) have the same sign for each i=1,2, ---, m.
Furthermore, as w(=du/dx) vanishes on 3IX[0, T}, the points @, ---, @, must lie
on the line segment I,,. Thus, for any system of points {P,, -+-, P}, on which
dufox changes sign alternately, we can find a similar system of points Q4 on I,
This fact clearly shows that the inequalities (8a), (8b) hold.

It remains to remove the additional smoothness assumptions on a,b and Ug.
Let u, be piecewise continuous and bounded on I, and let a,b, f be as in (A.1)~
(A.4). Choose sequences of smooth functions {a,(, t)}, {b.(, )}, {f.(t, w)} converging
to a,b, f respectively as n—co (in the topology of CI(Ix[0,T)), CS(IX[0,T)) for
some 0<f<« and C'({0, T') X R) respectively). And let {u,.(®)} be a sequence of
uniformly bounded smooth functions satisfying

OUo.n
ox
o) =1 (o) and  1(ag,,)=1"(sg)

=0 on 9l

for n=1,2,--- and converging to uy(x) for a.e. #€I. (One easily finds that such
a sequence 1, really exists.) To such approximating sequences of coefficients
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and initial data, there corresponds a sequence of solutions {u,(x,?)} that converge
to the original solution u(v,t); more precisely, given any T, with 0< T <T, u,
exists for 0<t< T, if n is sufficiently large, and it converges to » in Ix(0, T, as
n—oco. (The convergence of %, to u follows from the uniform boundedness of
{u,} (for large n) in Ix(0, T,) and o priori estimates for derivatives of u,; see
[8; Theorem 5, p. 64 and Theorem 15, p. 80].) Therefore

lim inf IF(w, (-, ) = (ul-, 1)

for 0<¢< Ty, and hence, applying (8a) to u,, we get
I* () =lim inf I¥{uy,,)
=lim inf I*(u,(-, t))
=l u(-, 1))
for 0<¢t<T,. Since T, is any number between 0 and T,
Urag) = T (ul-, £)
holds for 0<t<T. In quite a similar manner we can show
lug =i (u(-, t)

for 0<t<T. Thus (8a) and (8b) are verified for the case t,=0 without putting
any additional assumptions on a,b, f and 4,. The general case t,=20 now follows
immediately. This completes the proof of Theorem 1.

PROOF OF THEOREM 2. First, note that if u,(%) is equal to a constant for a.e.
wel, then lu(-,t))=0 for all 0<¢<T, in other words, » does not depend on z.
This is an immediate consequence of the uniqueness theorem for parabolic equa-
tions.

Now set

t¥=inf {t; 0=t<T, l(u(-,))=0}.

If t*=0, then uo(x) is equal to a constant for a.e. x€lI; hence, as is remarked
above, the conclusion of Theorem 2 follows. Supposing ¢*>0, we shall derive a
contradiction.

By the continuity of u, there exists a constant & such that u(w, t*)=¢ for all
sel. Let 4(t) be the solution of the ordinary differential equation

49 _



412 Hiroshi MATANO

under the condition @(¢t*)=&. If >0 is small enough, the solution o(t) exists in
the interval [¢*—d,¢t*+4d]. Then (x, t) =ulz, t)—o(t) satisfies

2
on _ M+b_+g(t @) in IX[t*—4, t*+0]
ot ox?

where

gt BW=f(, a+¢(t)) — ¢’ ().
As g(t,0)=0, the function g can be expressed in the form g(t, u)=1ig,.(t, @) with
g, being continuous. Therefore # satisfies a linear parabolic equation of the form

(12) with e(z, t)=g,(t, %z, t)). Besides it satisfies the boundary condition 8%/dx=0
and the condition %%, t*)=0 on I. Applying Lemma 2.7 to w=1, we get

iz, t*—0)=0 for axcl

which implies l(u(-,t*—6))=0, an impossibility by the definition of #*. Thus the
assertion of Theorem 2 is verified.

3. Case of the Dirichlet boundary conditions.
Now we consider the equation (5) under the Dirichlet boundary condition
(13) =0 on aIx(0,T).

In this case, inequalities of the type (8a), (8b) no longer hold in general; the
lap-number of a solution may grow arbitrarily large (Example 6.5). Therefore we
should consider the problem in some restricted situation.

Also considered is the case of the third boundary condition

(14) %Jra(x, Hu=0 on aIX(0,T),

where ¢(0,%)<0 and ¢(1,%)>0 for 0<t<T. Since this case can be discussed quite
analogously to the Dirichlet case, we shall only mention it briefly.
The notation given in the previous section is freely used; and we further

make the following assumptions (only one of them will be assumed in each ocea-
sion): :

(B.1) flt,00=0 for 0<i<T;
(B.2) J£,00=0 for 0Zt<T;
(B.3) #=0 in Ix[0,T).

Symmetrically we set
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(B.2%) S, 000 for 0=¢<T;
B.3') %<0 in IX[0, T).

THEOREM 3. Suppose (A.1)~(A.4) and (B.1) hold, and let u, be a bounded
and piecewise continuous function on I vanishing on 8I. Then the solution u(x,t)
of the initial-boundary value problem (5), (6), (13) (if it ewists) satisfies the in-
equalities 8a), (8b) for any 0=t <t,<T.

THEOREM 4. Let (A.1)~(A.4) hold, and let either (B.2) or (B.2') hold. Finally
let wy, be as in Theorem 3. Then the solution u(x,t) of (B), (6), (18) satisfies

(15a) Flul-, t)) +1=lF (-, 1),
(15b) s, 2)) + 1= (ul-, )
Jor any 06, <6, <T.
THEOREM 5. Let (A.1)~(A.4) hold, and let uy, be as im Theorem 3. Suppose

the solution u of (5), (6), (13) satisfies one of the conditions (B.3), (B.3’). Then
(-, )=, ) for 05t<T. Furthermore, for any 0<t,<t,< T,

(i) the mequal@tws (8a), (8b) hold provided that Lu(-,t,))+#0;
(i) ul-, t))=1"(u(-, t)) <1 if Uul-,t))=0.

THEOREM 6. Let the conditions in Theorem 3 hold (except that u, need not
vanish on 3l), and suppose

Lu(-, &))=0
Jor some ty, 0<t,<T. Then
Luf-, 1)=0
for all t, 0<t<T. Consequently uyx)=0 for a.e. x€l.

REMARK 3.1. The assumption that u, vanishes on 8I cannot be removed from
Theorems 8, 4 and 5, as we see in the following simple example:

ou_ o

ot ox¥

Ue=1.

In this case lu,)=0, while l{u(-,#))=2 for ¢>0. In order that Theorem 3 or
Theorem 5 (i) may hold, we must modify u, slightly as follows: u,{x)=1 for
0<2 <], up(0)=1ue(1)=0. This modification, of course, does not change the solution
u for £>0. More generally, the same modification (at the boundary) should be
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done to any initial data that does not vanish at the boundary. (Note that this
modification may increase l{u,) by up to 2.)

REMARK 3.2. The conclusion of Theorem 6 does not remain true if the as-
sumption (B.1) is removed (see Example 6.4).

REMARK 3.3. In Theorem 5 (i), the assumption [{u{-,%,))+#0 is essential as we
see from the simple example

In this case l{u,)=0, while I(u(-, £))=2 for t>0.

PROOF OF THEOREM 6. The proof of this theorem can be carried out in the
same manner as the proof of Theorem 2, except that we use Lemma 2.8 instead
of Lemma 2.7. Note that the function ¢(t) defined in the proof of Theorem 2 is
identically equal to zero in the present case.

PROOF OF THEOREM 5. It suffices to consider the case (B.3), for the case
(B.3") follows by applying the first case to —u. The assertion I*(w)=Il"(u) is ob-
vious; therefore we begin with the proof of the assertion (i).

Let {a.(x,t)}, {b.(z, 1)}, {f.(t, w)} and {u,..(2)} be sequences of sufficiently smooth
functions satisfying

lima,=a, limb,=b in CAIX[0,T)) for some B, 0<B<e,

H—~>00 N—00

lim f,=f in C([0, T')XR),

lim w4y, ,(®) =u,{x) for x €I (bounded convergence),

Ug,,=0 on 08I, u,,,>0 in I,

U (o) =1 {uo) (hence 1™ (uo,.)=1"{u,)),

0%y,
ox?

Ay

+b”%+f,,(t, 0)=0 for zeal, t=0.

These approximating sequences of the coefficients and the initial data (such se-
quences really exist since u,#0) yield a sequence of approximate solutions {u,(x, £)}
which converge to u{x,t) as n—co. Note that each u, is smooth at t=0; and it
is not difficult to show that ,>0 in IX[0, ;] and ou,/0x%0 on 9IX[0, t,] for all
large n, provided that the sequence {u,,,} is chosen appropriately. (The sequence
{uy.n} can be constructed, for example, as follows: Let {,} be a sequence of posi-
tive numbers converging to 0, and let %, be a solution of (5), (6), (18) with initial
data wy-+¢,. By the comparison theorem, #,>u=0 in IxX[0,%,]. (&, exists on
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Ix [0, t,] at least for large n.) More precisely,
G,z dw(l—x) on IX[0,t]
for some 0,>0. Therefore, if {a,}, .}, {f.} converge to a,b, f very rapidly, then

fi,=z—tx(l—x) on IXI0,t,]

S

for all large n, where %, is a solution of the approximate equation with initial
data u,+¢,. Now approximate u,+e, by a smooth function u,, satisfying the
last three of the above six conditions (and that 8u,.,./02%0 on 8I). By virtue of
the above inequality for #,, it is clear that u, possesses the required property if
Uy, is sufficiently “close” to u,+e,.) In view of this fact, and arguing as in the
proof of Theorem 1, we see that it suffices to prove the statement under the

assumptions that a, b, % are smooth in Ix[0, T) and that
w>0 in IX[0,1t.],

9% 40 on AIXIO,t,].
ow

Differentiating the equation (5) by x, we obtain

ow o%w ow
16 —_— = —+cw,
16 ot~ g Ty T

where w=208ufox, b,=0a/ox+b and c=ab/ax+af ou.
Let Py, P, +++, P,, be any points on I,, such that
P <Pp<--- <P,  (see (11))

and that they belong to A*(ou/ox) and A~(du/ox) alternately; i.e. dufox has the
opposite sign on each pair of the points P, P;y;. Then, by virtue of Lemma 2.5,
there exist distinet points

1<@Q< - <Qn

on %,,, such that dufox takes the same sign on each pair of the points P, Q;.
On the other hand, as % vanishes on S,US; and is supposed to be positive in
Ix[0,t;], we have

A+< ZZ: >ﬂsl‘_‘®)

A_<“a“1i> ﬂ SO = @ 1
ox
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where S,={0}x(0,T) and S;={1}x (0, T). Therefore the following alternatives
hold:

(@) Qu -+, QulNSe=0;

(b) @u -+, @uiNS,={@1} and Q; € A*(ou/oz).
Similarly we have the alternatives

(a’) Qu -+, @utNSi=T;

(b) @y -+, Qa1 NS ={Q.} and Q.. € A™(ou/ox).

Suppose (b) holds. Since we are assuming du/dx+0 on 8Ix[0,t,], du/ox is
positive in a neighborhood of {0} X[0,,]. Therefore we can find a point @, €
At(@ufox) N1, satisfying @,'<Q.. Thus the case (b} reduces to the case (a). In
the same manner the case (b’) reduces to the ecase (a’). That is, for any points
P <---<P, on I, as above, we can find a similar system of points @;<--- <@,
on I,. This clearly implies that the inequalities (8a), (8b) hold; hence the asser-
tion (i) is verified.

Next we prove the assertion (ii). Without loss of generality we may assume
t,=0 (hence u,=0). Take a sequence of uniformly bounded smooth functions
{uy,,(x)} satisfying

Ug,n=0 on 8l, uy,>0 in I,
Ur(to.) =1 (Uo.) =1,

lim %,,,(x)=0 in I

Then, given any %,€(0,T), the solution u, of (5), (13) with initial data u,,,(%)
exists for 0<t<i, if » is sufficiently large, and it satisfies u,=u=0 by the com-
parison theorem. Applying the statement (i) to u, and taking n—oco, we get

l+(u(',tz))§1 and l—(u('7t2))§19

which proves the assertion (ii) for the case t,=0. The case t,>>0 now follows
immediately. This completes the proof of Theorem 5.

PROOF OF THEOREM 4. It suffices to consider the case (B.2), for the case
(B.2") follows by applying the case (B.2) to —u.

First, suppose %4,=0. Then %=0 in Ix[0, T) by virtue of (B.2) and the max-
imum principle. Hence the assertion follows immediately from Theorem 5 (ii).

Next, suppose #,%0. Then, as in the proof of Theorem 5 (i), we may assume
that @,b and % are smooth in Ix[0,T). Therefore w=0ou/ox satisfies a linear
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parabolic equation of the form (16) and is continuous in Ix[0,T). We now use
the following lemmas:

LEMMA 3.4. Let the assumptions in Theorem 4 (case (B.2)) hold, and let a,b
and % be suitably smooth in Ix[0, T). Suppose dufox is positive on a point
(%o, to) € IX[0, T) and is nonnegative on the line segment {0=Za=w,, t=1%}. Then
there exists a >0 such that

flx,2); 0=z=u,, to<t<to+5}cA+< Zz >;

that is, du/éx>0 in this rectangular region.

LEMMA 3.5. Let the assumptions in Theorem 4 (case (B.2)) hold, and suppose
a,b and u are suitably smooth in I'x[0, T). Let C be any connected eomponent
of A*(eufox) N2y, (0=t,<t,<T) such that

CnS+@, Cnl,+2.
Then CNS, is connected and it contains the point P={0, {,).

The proof of these lemmas will be given later in this section. Now we return
to the proof of Theorem 4.

Let P,<P,<---<P, be any points on I, that belong to At(u/éx) and
A-(pujox) alternately; i.e. ouféx has the opposite sign on each pair of the points
P, P, (i=1,2,---,m—1). By Lemma 2.6, there exist distinct points

<<+ <@

on X, ., such that du/ox takes the same sign on each pair of the points P, Q; (2
=1,2,---,m). (For the sake of the later argument, we choose @; appropriately
so that the pair P; @; are contained in the same connected component of A*(Gu/ox)
N2y, OT A (Ou/ow) N 24,.) In view of Lemma 3.5, we easily see that one of
the following four cases holds:

(173') {le Tty Qm} nSo=@;
(17h) Qs+, @uNS,=1Q} and Q¢ A+< Z: >;
(17¢) @ -, @l NS={Q) and Q¢ A—(%);

17d) @ QuiNS=0u Qe A (2%) and Que A(5r)
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Suppose (17¢) holds. Then there exists a point @, on I, satisfying @,/<@,
and Q,’ € A~(0ufox). In fact, if there were no such point, we should have either

=0 on I,
or

@€, %go on the line segment RQ (R=(0, t,)).

By virtue of (B.2), the former case implies =0 in £,,,, which clearly contra-
dicts (17¢). And in the latter case, by Lemmas 3.4 and 3.5, the connected com-
ponent of A*(du/ox) L., containing the pair P,, @, should also contain the line
segment {x=0,t,<t<t,} entirely, which again is incompatible with (17¢). Thus
the existence of a point @,/ as above is verified. Therefore the case (17¢) reduces
to the case (17a). In the same manner the case (17d) reduces to the case (17b).
Similarly we have the alternatives

(173'/) {er ° "va}nslzg;

(17) Q- QNS =(Q.) and Qne A~(—§%>,

in the sense that all other possible cases reduce to these two cases. The discus-
sion here shows that the inequalities (15a), (15b) hold. This completes the proof
of Theorem 4. )

PROOF OF THEOREM 3. The assumption (B.1l) implies that both (B.2) and
(B.2/) hold. In the case #,=0, we have #=0 by the uniqueness theorem; hence
the statement is trivial.

Now suppose %,#Z0. Then, as in the proof of Theorems 4 and 5, we may
assume that @, b,  are smooth in Ix{0, T'). The conclusion of Lemma 8.5 remains
true even if C is a connected component of A~ (3u/ox) N Q:,.1,, since —u also satis-
fies (B.2). It follows that the case (17d) never occurs. Arguing as in the proof
of Theorem 4, we see the cases (17b), (17c) reduce to the case (17a). Similarly the
case (17b’) and other possible cases reduce to the case (17a’). Hence we may
assume that the points @), ---,@, all lie on the line segment I,. This implies
that (8a) and (8b) hold, completing the proof of Theorem 3.

We now prove Lemmas 3.4 and 8.5.
PrRoOOF OF LEMMA 3.4. Since u vanishes at the point R=(0,¢,), we have

#u>0 at Q@ and #=0 on RQ,
where Q@=(x,, ). Let >0 be small enough that %>0 and du/6x>0 on the closed
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line segment QQ’, where @Q'=(xy, t,-+6). Then
#=0 and #z0 on R'RURQUQQ’,
where R'=(0,t,+4d). Consequently, by (B.2) and the maximum principle,
>0 for O<z<wy, to<t<ty+a.

Considering that % vanishes on S,={x=0,0<t<T} and applying the maximum
principle again (on the boundary), we find du/ox>0 on the open line segment
R'RN\{R',R}. Therefore

9% 50 and 2.0 on R'RURQUQQ'.
ox ox

Recalling that ouf/ox satisfies the linear parabolic equation (16) and applying the
maximum principle to du/dx, we obtain

—Z%>0 for 0<x<ay, ty<t<to+o.

Since ou/dx is also positive on R'EN\{R’, R} and on QQ’, the conclusion of the lemma
follows.

PrROOF OF LEMMA 3.5. Let R*=(0,t*) be any point of CNS,, and let J be
the connected component of CNS, containing R*. It suffices to show that J con-
tains the point P=(0,¢,). Assuming that P¢J, we shall derive a contradiction.

Naturally J is a vertical line segment; let R=(0,%,) be the upper end of J.
From the assumption P¢ J follows R ¢ J, hence

(18) R¢ A‘(%).

Clearly we have £, <t*<t,<t,. Since C intersects I,,, R* can be connected to L,
by a path in C, and therefore, R* can be connected to some point @={x,, t,) €
L,NA*(9ufox) by a path I in CN&,,.., (see Fig. 2). Without loss of generarity
we may assume that I" is a simple curve, and that I'NI, ={Q}. Denote by 2 the
region in I'x[0, T) whose boundary 882 consists of I", R*R and RQ. As

<L>0 on (O\EQUIQ),
it follows from the maximum prineciple that

%>0 in 2 and on RQ\{R).



420 Hiroshi MaTaNoO

¢ Combining this fact and Lemma 3.4, we
get

%Z_>o in (V\{R)NIx[0,T),

where V is some small open circle with
center B. Consequently

t=t,

#>0 in VNIX[0,T),

gince % vanishes on S,. Applying the maxi-
mum principle to % on the boundary (recall
(B.2)), we see

Fig. 2 9% <0 on VAS,
o

which contradicts (18). This contradiction proves the lemma.

In the rest of this section we consider the case of the third boundary condi-
tion (14). This case can be discussed in a manner quite parallel to the case of
the Dirichlet boundary condition (13). Requirement on the initial data %, is now
reformulated as follows:

(C) There exists a sequence of smooth functions {u,..(x)} converging to u,(x) for
a.e. v €1 and satisfying

l+ (u(),n) = l+ (uo) ’ l—(uo,n) = l—(uo) ]

U,

+eo(x, 0)up,, =0 on oL

Note that if u, vanishes on 8I and is bounded and piecewise continuous on I,
then the condition (C) is fulfilled. Another situation where (C) holds is that u,
is piecewise continuous and bounded on I and that u,(4+0)u,{x) is monotone non-

decreasing (not constant) near x=0 while u,(1—0)u,{x) is monoctone nonineresing
(not constant) near x=1.

THEOREM 7. The conclusions of Theorems 3, 4 and 5 remain true for the
solution w of (B), (6), (14) provided that the condition u,|,;=0 is replaced by (C).

THEOREM 8. The conclusion of Theorem 6 remains true even if wu s the
solution of (5), (6), (14).

We omit the proof of these theorems.
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4. Autonomous problems and the stable sets.

In this section we discuss the case where the equation (5) is autonomous:
The problem under the Neumann boundary condition then takes the form

ou %u o .
IW_M U pbie)Tt s in IX(0,T),
(Ex) u{z, 0)=u,lx) in I,

l-‘?‘ﬂ—zo on aIX(0,T),
o0

which we simply denote by (Ex). The problem under the Dirichlet boundary eon-
dition
=0 on aIx(0,T)

will be denoted by (Ep). The assumptions (A.1)~{A.4) given in Section 2 remain
unchanged and are restated as follows:

(A.11) a(x)>0 for all zecl;
{A.2" acCYD), beC«(I) for some 0<a<l and [feCHR).

For convenience sake we introduce semigroups Uyg(t) and Up{t) generated by
(En) and (Ep) respectively. More precisely, given a bounded piecewise continuous
funetion ¢() on I, we set

Un(tip=us(-,t) (resp. Uplt)p=1e(-,1)),

where wug(x, t) is the solution of (Ex) (resp. (Ep)) with initial data u,=¢. Strictly
speaking, Uyx(t) and Up(t) depend on a,b, f, but we shall regard a,b, f as fixed
functions and shall not express them explicitly. Set

Ty(P)=sup {T; Ux(t)¢ can be continued till t=T};

19) To(¢py=sup{T; Up(t)¢ can be continued till t=T}.

In other words, if Uyl(t)¢ (resp. Uplt)¢) blows up in a finite time, then it blows
up at t=Ty(¢) (resp. Tp(¢)); otherwise Ty(¢)=o0 (resp. Tp{¢)=0c0).

Combining the results in the preceding sections, we get the following proposi-
tion and theorems:

PROPOSITION 9. Suppose (A.17), (A.2) hold, and let ¢(x) be a bounded and
piecewise continuous function on I. Then IHUyt)g), (Uxt)d), IH{Up(t)¢) and
I-(Upt)g) are lower semicontinuous in t>0. If, in addition, ¢ is continuous on
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I, the former two are continuous at t=0, and the latter two are lower semicon-
tinuous at t=0.

THEOREM 10. Suppose (A.17), (A.29) hold, and let ¢{zx) be a bounded and
piecewise continuous function on I. Then IH{Uyt)¢) and I-{Uy{t)d) are monotone
nonincreasing m 0=t<Tyl@). Moreover, if LUylty)¢)=0 for some t, € [0, Ty(d)),
then L{Ux{®)¢)=0 for all 0<t<Ty{¢).

THEOREM 11. Suppose (A.17), {A.2') hold, and let ¢(x) be a bounded and piece-
wise continuous function on I satisfying ¢{0)=¢(1)=0. Then

H(Up(t)¢) +1=1{Up(ta)¢),
U (Up(t) )+ 121 (Uplta)¢)

SJor any 0=t <t,<Tpl¢).

THEOREM 12. Let the conditions in Theorem 11 hold, and assume further
that fi0)=0. Then H(Upt)¢) and 1~(Uplt)d) are monotone mnonincreasing in
0<t<Tp(¢).

THEOREM 13. Let the conditions in Theorem 11 hold, and let T/ be any number
with 0<T'<Tpl¢). Suppose

90,
Upltyp=0 for 0Zi<T.

Then IF(Up(t)g) and I-(Uplt)$) are monotone nonincreasing in 011",

THEOREM 14. Let the conditions in Theorem 11 hold, and suppose L{Up(ty)¢}=0
For some t,, 0<t,<Tp(¢). Then UUpt)¢)=0 for all 0<t<Tp(¢). Consequently
F0)=0 and ¢&)=0 (a.e. zcI).

See Remark 2.4 for the proof of Proposition 9. Theorem 10 is simply a re-
statement of Theorems 1 and 2. Theorem 11 follows from Theorem 4, for at least
one of the conditions (B.2), (B.2') is satisfied automatically. Theorem 12 is a
restatement of Theorem 3. Theorem 138 follows immediately from Theorems 5 and
14. Lastly, Theorem 14 follows from Theorem 6. In fact, substituting i=t, and
letting 2—0 in the equation (Ep) yield f(0)=0; hence, by applying Theorem 6, we
get to the conclusion of Theorem 14.

Next we consider stationary equations corresponding to (En) and (Ep):

(Ex) a(@)v” (@) +b@)v (@) +fw)=0 in I, v/(0)=2'(1)=0;
(Ep) a(z)v” () +b@)v @)+ f(wix))=0 in I, v(0)=v(1)=0,
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where v'=dv/dz. A solution of (En) or (Ep) is called an equilibrium solution of
(Ex) or (Ep) respectively.

DEFINITION. Let v=wv(x) be a solution of (Ex). The stable set of v (under
the Neumann boundary condition) is the set of all ¢ € C(I) satisfying Ty(¢)=co
and

lim Uyt)¢=2 in C).

t—c0

Similarly, if v is a solution of {Ep), the stable set of v (under the Dirichlet bound-
ary condition) is the set of all ¢ € C(I) satistying Tp(¢)=co and
lim Uptyp=v in C).
A simple compactness argument shows that if Uy(t)¢ or Uplt)¢ converges to
v in the topology of C(I), it also converges to v in C2(I). We can also prove
that a ¢ €C({I) belongs to the stable set of some solution of (Ex) (resp. (Ep)) if
Uyt)¢ (resp. Up(t)¢) remains bounded in C{I) as #—co; see [6], where formally

self-adjoint equations are discussed; but any one-dimensional parabolic equation
can be reduced to a formally self-adjoint one by the coordinate transformation

o—>F= S}xp(ﬂ%lzldz )dy.

COROLLARY 15. Suppose (A.17), (A.2") hold, and let v be a solution of (Ex).
If ¢ € C(I) belongs to the stable set of v (under the Neumann boundary condition),
then

(20) Fgzlrw), Fig)zl-w).

COROLLARY 16. Suppose (A.17), (A.2") hold, and let v be a solution of (Ep).
If ¢ € C(I) satisfies $(0)=¢{1)=0 and belongs to the stable set of v (under the
Dirichlet boundary condition), then

(21) @) +1zlw), Hig) +1=10).
If, in addition, f(0)=0, then the inequalities (20) hold.

These are immediate consequences of Theorems 10, 11 and 12; see also Remark
2.4,

5. Spatially inhomogeneous perturbations.

Consider, for example, the following equation
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2
22) ou 0“u

at ~ ax?

+ku(l—u?

under the Neumann boundary condition au/ox=0 at x=0, x=1; here k is a posi-
tive constant. Let m be any positive integer. As is easily seen, if k>mPz?,
there exists an equilibrium solution v, of (22) such that

lwn)=m

and that the constant equilibrium solution v=0 lies in the closure of the stable
set of v,. This implies that a very small perturbation to v=0 may cause a
drastic inerease of lap-number that cannot be reduced even in the final state as
t—o0,

The aim of this section is to show that the situation described above is rather
an exceptional case and that the increase of the lap-number caused by a very
small perturbation will usually be reduced entirely in the long run.

Although this claim is true for non-autonomous equations, we shall only eon-
sider autonomous ones for simplicity. The notation in the previous seetion will
be used freely. Smoothness assumptions are slightly strengthened; namely

(A.27) a,beCH«(I) and feC™«(R).

THEOREM 17. Assume (A.1") and (A.2"). Let ¢(x) be a nonconstant continuous
Function on I, and let t;,t, be any numbers with 0<t,<t,<Tx(¢), where Ty(¢P)
is as defined in (19). Then there exist positive numbers § and i, with t,<t,<t,
such that

(23a) F(Uylto)w) U (Un(to)¢),
(23D) F(Uy(to)w) <1 (Uy(to)¢)
hold for all fumctions we C(I) satisfying

(24) max |w(x)—¢x)] =4.

0=z=1 -

THEOREM 18. Assume (A.17) and (A.27). Let ¢(x) be a nonconstant contin-
wous function on I, and let t,,t, be any number with 0<t,<t,<Tp(¢). Then
there exist positive numbers & and t,, t;<t,<t;, such that

(25a) 1 (Uplto)w) I (Up(to)9) +1,
(25b) U (Uplto)w) S (Up(to)$) +1

for all function we C(I) satisfying (24). If, in addition, f(0)=0, then 6 and %,
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can be so chosen that

{26a) I (Up(to)w) <1 (Uplto)e),
(26b) ‘ I (Uplt))w) =1 (Uplte) )
hold.

REMARK 5.1. The assertions (26a), (26b) in Theorem 18 hold true even if
S0)=0, provided that ¢ is not an equilibrium solution of (Ep) satisfying

¢'(0)=0 or ¢'(1)=0
Before presenting the following theorems, we give the definition of stability
with respect to the usual C(I)-topology: An equilibrium solution v of (En) (i.e. a

solution of (Ex)) or of (Ep) is said to be stable if, given any ¢>0, there exists a
>0 such that

| Unlw—rllen<e (resp. [UpB)w—vlcw <e)
for all t>0 and any w € C(I) satisfying l|lw—ollcwy<d. We say v is unstable if it

is not stable.

THEOREM 19. Let (A.1%), (A.2") hold, and let ¢(z) be a continuous function
on I. Suppose ¢ is not an unstable equilibrium solution of (Ex); here the term
“unstable’ is with respect to the wusual C(I)-topology. Then there exists a 6>0
such that

l*( lim Uy(t) ><l+
z—< lim UN(t)w>§z- ()

hold for any we CI) satisfying (24) and the condition

27 lim Uy(t)w exists in C(I)-topology.

t—rco
THEOREM 20. Let (A.1%), (A.2") hold, and let ¢(x) be a continuous function
on I satisfying ¢(0)=¢(1)=0. Suppose ¢ is not an unstable constant equilibrium
solution of (Ep). Then there exists a >0 such that
(28a) 1 EmiUp ) >g

t—xco §]

(28h) (hm Upltyw \<I-

t—roo -
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hold for any weC{) satisfying (24) and the condition

(29) lim Up(t)w  exists in C(I)-topology.

t—>co

If, in addition, ¢(x)3£0 and f(0)=0, then 6>0 can be so chosen that the inequali-
ties (28a), (28h) hold strictly.

REMARK 5.2. As has been mentioned in Section 4, the condition (27) (resp.
(29)) is satisfied if and only if Uy(t)w (resp. Uplt)w) remains bounded in C(I) as

t—co,
The following are analogues of Theorems 19 and 20.
COROLLARY 21. Let (A.17), (A.2") hold, and let ¢ belong to C(I). Suppose
that Uy(t)¢ converges as t—co in C(I)-topology and that lim Uyt)¢ is not an un-
t—oo

stable constant solution of (En). Then there exists ¢ §>0 such that

i

z+< lim UN(t)w>§L+ lim UN(t)sb),

z—( lim UN(t)w>_S_l‘ lim UN(t)sb)

i—oo {00

Jor any weCI) satisfying (24), (27).

COROLLARY 22. Let (A.1%), (A.2") hold, and let ¢ belong to C(I). Suppose
Uplt)d converges as t—oco in the topology of C(I) and that }im Up(t)p is mot an

unstable constant solution of (Ep). Then there ewists a 6>0 such that

l+< lim UD(t)w>§l+ lim UD(t)¢>+ 1,

t—co

z—( lim UD(t)u;)gl‘( lim UD(t)gb)—l—l
Jor any weC(I) satisfying (24), (29).
Now we set about the proof of these results. The most fundamental ones
among them are Theorems 17 and 18, for which we need the following lemmas:
LEMMA 5.8. Let w be of class C%(I) and assume
(30) fw” () |+]w' (2) | >0

Sfor all xel Suppose there ewists a sequence of fumetions w, € C2(I) converging

to w as n—oo in the topology of C*(I). Then there exists a positive integer m,
such that
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How,) <lw) +-2
Jor all n=n,. If, in addition, either

w (0)£0, w (1)+0
or
w,(0)=w,’ =0 for n=12 .-,
then
tw,) =t w) and ~(w,)=1"(w)
Jor all n=mn,.

LEMMA 5.4. Let the assumptions (A.17), (A.2”) hold, and let ¢(x) be a non-
constant, continuous and piecewise monotone function on I. Then there exists a
dense open subset G of the interval (0, Tx(¢)) such that

(31)

&

ol )|+ |l 1| >0

for all xeI and t &G, where ug(-, t) stands for Uy(t)¢. The same assertion holds
true if we replace Ty(¢) by To(¢) and Uy(t)¢ by Uplt)¢.

PROOF OF LEMMA 5.3. We only consider the case w’/(0)£0, w’(1)%0. The
remaining part of the lemma can be proved in a similar manner. By the assump-
tion, there exists points

O=go<y < - <m=1 (k=l{w))

such that w/(z) changes sign at each of the points z=u,, 2=2, - -+, 2=2,_, and
that
/Lvl (x) ;&0 in f\{wly Xy xk-—l}’

T.et § be any positive number such that the intervals Js;=(%;,—9d,x,+4d),2=1,2,
.++,k—1, are disjoint. Then there exists a positive integer ns such that

)
w' ()

(82) in IN(s U=~ Udey)

for all n=mns. It follows that
33) )=l (w) and 1~ (w,)=l"(w)
for all n=n..

Now suppose that the conclusion of the theorem were false. Without loss of
generality we may assume that

U (w,) > T (w)
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for all n=1,2,---. Then, by 83), lw,) >lw) for all n=n,. In view of this and
(32), we see that for each n=n,; the function w,’(x) changes sign at least twice
in one of the intervals Js; (1=1<k—1). Letting 6—0, we find that at least one
of w”(x), -, w"(w,_,) vanishes. However, this is impossible by virtue of (30).
This contradiction proves the assertion of the lemma.

PrROOF OF LEMMA 5.4. First we consider the case of the Neumann boundary
conditions. From the assumption and Theorem 10 follows

0<tu(-, 1) =l(¢) <o

for all 0=<t<Ty(¢), where, for simplicity, we denote Uy(t)¢ by u(-,f). Let G be
the set of all ¢, 0<t<Ty(¢), such that (31) holds for all x € I with u=u¢. By the
continuity of 9%u/ox® and ou/éx, G is an open subset of the interval (0, T'y(¢)).
Let t;,t, be any numbers satisfying 0<¢,<t,<Ty(¢). What we have to show is
that the interval [¢,, t,] contains a point of G, i.e.

G NIty ta]#= .

Since l(u(-,t)) is monotone nonincreasing and bounded, its discontinuity points
in 0=Zt<Ty(¢) are finite in number. We can therefore choose >0 and t* with
1, <t*—d<t*+6<t; such that

L{u(-, t)) =constant (t*—o=<t<t*%4-6).
Let
0<a, < - <o <Ll (b=l(u(, t%)))
be such points that
K

'_-(xiv t*

X5 ,t* <0
ox or + 8)

for =1, ..,k—1. The existence of such points is guaranteed by the fact
Lu(-,t*) 0. Taking 6>0 small enough if necessary, we may assume that

O )2 (351, £) <0
0 ox

for all te[t*—4,t*+6] and ¢=1,---,k—1. Considering that l{u(-,&)}=k in [t*—3,
t*+0], we see that for each #e€[t*—¢,t*4-6] and for each 2=1,---, k—1 the func-
tion —in(x, t) changes sign only once as x varies from z; to 2., and that iﬁ does
not change sign in either of the intervals 0z <z, 2, < <1,

Now suppose

(34) ’ GNIty, tl=2.
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Let F, (¢=0,1,---,k) be the set of all te[t*—4§,¢*+0d] such that there exists an
x’ € [x;, ;41 satisfying

% U
o, ty=——(x', t) =0,
a902( ) o (@, )

where we set 2,=0 and #,.,=1. Obviously each F; is closed, and (34) implies
that

F,UF U+ UF,=[t*—4d, t*+5].

Therefore at least one of F,, ---, F, contains an open sub-interval of {¢*—0,t*+4d).
Here we have two cases:

Case 1. Suppose that F, or F, contains an open interval. Reecalling that w=
ou/or satisfies a parabolic equation of the form (16) and vanishes when x=0 or
2=1, and applying the maximum principle to ou/ox, we get

—ZZ—*O in (0, @X (¥ —5, t5+3], [y, 1) X (*—0, 48]

and

2.
gqueo on {0} (EF—5, t*+3], {1}x (t*—3,t*+a).

It follows that F, and F, contain, if any, at most one point {namely t*—d); this
contradicts the supposition.

Case 2. Suppose one of Fy, ---, F,_, contains an open interval; say (¢/,t")CF;.
Denote by I': the curve

Ie={(x, t); x=e{t”"—t) t—1t") +z; 'Stt")

If ¢=0, then I'c is a vertical line segment connecting the points (x; ¢) and (x;, t”).
Set

so=inf{s>0; ——Z:— vanishes somewhere on Fa}.

Clearly ¢, is positive, and du/6z vanishes at some point (8,7) of I'e,. As is easily
seen, we have
wj<f‘f;<wj+1, t/<i<t”

and, by the maximum principle,
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Therefore, by virtue of the implicit function theorem, there exists a §>0 with
t'<t—§<t+6<t” and a C*function x=x(t) defined on the interval F—5,%+5) such
that

ou

%(x(t), t)=0,
627';' (@(t), 1) %0
o

for all t€ (—5,i-+8). Recall that ou/ox changes sign only once in the interval
[2;, 25111 for each fixed te€[t*—4,t*+6]. Using the maximum principle, we easily
find that ou/ox does not vanish in the rectangular region [z, %, 1XE—3,%+3)
except on the curve z=z(t). It follows that

contradicting the supposition.

Thus, in either case, we get to a contradiction, which implies that the sup-
position (34} is false. This completes the proof of Lemma 5.4 in the case of the
Neumann boundary conditions.

In the case of the Dirichlet boundary conditions, I(Up(t}¢) is not necessarily
monotone nonincreasing. However it is lower semicontinuous by Proposition 9, and
hence there is a dense open subset W of the interval (0, Th(¢)) such that H(Up(t)¢)
is constant in each connected component of W. Therefore there is no loss of
generality in assuming that {Up(t)¢) is constant on the interval i1<t<t2. Seeing
this, and following the same argument as in the case of the Neumann boundary
conditions (with a slight modification at 2=0,1), we easily get the desired con-
clusion. Thus the proof of Lemma 5.4 is completed.

Proor or THEOREM 17. We have only to consider the case where [{Uy(t)¢)<oo
for t;<t<t,, for otherwise the assertion is trivial. »

By Lemma 5.4 there exists a number ¢, with ¢, <#,<#, such that
*ug

(35) P

(w ’ tO)

0
+ l U (ﬂ'), tl))
o

>0 (ug(-, t)=Ux{t)¢)

for all €l Let {w,(»)] be a sequence of continuous functions converging to ¢
in C(I) as n—oo. A standard compactness argument shows that

(36) Uy(to)w,—— Uylte)d in C2I) as n—oo.

Combining (35), (36) and Lemma 5.3, we see that
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for all » sufficiently large. This proves Theorem 17.

PROOF OF THEOREM 18. The proof of this theorem is quite similar to that of
Theorem 17. Consider, for example, the case f(0)=0. In order to apply Lemma
5.8 (together with Lemma 5.4), it is sufficient to show that

(37) 9 050,520, Lug(t, )0
ox o

for any point >0 at which l(us(-,t)) is continuous, provided that lig)<oo. This
can easily be shown by applying the maximum principle to u¢ (not to dugl0x),
which satisfies the linear equation

0 % ™ ol
o o) Hbl s telw, iy,

where c¢{x, t) =glus(z, t)) and flu)=uglu).
REMARK 5.5. Note that (37) holds for generie ¢ even if l(¢)=oco. This is a

consequence of the unique continuation theorem established by S. Mizohata [8].

PROOF OF REMARK 5.1. We only give the outline. By virtue of Lemma 5.3,
what we have to show is that if

%0, 8)=0 or 22(1,5=0 (ugl(-,t)=Up(t)§)

ox ox
holds in some interval ¢;<t<t, then ¢ is an equilibrium solution of (Ep). This
can easily be proved by applying the result of [8] to the function Up(t+to¢—

Uplt+t,)¢, where %, is any number with #,<t,<%,.

PROOF OF THEOREM 19. If ¢ is not a constant function, then the assertion
follows directly from Theorems 10 and 17 and Remark 2.4.
Suppose ¢ is a constant function but not a solution of (En). Then, either

lim |Uy()g] =co
t—=TN() cn

or Tyl¢)=co and Uy(t)¢ converges to some constant solution of (En) as t—oo.
In the first case, as is easily seen, if § is sufficiently small, then

lim |Uytwl =oo
) ¢
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holds for all we C(I) satisfying (24). Hence the statement of the theorem is
trivial. In the second case, if ¢ is sufficiently small, Uy{t)w converges to the same
constant as Uy(t)¢ as t—oo; hence

l+< lim UN(t)w>:l‘ lim UN(t)w>=0

t—oo {—r00

as required.

Next suppose ¢ is a stable constant solution of (Ex); hence ¢(x)=r for some
constant # and that flk)=0. Since ¢ is stable, given any we C(I) close to ¢, we
have Ty(w)=co, and Uy(t)w converges to some solution of (En) that is again close
to ¢. Therefore it suffices to show that there is no such sequence of nonconstant
solutions of (Ex) that converges to ¢ uniformly in I.

Assume that the assertion above were not true. Then there exist nonconstant
solutions v,(z) (n=1,2,---) of (En) converging to r uniformly in I as n—co.
As is easily seen, there exist constants x, (n=1, 2, ---) satisfying f(r,)=0 and

min v, (%) <k,<max v,(x).
el z€]

Each 7,(x)=v,(x)—&, is the solution of

(38) { a{x)v” +b(x)v’ +c,(@)v=0 in I,
w'(0)=w’'(1)=0,

where ¢, (#)=g,.(v,(z)) and (u—r,)g,(u)=f(u). Since ¢=k is an accumulation point
of the set of solutions of (Ex), # is not asymptotically stable: hence

S (g)=0.
It follows that

(39) lim ¢, {x)=0 uniformly in x¢I.

700

In view of (39), we easily find that the boundary value problem (38) does not
possess a solution that changes sign in I, if n is sufficiently large. On the other
hand, 7,(z)=v,(®)—=«, changes sign in I for each n=1,2,-... This contradiction
proves that ¢ cannot be accumulated by a sequence of nonconstant solutions of
{Ex). Thus we get to the completion of the proof of Theorem 19.

PrOOF OF THEOREM 20. First we consider the case where ¢ is not a constant
function. Let #,>0 and 6>0 be such that (25a) and (31) (for t=t,) hold (5 will
later be chosen smaller if necessary). By virtue of Theorem 11 and Remark 2.4,
we have
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z+< lim UD(t)w>§ lim inf (+(Up(t)w),

t—oo t—c0

(40) lim inf H(Up(t)w) S (Up(ta)w) +1,
(41) I (Uplta) ) =) +1.

Let us now show that neither of the pairs of the equalities in (25a), (40), (41)
hold simultaneously. Without loss of generality we may assume f(0)=0.

Suppose the equality in (41) holds. Then, reading the proof of Theorem 4
carefully, we find that

gwmgm D040, 1) >0, (ugl-, £)=Up(t)gh.)
T ox

Therefore, if >0 is sufficiently small,

200,019 >0

ox

holds for all weC({) satisfying (24). It follows that the equality in (40) does
not hold {see the proof of Theorem 4). Furthermore, substituting #=1 in (Ep)
and using (81), we have either

O all, 1) 0
o
or

B0, 1 =0, Loyt t<0.
ox ' ox? ’

In the former case, it follows from the latter part of Lemma 5.8 that I*(Up(to)w)
=1+ Uplty)¢) for all weC(l) close to ¢. One can easily check that the same
assertion holds for the latter case as well. It implies that, if & is sufficiently
small, the equality in (25a) does not hold (provided that the equality in (41) holds).
Consequently, the pair of the equalities in (41), (25a) do not hold simultaneously,
and neither do the pair of those in (41), (40).

It still remains to show that the equalities in (25a), (40) do not hold simul-
taneously. Let 0>0 be sufficiently small and let w € C(I) satisfy (24) and

H(Up(to)w) =1 Up(to)¢) +1.
Then, as is easily seen,

D 01,0, 1) >0.
o
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It follows that the equality in {40) does not hold (see the proof of Theorem 4).
Hence the equalities in (25a), (40) do not hold simultaneously if ¢ is sufficiently
small.

Combining these observations, we get the desired inequality

z+( lim Up(t)w>§l+(¢)+1.

The other inequality for I~ can be verified in the same manner.
Next we consider the case where ¢(x)=0 and 0 is not a solution of (Ep) (i.e.
f10)=£0). In this case, as is easily seen, either

lim Uptygp=lim Upyw=v in C()

t—ooo
for some solution v of (Ep), or

lim |Up(t)gll = lim [Upltjwl] =oo,
) o

) Ch  t>TDw

provided that the constant ¢ in (24) is sufficiently small. By virtue of Corollary
16, v satisfies the inequalities

=1l and I"(v)£1,
as required.

Lastly, suppose ¢=0 and that 0 is a stable solution of (Ep). As in the proof
of Theorem 19, it suffices to prove that if a sequence of solutions {v,(z)} of (Ep)

satisfies

limv,(@)=0 uniformly in 2z¢l,
then
(42) lv,)<2

for all » sufficiently large. Let v be any solution of (Ep) with l{v)=3. Then
there exists a constant « such that f(x¥)=0 and that

min »{x) <g<max v{x).
z€] z€l

Seeing this, and following the same argument as in the proof of Theorem 19, we
find that (42) should hold for large n.

Thus, in each of the cases, we have verified the assertions (28a) and (28b).
The proof of the latter part of the theorem (i.e. the case ¢=#0 and f(0)=0) is
much easier, and therefore we omit it. This completes the proof of Theorem 20.

Corollaries 21 and 22 follow immediately from Theorems 19 and 20; in fact,
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we have only to apply these theorems to lim Uy{t)¢ or lim Up(t)¢ instead of ¢
t—rco oo
itself.

6. Remark and examples.

REMARK 6.1. In Section 1, we have presented two different definitions of
lap-number that are equivalent so far as continuous functions are concerned.
In general we have the relation

L) =T (w),
where [(w) denotes the “lap-number” of w in the sense defined at the beginning
of Section 1. Example 6.2 shows that Theorem 1 would be no longer true if we
replace L{u) by I{u).

Example 6.2. Let u(x,t) be a solution of the heat equation
ou_ou
ot ox*
together with the Neumann boundary conditions su/dz=0 at =0, 1 and with the
initial condition

Then [H{ug)=2, I~{us)=1 and

z+<u<-,t>):{ 2 (0=t<t9)

0 (t*=Zi<eo),
Ful, =1  (0<i<oo),
where #* is a positive number determined by the condition
20, ) =0,
ot
Therefore we have
3 (0=t<t®)
Hu(-, )=
(-, 1)) { RN

while

2 (t=0)
i(u(~,t))={3 0<t<t¥)
1 (t*£i<oo),
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where I{u) is as in Remark 6.1.
Example 6.3. Consider the equation

2
(43) ou 0%

ot ox?
under the Dirichlet boundary eondition
u(0, t) =u(l, t) =0,
where k is a positive constant. Let

u(x, 0 =uslx)=1 in I,
Ue(0) = (1) =0 on ol

Then there exist positive numbers #/<t” (depending on k) such that

(44) P, )=, 1)={ 2 <<t

1 (0<t=t)
{1 (" <t<oo).

(PROOF.) Since u, is an upper solution of (43), u is monotone decreasing in ¢
and converges to the equilibrium solution

vx)=—lke(l—=2)
as t—oo (see Sattinger [10]). Therefore there exists a positive number ¢’ such that

U ou >0 0<t<t!)
—0,t)=——(1,¢
690( ) 690( ){ <0 (' <t<oo).

A careful reading of the proof of Theorem 5 shows that I*(u(-,t)) and I~(u(-,t))
are monotone nonincreasing both in 0<i<t’ and in ¢/ <t<co. Moreover we have

1T (-, ) =1 (ul-, 1)) =2
for all t=0 by virtue of Theorems 11 and 14. In particular, we have
Flu(-, 1) =1"(u(-, t))=1

for 0<t<t’ (see Proposition 9). Considering that ou/ox(0,t) and ou/ox(l, t) change
sign at t=t/, and arguing as in the proof of Theorem 5, we easily find that

l+(u('r t)) =l—(u('? t))Zz

in some interval t/<t<t”; for otherwise u(x, ') should vanish everywhere in I,
which is impossible by virtue of the fact I(u(-,#))=2. It remains to show that
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Hm I+ (-, ) =lim I-(u{-, £))=1;

t—co t—rco

but this quickly follows from Remark 5.1. Thus the proof of (44) is completed.
This example shows that the inequalities in Theorems 4 and 11 cannot be
improved without setting further assumptions.

Example 6.4. Let t* be a positive number and let ¢(t) be a function defined
on [0, t*] satisfying

$(t) 0,
o2
(45) S erig(5)ds=0
[}
for n=0,1,2, --.. Since the series > (1/n*z% is convergent, such a function ¢ € L*

(0, t*) exists by the theorem of Miintz (see Schwartz [11; Théoréme I, p.54]).
Moreover, as is easily seen, we may assume that ¢(t) is smooth and has a com-
pact support in {0,t*). Setting ¢(t)=0 for t=t*, we extend the domain of ¢(t)
to the half line [0, o).

Now consider the initial-boundary value problem

2
%=%+¢(t) in Ix(0, o),
(46) u=(x,0=0 on I,
=0 on aIx (0, co).

The solution of (46) can be expressed in the form

wlz, t)=2 i M_

t
" sin (nnw)e""z”Z‘S Bls)er*s s,
n=1 T

4]
Therefore, by virtue of (45),
Hul{-,t))=0 for all t=t%

though lu(-,t)) does not vanish identically in [0,cc). This example shows that
Theorem 14 is not valid for non-autonomous problems.

Example 6.5. Consider the problem (46) again; but replace the condition
(46) by

[eonae(2 022

where m is a positive integer. The existence of such a function ¢ is ensured by
the fact that the functions e=’= (n=1,2,---) are (topologically) linearly independ-
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ent in L0, t*); see [11] for details. TUsing the expression in Example 6.4, we
get

Ug) =0, L{u(-, t*) =l(sin mre)=m+1.

This example shows that the lap-number of a solution may grow fairly larger
in the case of a non-autonomous equation under the Dirichlet boundary conditions
{ef. Theorems 1 and 11).

Ezxample 6.6. The following is an example of the case where (Ex) has a
stable solution with a very large lap-number, although its nonlinear term is spa-
tially homogeneous. Consider the boundary value problem

) {(am(w)v’)’—&—lw(l—qﬂ)zo in I,

v’ (0)=0'(1)=0,
where k is a positive constant and a,(x) is a positive smooth function on T
satisfying
=1 in I, (¢=0,..-,m),
a’m(w)éa in Iil (’l:=1, . ’ym)

for some constant 6>0. Here
ID: Illv Ih IZ’! Tty Im/’ Im

are digjoint open sub-intervals of I lying in this order; and we assume

[LI=h>0 (i=0,1,---,m),

lIi,l:‘h, (i’:]-’zr ""m)i

h
W=—
“2m’

where | K| denotes the length of an interval K. Under these hypotheses, (47)
has a stable solution v with l{v)=m, if the following condition is satisfied:

. k . z2\)2
48 0<o , o )b
“s) SO om { i <h Ich>}
(PrROOF.) We merely give the outline of the proof. The argument here is a

modification of that in [7; Section 6].
Let Uy(t) be as defined in Section 4; with

a(w) :am(w)y b({l)) =a’m/ (w)y f(u) :ku(l—ﬂz) .
Set



Nonincrease of the lap-number 439

J(u)=Sl{%am(w)(%>2—kG(u)}dw,

Ji(u)zgl_{—;—a,,,(x) %>z—kG(u)}dw,

where

We also use the notation

Rm={we01(f); (-1)i§ w(@)dz>0 (i:O,l,---,m)},

I;

Vi=lweCHD); 0=w(x) <1, Jw)<e—kG(L)).

Here ¢ is a positive constant and G{(1)=1/4. As is well known, we have
21Uy (t)9)=— (30wt Ve
dt Aot ’

hence J(Uy(t)¢) is monotone nonincreasing in t. In view of this, and with the
aid of the comparison theorem, we see that

UN(t)VeCVs for all tzo.

By virtue of the Poincaré-Friedrichs inequality,

S (w’)de>n—ZS widx

I3 R
holds for any w e CY(I) satisfying
(49) S () dw=0.

I;
Hence
Ji{w) = —hkG(1) + min {’L; hk}G(l)

for any we C'(I) satisfying (49). It follows that

(50) Uyt (R.NV)CR,.NVe
for all t=0, provided that

(51) s<min {”—; hk}G(l).
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Therefore, if ¢ satisfies (61) and R, N V. is not empty, there exists a stable
solution of (47) contained in R, V. (see [7; Theorems 4.2 and 6.2]).

Let wq(z) be a piecewise linear continuous function on I such that

wo(@)=(—1)* in L (@=0,---,m),

2.,
wo/(x)_{(“l)“m in " (¢=1,---,m)
0 in IN(L”U---UL",

where I;” is a sub-interval of I/ with length

1 . 7!'2
W —hM — .
|L"| =h"= mm{h,hk}

A simple caleulation yields

20

Jlwe) < —kG{1) +’m{h”

+kG(1>h"},

Therefore

Uxtlw, € RN Ve

for all t>0, provided that

(52)

m{—Zh%JrkG(l)h”} <min {fhf hk}G(l).

In other words, R,NV: is nonempty if (52) is satisfied. Hence (48), which is
equivalent to (52), is a sufficient condition for the existence of a stable solution
of (47) contained in R,. This completes the proof.
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most important point of discussion in the present paper (Section 5), is not at all
argued in the above papers.
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