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ABSTRACT

For each microdifferential operator of infinite order its growth order
“0=p=1 is defined. Structure of single microdifferential equations with
constant multiplicity is studied in the framework of microdifferential
operators with restricted growth order.

Introduction.

Let F be a mierodifferential operator of infinite order (ef. [3]). Then the
total symbol of F is a holomorphic funetion Fi(z, &) which satisfies the following
estimate: for each >0 there is a constant C>0 such that [E¥(z, £)1=C exp (l£])
(see [1]). Let p be a real number such that 0=p<1. The operator F' is said to
be of growth order at most (o) if there exist positive constants h,C such that
|F(z, £))<Cexp(h|£]?). The sheaf of germs of mierodifferential operators of growth
order at most (p) is denoted by &,. Then &3, is a subring of the ring & of
microdifferential operators of infinite order.

In [8], structure of microdifferential equations with constant multiple charac-
teristies is studied as Z~-modules. We restrict our discussion to the framework
of &&y-modules. It corresponds to consider in the category of ultradistributions
(see [T]). We prove the following theorem: Let P be a microdifferential operator
with principal symbol £ defined in a neighborhood of (&, é)——-(O; 0,---,0,1). Sup-
pose that the irregularity of P at (%,€) is equal to ¢ (see [2] for the definition
of irregularity). Then the microdifferential equation Pu=0 is equivalent to the
equation Drv=0 (D,=3d/0%,) as a left &g,-module for p=1—1/s.

Moreover we prove the following (see [3], Chap. 3): Let P be an ordinary
microdifferential operator with principal symbol #™. Suppose that the irregularity
of P at x=0 is equal to ¢. Then the microdifferential equation Pu=0 is equiva-~
lent to the equation z™v=0 as a left &%,-module for p=1—1/s. Here &%, is the
ring of holomorphic microlocal operators of growth order at most (o) (cf. [1]).



144 Takashi Aoxi

1. Growth order.

Let X be an open set in C* and &* be a point in the cotangent vector bundle
T*X~XXC" of X. We denote by &= the sheaf on T*X of rings of holomorphic
microlocal operators. Let us recall the definition (ef. [1], [3], [6]). A holomorphic
microlocal operator F' in &%. (= the stalk of £7) is an equivalence class of
holomorphic functions

(1.1) F(w, &)

defined in a conic neighborhood 1" of &#* in 7%X which satisfies the following: for
each ¢>>0 and each compactly generated cone IV&1” there exists a positive constant
C such that

1.2) |F(x, &)|=C exp(elg]) for (x,&)el” (I€>1).

The holomorphic function F(x, £) is called the symbol of F and then F is written
as I'=F(%, D,), where D,==(D,, --+, D,), D,=d/ox;.

DerFINITION 1.1 ([1] Def. 2.8.2). Let p be a real number such that 0=p<1
(resp. 0<p=1). The holomorphic microlocal operator F' is called of growth order
‘at most (o) (vesp. {o}) if there is a conic neighborhood I',CI' of &* so that for
each compactly generated cone I'/CI"; there exist positive constants &, C (resp.
for each k>0 and each compactly generated cone I"/CI", there exists a positive
constant C) such that

(1.8) |F'(w, §)| =C exp(hléle) for (x,&)el™,

We denote by &%,;- (resp. &%F,) s the set of all operators in €% of growth
order at most (o) (resp. {0}) and by &%, (resp. €R)) the subsheaf of ¥® of germs
of holomorphic microlocal operators of growth order at most (o) (resp. {p})). &%,
(resp. &R, is a subring of %R,

Let us denote by &> and & the sheaves on T*X of rings of microdifferential
operators of infinite order and of finite order respectively. There are canonical
injections

(1.4) Fo, &=, GR,

DEFINITION 1.2. A microdifferential operator P of infinite order defined in a
neighborhood of &* is called of growth order at most (p) (resp. {o}) if it is of
growth order at most (o) (resp. {0}) as a holomorphic microlocal operator. We
denote as follows.
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(1.5) Eon=8"N&G),
(1.6) =8N G,

€y (vesp. €5y is a subring of &=, It is proved that €7, (resp. &%) is
invariant under coordinate transformations and quantized contact transformations.

Suppose that a microdifferential operator P is represented as the infinite sum
of homogeneous parts:

1.7 P =jeZZ Pz, D)

where Py(zx, &) is a holomorphic function defined in a neighborhood I' of #*, homo-
gencous of degree j with respect to & and {P,(z, )} satisfies the following con-
ditions:

(1.7.1) For every >0 and every compactly generated cone I/C /", there is a con-
stant C>0 such that

IPo, OISC5Iel for 20, @, el

(1.7.2) For every compactly generated cone I'’C [, there is a constant E>0 such
that

I[Pz, )| =(— ! RIg) for §<0, (z,6)el”.

(Recall that if P,(x, £)=0 for every sufficiently large §>0, P is said to be of finite
order. On the other hand, P is called of infinite order if for any N>>0 there is
j=N such that Pz, E)EEO.) Then P is of growth order at most (p) (resp. {o}) if
and only if

(1.8) for every compactly generated cone I/C I, there are constants A>0, C>0
(vesp. for every k>0 and every compactly generated cone I/ [, there is
a constant C>0) such that

le(x,s)lgC(jf;’wlslf for §>0, (z, § e I”.

DEFINITION 1.8. Let {Fx, £)},20 be a sequence of holomorphic functions de-
fined in a coniec neighborhood I' of &* such that for each compactly generated
cone I"CI there exist positive constants C, A, h (resp. for each compactly gen-
erated cone IV I there exists a constant A>0 so that for every A>0 there is a
constant C>0) such that

1.9 |Fy(, &)|=CA’j! 16|77 exp(hléle) for j>0, (w,&)el”.
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Then the formal sum _ZOF,('E &) is called a formal symbol of growth order at most
iz
(0) (resp. {p}).

THEOREM 1.4 ([1] Th. 2.3.4). Let Z Fyx, &) be a formal symbol of growth
order (o) (resp. {p}). Then the sum ZF(a, D,) converges as a holomorphic
microlocal operator and defines a holomo'rphw microlocal operator of growth
order at most (o) (resp. {o}). Moreover if each Fyz, & is a symbol of some
microdifferential operator, then the sum is a microdifferential operator of
growth order at most (p) (resp. {o}).

REMARK 1.5. The sheaves &7, and &7, are connected with the theory of
ultradistributions (ef. [7]). Set

(1.10) Doy= gﬁ))lr}x,
1.11) Doy = g?’p)lr}x-

Then 23, (resp. Z3)) is called the sheaf of ultradifferential operators of growth
order at most (p) (resp. {0}). Suppose that X is a complexification of a real ana-
lytic manifold M. Then the sheaf on M of ultradifferentiable function of class
(s) (vesp. {s}) is a left 3, (resp. &p))-module if sp=<1. Hence the sheaf on M
of ultradistributions of class (s) (resp. {s}) is a left 3, (resp. Z33,)-module if
sp=1. See Appendix.

Egample 1.6. Growth order of the (ultra)differential operator

(1.12) P,(D,)=

=0 (2.7)'
is equal to (1/2). Operate P; on the delta function:
(1.13) o(t)=Py(D,)o(¢).
Then ¢ is an ultradistribution of class (2).
Example 1.7. Growth order of the (ultra)differential operator

(1.14) PZ(Dt)__-i Tl—“Dzj
i=2 7l(log 7Y’

is equal to {1}.. Hence the hyperfunction
(1.15) P(E)=PD,)i(?)

does not belong to any class of ultradistributions near the origin.
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2. Equivalence of microdifierential operators with constant multiplicity.

Let P be a microdifferential operator of finite order defined in a neighborhood
of #*=(%, §)=(0; 0,---,0,1). Assume that the principal symbol of P is &7 (m e N).
Let -# be the microdifferential equation Pu=0, i.e. the left &-module -#Z=
&/ &P,

Set A=/ &D,, that is, -7~ is the microdifferential equation D,v=0. Then
the following theorem is well known ([8] Chap. II, Th. 5.2.1).

THEOREM 2.1. The equation - is isomorphic to the direct sum of m copies
of A as a left € -module in a neighborhood of &*:

@.1) o~ gw@(é J/>

The preceding theorem is sufficiently powerful in the framework of hyper-
functions. In the category of ultradistributions, however, slightly more delicate
statement is needed. Moreover, it is natural to ask what happens if €= is re-

placed by &%, in (2.1). For example, (2.1) does not hold if &= is replaced by &
in general. (Cf. [5])

THEOREM 2.2. Let o be the irregularity of P at &#*. Then -+ is isomorphic
to the direct sum of m copies of 4 as a left &&y-module in a netghborhood
of &* i1f p=1—1/o.

2.2) e @A~ g;op)@(el; J/>

ProoF. By the division theorem of Weierstrass type for microdifferential
operators, P can be written in the form
2.8) Pz, D)=Q(z, DDy —P,,_.(x, DDy —-+ . — Pz, D')D;— Py, D))

where @ is an invertible microdifferential operator and P; is a microdifferential
operator of order at most m—j—1, which does not contain D,(=3d/d%,); D’ denotes
(D,, -+-,D,). Since @ is invertible, we may assume that

(2.4) P(x, D)=Dp—P, _(x, DD *—-..—Pi(x, D")D,— Py(x, D)
from the beginning. By the definition of the irregularity o,
2.5) Order(Py(, D)D) Em+ 2 (j—m)

holds for 5=0,1, ---, m—1.
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Now the equation Pu=0 is equivalent to the equation

(2.6) DU=A(z, DU
where U=4u,, ---, %,,) is an unknown vector and
0 1 0
0 1
2.9 Az, D")= .
0 1
Po(my D/) P]_(CU, D,) """ Pm—z(xy DI) Pm~1(my D’)

To prove the theorem, it is sufficient to find an invertible matrix R of micro-
differential operators of growth order at most (1—1/s) satisfying

(2.8) (D,—A(z, D')R=RD,.
Let A(z, &) be the (total) symbol of A(wx, D’):
0 1 0
0 1
2.9) Al &)= ' ,
0 . 1
Py(x, &') Py(x, &)e-v-- Prs(®, &) Py, &)

where & denotes (&, +--, &,) and Pz, &) is the symbol of P,(xz, D’). Remark that
Pj(z, &) is a holomorphic function defined in a conic neighborhood I' of %* which
satisfies the following estimate (see (2.5)): there is a constant A>0 such that
(2.10) [Py, &) ShlglemD, (x,8)el’
where p=1-—1/s.

Let us define a sequence of matrices of holomorphic functions {B,(%, &)}z, by
solving the following differential equations successively: for =0

aiRo(w, &)= Az, &)Rolx, &)
(2.11) %y
Ro(xy E,)lx1=0:I-

Here I is the identity matrix of degree m, and for =1

0% al-th=1 !
E<l

LR, &) =AW, Rw, )+ ¥ LorA(w,&)-0iRiia, &)
(2.12) ’ «

RBy(w, él)|21:0:0-
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If each Rz, &) is a symbol of some microdifferential operator and the formal
sum Z Rz, &) is a formal symbol of growth order at most (o), then it follows
from the composition rule of miecrodifferential operators in terms of symbols that
the operator

= goRz(%, D)

is a microdifferential operator which satisfies (2.8) (see {1]). We have to prove
that lZO Rz, &) is a formal symbol of growth order at most (o) (p=1—1/5). Take
the matrix

S(ﬂm—l)p
E(erp
(2.13) ME)=
&s
1
which is invertible near &*. Set
(2-14) Sl(xy E,):A(E)'Rl(wy Sl)'/l(é)_ly lZO, 1} 2y *

To show that LRz, &) is a formal symbol of growth order at most (p), it is
sufficient to prove that X Siw, &) is a formal symbol of growth order at most
(o). By (2.14), {Si(=, &)} satisfies the following equations: for {=0

fSo(w &)= A(&)- Alz, &) A(E) 1Sy, &)
(2.15) 94,

So(x, E,)[:cl=0:Iy
and for I1=1
| %Sl(x, £)=A(&)- Alw, s')-A«s)-l-Sl(w &)
(2.16) + AE)os Az, & )+ A(&)*- 028, &)

la| k=l & '
Sl(xs 5,)!z1=0:0-
Observe that

A A, &) AE) =
e
Po(x, S’) * E; (m-De Pl(x; E,) * 5; Do Pm—l(a;y Sl)
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Hence it follows from (2.10) and Cauchy’s integral formula that for each compact-
ly generated cone I T,

2.17) LA(8)- 0¢ Alw, &)+ Q)| Zal hlgle~ialetal

holds for (#,£) €I and for every multi-index «. Here ¢ is the distance from I’
to oI" on |&]=1.

Each Six, &) satisfies the following estimate: There is 2 positive constant
M>2 such that

(2.18) 18w, 1<t g+ 53 BLIEY o 11 ey

for (x, & el”.

Let us prove the estimate by induction on I. First, remark that Sy (z, &)
satisfies the following integral equation.

(2'19) So(w; E,) :I_I_ leA(E)' A(t} x,y E’) ° A(E)~1S0(t, w’: 5’)dt
0

where 2’ denotes (w;, -+-, ®,). In view of (2.17) it follows from Gronwall’s in-
equality that

(2.20) [So(x, &)= exp(hlz,|-1£l°) for (x,&)el”.

Next, suppose that the following inequality holds for each 75<i:

(2.21) 8ute, )l skl e g 5 PBLED oy iy ey

for (@, &)eI”. Then there is a constant N such that M —1>N>1 for which
(2.22) [0%: k(x,S')lé(laHk)!6"“”“”“"15]"‘20%‘1eXp‘(hlwll°IE|")

for (x, &y eI’ and for each «.
The preceding inequality is proved by induction on la] as follows. Use the
assumption of induction for I such that I'"”>7” and that distance from I to

ar'” on |¢]=1 is equal to ¢/(ja|+k). Then by the aid of Cauchy’s integral formula,
we have

102:5u(, &N =(/(lal +E) (lal =1+ B (A—1/(la] +F))e) 2 Nial+x[gf-k

x5 B orp et
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E . v

(lal oyt e ietgngy-ifg -+ 3 UBLED" expipi - el
y= vl

for (z,8)el”’. Here ¢=2.718..-. Take N as M—1>N>1. Since we may as-
sume that ¢ is sufficiently small, we have e¥¥'=<1. Hence we have (2.22). Now,
S,(z, &) satisfies the following integral equation.

(2.2 S, 0=\"{ 320040, 00,0 10002800, 01, 8)

o Uel+k=la:
k<1

L A-AG, o, €)- ASUE, o, 5')} dt.

Hence it follows from (2.17), (2.22), and the Gronwall’s inequality that

1 el ] e -
ISz, &)< T -=al hlg|elalemlal]l gark-Nial|g) -k
lal =1 al
ic

X B,y explblanl- el

1

<[l ea|gft Zo <l;é41—1€@1—1v—1>j . 2n—1+j)_@27_11;_‘|§1_p)1 exp(hlx,l-|€°).

We may assume that ¢ is sufficiently small. Therefore we can take M>N+1 in-
dependently of I for which
l_i:ﬂe(nz—zv—nj,gn—njgl
j=1 -
holds. Hence we have estimate (2.18).
Then (2.18) implies
(2.24) 1S, ENIS(T+1) e8] expl(2h| @] - 151F)

since £ exp(—t)=y! for £>0. Thus the formal sum 2, Sz, &) is a formal symbol
of growth order at most (o). Then the formal sum > By(x, &) is also a formal
symbol of growth order at most (p). On- the other hand, each symbol R,(x,£")
defines a microdifferential operator by the definition. Hence we obtain a micro-
differential operator

R=l§ Rz, D)

=0

of growth order at most (p) defined in a neighborhood of %*, which satisfies
(2.25) (D,— Afz, D’))E=RD,.

Next we have to prove that R is invertible. In the same way as to construct
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R, we can find a microdifferential operator T of growth order at most (o) satisfying

(2.26) D\ T=T(D,—A(z, D')).

That is, T is represented by a formal symbol Z} Ti(x, &) of growth order at most

(p) which is defined by solving the followmg d1ﬁ"erent1al equations successively:
for 7=0

{—To(w, &)=—Ty(z, &) A, &)
(2.27) !

To(m, E,)];q:o:-[!

and for j=1
0 Ty, &N=—Tyx, A, &)— 3, l #Tw, &)-05. A, &)

(2.28) {55 ’ il
Tj(x’ E,) |11:0:0-

Consider two operators F=TR and G=RT. By the composition rule in terms of
formal symbols ({1} Th. 2.2.2), those operators are represented as follows.

F=3, Fis, D)
(2.29) k=0 1
Filw, &)= 5 =0Tz, &) 0%R(x, &),
lal+i+i=k !
G=X Gz, D)
(2.30) §  F= 1
Gk(my E’) = Z k;"‘a?’Rl(wy E’) ¢ az'Tj(w; S,)-

tee| 7 +1=
Hence we have

Fly==Id and Gl,.,=Id.
On the other hand, it follows from (2.25) and (2.26) that
(D, F]=0 and [D,—A(z,D’),G]=0.

Therefore we have F'=G=Id (see [8], the proof of Th. 5.2.1). Thus R is inver-
tible. This completes the proof of the theorem.

3. Equivalence of degenerate ordinary microdifferential operators.

In this section we assume that n=1. Let P be a microdifferential operator
defined in a neighborhood of (z, §)=(0, 1)e T*C. Assume that the principal symbol
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of Pis 2™ (meN). Let  be the microdifferential equation Pu=0 and -4~ be
the equation 2v=0, that is,

A =F|EP and S =E&[&x.
Then we have the following theorem (cf. [3]).

THEOREM 3.1. Let o be the irregularity of P at (z‘i;,é). Then —# is iso-
morphic to the direct sum of m copies of 4~ as a left &f,-module for p=
1—1/e:

3.1 Elr @A~ gﬁ,)@(é ‘A/>

PROOF. By the division theorem of Weierstrass type, we may assume that P
is of the form

8.2) P=gm—P, _(Dyg"t—-+» —P(Dyx—Py(D)

where D denotes d/dz and P,D) is a microdifferential operator of order =—1
with constant coefficients (0=<j=m--1). The order of P,D) is estimated by

(3.3) Order(P{D)E——(m—3), §=0,1, -+, m—1.

The equation Pu=0 is equivalent to the equation
(3.4) x2U=ADYU

where U=%(u,, -++, %) is an unknown vector and

Q0 1
Q 1
35) A(D)= ' .
o 1
PYD) PiD)---++-Po-so(D) PurD)

To prove the theorem, it is sufficient to construct an invertible matrix of holo-
morphic microlocal operators of growth order at most (p) (0=1—1/5) such that

(3.6) (x—A(D)R=Rz.
Let us find B. Take the symbol A(¢) of A(D):
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5.7) A@= ,
0 0
Po&) Pue)++++-Pucal®) Poes®

here P,(¢) is the symbol of P,D). Each P;(&) is holomorphic in some conie neigh-
borhood of (&, é). In view of (8.8), there are a conic neighborhood I’ of (%, £) and
a positive constant # such that

(3.8) IP(&)|=hlg|= ™/ for (z,€)el.

Let-R(£) be a fundamental solution of the following matrix ordinary differential
equation.

d -
(8.9) e FO=AOR©).

We define a matrix A4(&) by
1

(3.10) &)=

s(m—fl)p

s(m—l)p

where p=1/s. Set S(&)=4(¢)-R(£). Then S() satisfies the equation
d_gey— A A1 gy ace-
3.11) "Tgs@‘<A@ A A~ AE)- 46) )S(a.

In view of (8.8) and (8.10) we have

[4(8)- A(&)- A& =hlg|~»
and

d -1 e~
EA(E%/I(&) =hl¢l

for (z,&)el’, where b’ is a positive constant. Hence there is a positive constant
C, such that

(3.12) ]A(é»A(é)-A(a-l—d%A(s)-A(srl <C,lg-
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for (z, &) I” (J&/>1). Then it follows that there exist positive constants C;, H;
such that

ISEN=Cy exp(H;- 1€]'77)
and that
1S(&)1|=C, exp(H,- [£]'7?).
Therefore R(&) satisfies the following estimates:
[R(€)|=C, exp(H,- [E]'71%),
|R(£)" =C; exp(H,- [g]19)

for some positive constants C, H,. Clearly, R(§) and R(§)™ are holomorphic in a
conic neighborhood of £=1. Hence R(£) defines an invertible matrix E of holo-
morphic microlocal operators of growth order at most (1—1/s). Since the symbol
of the operator [, R] is equal to —(d/dé)R(¢), R satisfies

(z— AD)R=Rzx.
This finishes the proof of the theorem.

Example 8.2. Consider the equation -2 ((xD)*—D)u=0. 4 is equivalent

to
0 1 u
D— 1\ =o.
(“ (D o>><u> 0
Set
1,2vD) —12VD)log D+, 2D "
07\ prevD) 14vDLevD 5 v
— . Tk Tkt
DLEevD) 1+VDLEVD)log D—X 1ot oD
where
_ L2 (2/2)% _ k_l_ , 1
L(z)=(2/2) IaZ::O—_k!(k—}—mv)!’ (23 23‘§1j’ Vi @k+—“—k+1-

Then R(D)™* is equal to

Jh N4 4 kA L A VD 5 _Lxpr
1+ VD L@VD)log D2z D I,2VD)log D+X —5-D

VD I,evVD) I2vD)
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and

<xD~<OD (1)>>R(D)=R(D)wD.

Hence 7 is equivalent to the equations 2Dv,=xDv,=0. The irregularity of 2
is equal to 2 and R(D) is of growth order at most (1—1/2)=(1/2).

Appendix

Let M be an open set in R* and XCC"=R"x v—IR"* be a complexification
of M. We denote by & =%, the sheaf on TX~v —1T*M of microfunctions (cf.
[8). Take a point &*=(&, v —17) in V—1T*M where (x, ¥ —1y) is the coordinates
in V=IT*M~Mx v~IR". Let u be a (germ of) microfunction in “:.. We can
assume that u is represented in a neighborhood of #* as the spectrum of the

boundary value of a holomorphic function ¢ defined in U+ v =1W. Here UcM
is a neighborhood of #€M and W is a small wedge of the form

W={w e R"; <w, 7>>0 for each 7 such that |y—%|<1, lw|<1}.

The defining function ¢ is uniquely determined by % modulo holomorphie functions
defined in some complex neighborhood of U.

DEFINITION A.l. Let p be a real number such that 0<p<1. The micro-
funetion % is said to be of growth order at most (o) (resp. {o}) if the following
condition (A.1) (resp. (A.1)) for ¢ is satisfied.

(A.1) For each compact set L€ U and compact wedge W’/& W there are positive
constants C, & such that

sup lo(z + V=1y)| ZC-explhly|=o/ o)

for ye W'.
(A.1)" For each compact set LEU, compact wedge W’&€ W and positive number
h there is a positive constant C such that

Sull? [l \/:—]:y)[éCoexp(hlyI—p/(l—p))

for ye W',
The microfunction « is called of growth order (0) if there is a real number
m for which for each compact set L& U and compact wedge W’/& W there exists
a positive constant C such that
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sup lp(w+ V=i =Clyi™

for ye W’.

Otherwise, the microfunction # is said to be of growth order {1}.

Suppose that 0=p<1 (resp. 0<p=1). We denote by Zy,.« (resp. €, the
set of all microfunctions in F,. (z*e v—1T*M) of growth order at most (o) (resp.
{o}). The sheaf on v —1T*M of germs of microfunctions in &, ,.+ (resp. €,
is denoted by &, (resp. €i).

Let €%, (resp. %)) be the sheaf on T*X of holomorphic mierolocal operators
of growth order at most (o) (resp. {0}). The restriction of &%, (resp. &€%)) to
T%X~~—1T*M is also denoted by &%, (resp. €F,). Then we have the following.

PROPOSITION A.2. The sheaf iy (resp. E) 18 a left €%, (resp. €F)-
module.

ProoF. If p=1, the proposition is clear. Suppose that 0<po<1. Take a point
&% in V—1T*M. We can assume that #*=(&; v—1(1,0, ---, 0))=(&; v —1%). Let
F be an operator in &%, s« (resp. &7,.5) and let Lz, z—=')da’ be the defining
function of F. The holomorphic function L(z, x—2’) is given by

(A.2) L(z, x~x'>=§ o, VI !, V= I)e(Y in)

e
which is defined on 2={(z, 2’) € XX X; |z—&| <1, lo—a'| <1, Im(z]—2x;) <e|Re(®!—ax,)],
|, —af) <elws—wil, 7=2, -+, n} for some ¢>0. Here m(g)zi (—1)-E,dE A - A
é\éj/\-“/\dén and f(z, &, p)o(€) is the normalized Radon tralez%ormation of F (cf.
{11, [61). That is,

— +oo
fw, & )=V ——1)*7»& Fla, &)orsetde
R
where Fl(z, &) is the symbol of ¥ and B>0 is a constant. Since the growth order
of F'is at most (o) (resp. {o}), there exist positive constants Ci, h, (resp. there is

a positive constant C; for each h;>0) such that
(A.3) | fl, V=13, p)| =Cy-exp(h;|p|='4*)

for lx—&| <1, |p—7|<1 (see [1] Lemma 2.3.1). Hence for each compact set 2en
there exist constants C.>0, h,>0 (resp. for each compact set €2 and h:>0
there exists a constant C,>0) such that
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(A.4) [ L(z, r(z— ")) < C; explhr=r/ ¢=0)

for (x, »") e 2/, 0<r=1.

Let % be a microfunction in %,z (resp. %, 3+). The defining function ¢
of w satisfles the estimate of the type (A.1) (resp. (A.1)). Let a. be points in
C sufficiently near the origin such that Im a.>+sRea.. Take the paths {r;} as
follows: 7, is a path starting from «-, ending at @, around z, counterclockwise,
and 7; (§=2) is a ecycle rounding =x; counterclockwise (with radius>c=1)m,—!]).
Set

(A.5) ;}(x)zg g Lz, 5—a")o(z')da .
71 JTn

Then the microfunction F'u is the spectrum of the boundary value of ¥ (cf. [4]).
It follows from (A.1) (resp. (A.1)) and (A.4) that v satisfies an estimate of (A.1)
(resp. (A.1)) type. Hence the microfunction Fu is of growth order at most (0)
(resp. {o}).

Similar argument as above proves the case p=0.

REMARK A.3. If ¢ satisfies estimate (A.1) (resp. (A.1)"), then the limit
lim p(z+ v —1y)

y—0
yew?

exists in the space of ultradistributions of class (1/p) (resp. {1/0}) and vice versa.
Hence &%, (resp. €7 acts on the space of ultradistributions of class (s) (resp.
{s}) for sp=1 microlocally.
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