The quasi-classical approximation to Dirac equation, I
By Kenji YAJiMA™

ABSTRACT

The mathematical foundation to the quasi-classical approximation to
the Dirac equation is discussed. After constructing the propagator U”(t, s)
and the quasi-classical propagator for the Dirac equation in an external
clectro-magnetic field, the usual quasi-classical approximation to the wave
function U, s) {(exp(iSix)/#)f) is obtained with error estimates in the
Hilbert L3(E®, C*).

§1. Introduction.

The present paper is the first of a set of two papers aiming at laying the
mathematical foundation to the quasi-classical approximation to the Dirac equation.
We study here the problem in the finite time and in the companion we shall deal
with the associated scattering operator.

The state of a Dirac particle (mass m>0 and change ¢<0) is described by an
element of the Hilbert space 7= LX(I?, C*) of C*-valued square integrable functions
over R® and its dynamics in an external electro-magnetic field described by a four
vector (¢(t, &), Ale, #)=(A*, ))p-o0,1,2,5 1S governed by the Dirac equation

Low & .. 0 € sip & 2 .
1.1 h——= 2 ca’ —zh—.-———A’(t,x))u—l—mc Bu+ed(t, B)u
ot i=1 ox? ¢
=H*t)u.

Here #=h/2x, h is Planck’s constant, ¢>0 is the velocity of the light, and &’
(=1, 2, 8) and $ are Dirac’s 4X4-matrices:

[0 o a° 0
J — ==
S s
where ¢* (2=0,1,2,8) are Pauli’s spin matrices:
10 01 0 1 1 0
0— 1 2_. 3_ .
¢ [0 1’ [1 o]’ ’ [—i o]’ ’ [0 —1]
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We suppose throughout this paper that the potential (A*(t, %)) satisfies the fol-
lowing condition.

AsSsUMPTION (A). (1) For any #=0,1,2, 3, A#(%, %) is a real-valued C=-function
of (¢, %) € [Ty, T.]xR*. (2) For any multi-index a=(a;, as, a;) and any integer k=0
such that [a|+k=1 there exists a constant C,.>0 such that
(1.2) 1@/aty(0/02)~ AR, )| =Co, (&, B) [Ty, To] X R®,

Under this condition we shall first show that the equation (1.1) generates a unitary
propagator. =S°(R? C*) is the space of rapidly decreasing functions, &’'=
S (R?, CY) is its dual space [15].

THEOREM 1. Let (A*(t, %)) satisfy the Assumption (A). Then there ewists
a family of operators {UM¢, s): Ty=<s, t=T,} satisfying the following properties:

(1) For each t and s, UHE, s) is a unitary operator on S7.

(2) For anyt,s and r, UL, s)UMs, r)= U, r) and UHE, t)=I=the identi-
ty operator on 7.

(8) If fe S then U, s)f is an F-valued C=-function of (t,s) and satisfies

(1.3) m% UHt, )f=H*@) UL, 5)f

(1.4) m% UX(E, s)f=— Ut s)HMs)f.

We call U™t, s) the propagator associated with the equation (1.1). The main
purpose of this paper is to study the asymptotic behavior as % .0, or quasi-
classical limit, of Ui, s) (exp(1S(@)/A)f) in &7 for suitable f and S(Z). To state
our main results, we introduce some terminology. For any (¢, &, &), the matrix

-, 3 N -
D, &, E)=Zlaf(5f—eAf(t, 2))+mp+ed(t, &)
= ¢
is hermitian and has two eigenvalues
H=(t, &, &)= (E—eA(t, B)*+m*) 2 +eg(t, &)
of multiplicity two (here and hereafter we normalize e¢=1).

L D(ty &53 g)—e¢(t’ ﬁ)
<1+ H=G, %, O —eg(s, f))

li

P=(t, &, &)

is the orthogonal projection to the eigenspace V*(t, &, &) of D(, & , &) corresponding
to the eigenvalue H*(¢,#,&). The function H*(t, &, &) is the Hamiltonian for a
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relativistic classical particle of mass m and charge ¢ in the external electro-
magnetic field (A#(t, %)) and the other H (¢, Z, &) can be regarded as the one for
its anti-particle since H-(t, %, £) can be obtained from H*(t,%, &) by charge con-
jugation e—>—e and the time reflection t—>—t. We write as (%, s, ¥, 7), £=(t, s,
4, 7)) the trajectory of the classical particle, i.e. the solution of the Hamilton
equation

dxt _ oH S
=———(t, &%, &%),
(1.5) ;; aim
dt - ax(’m#yg)’

satisfying the initial condition &*(s,s, ¥, )=, £%(s,s, 9, H=7. For sufficiently
small |£—s| <8, the mapping (¥, 7)— (@&, s, 7, 7), 4} is a global diffeomorphism on
R®. We write the inverse of this map as (F*(, s, &, ), 7). Being given (t, &, &),
we write as &E=H=*(t, &, £) and pilt, s, §, ) =Eilt, s, §, 1) —eAlt, B¢, 8, 9, ) (p=
0,1,2,8). 7°=8, /=8¢ (§=1,2, 8); ¢*=(1/2) (7*"—7*7") is the spinor tensor. We
often consider (¢, &) as a four vector and write as x={(x,, &), x,=2°=%. Latin letters
4,k ete. run over 1,2,8 and Greek letters p,v, ete. run over 0,1,2,3. To dis-
tinguish three vector from four vector, we write it as &, g, ete. However if
there is no fear of confusion, we write three vectors as, =, &, ete. for typographical
reasons. F*(,%)=(0A%/0x,)—(@A*/3x,) is the field strength tensor. L, &, &)=
(0H=/28)(t, &, &)-E—H*(t, %, ?) is the Lagrangian for the Hamiltonian H*(t, %, ).

~ t N
(1.6) St,s, 7, ﬁ)»—«g Leu, 8(u, 5, 5, 7). 220, 5, 1, D)

is the action integral along the trajectory. We write for |t—s|<d
an S=(t, s, &, ))=S*(t, s, 4*(t, 5, &, 1), D+T*(, 8, &, 7)-7.
For j=0,1,2, .-+, E¥(t,s, &, #) is the solution of the transport equation
(1.8); [2{(—(8S*/at)(¢, s, &, ) —ed(t, £))(9/0t)

+ 3, (@S oa)t, 3, , ) —e AN, D@/2)

_Dsi(tr 8, “_Ey 5)_2 (Iie/z)o'vayv(t; a_/:)]Ef(ty S, j}y 77)
+i0E.(¢, 8, 2, 7)=0

with the initial condition

(1'9)0 ES‘”(S, Sy f", f])):Pi(S, '/Ey ﬁ),
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(1.9); Ej(s,s, &, 7)=—(2pi(s, s, &, 7)) "

(1(0/08)— X /(=3[0 )N E-i(, 8, &, D)+ Ejo(t, s, &, #))le=s, 71,
where FEz(t,s, %, 7)=0. Using the functions S*(,s, Z,7) and Ei(,s, &, 7), we
define the operator G% ,(t, s) and G%(z,s) on & as follows:

PN N A
(L10)  GE (¢, 5) f(o’c’):(27:1?)”3/2Se”“"“’s"””””‘{ 5 WE3t, s, &, ﬁ)} Fyds,
=0
and
(1.11) Gi@, 8)f =Gt y(E, 8) f+G% 4(t, 5) f,

where f"(v) is the Fourier transform of f
f"(f)E(?"f)({:)E(27:%)‘3/2&e‘”'ﬁ/”f(fc)dx.

For a subset KC{1,2,8}. zx is the K-component of z, eg. if K={1,2}, zx=
(1, ®2), ete. F L is the partial Fourier transform:

(Lo, s,a:(znh)-“f“zgexp (— it £l ) fl) .

Our results are summarized in the following two theorems.

THEOREM 2. Let Assumption (A) be satisfied and 6>0 be sufficiently small.
Then for |t—s|<d, GE 4(t,s) and GE(t,s) are bounded operators on & and
there exists a constant Cy>0 such that

1.12) U, 5)—Git, )| <Cymin ([E—s|#¥, 7).
Moreover there ewists a constant C>0 such that '
(1.18) 1GE 5t )G, (s, )| =Ch;

.18y G, y(t, 5)G¥, x(s, M| =Ch.

REMARK 8. In view of the property (1.12), we call Gi(t, s) the quasi-classical
propagator and Gi{¢, s) (and G(¢, s)) the positive (and negative) part of GE(t, s).

For fesZ, we write as f*({,s,%,7) the solution of the ordinary differential
equation
(1.14) I8, 5,9, DI, 5,5, D =pEs s, G, DAFHADE, 5, 9, 7)

'_‘”Z: (ie/é‘l)gva,uu(t; -'Ei(ty S, g; ﬁ))fi(ty S, ?jr 7_7)):0-
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with the initial condition f*(s, s, ¥, 7)=5).

THEOREM 4. Let Assumption (A) be satisfies, Ti=t, s=T, and S(&) € C~(R®)
be ¢ real valued function. Then there exists a locally finite covering {2;}; of
R?® satisfying the following properties:

1) For each 2, there exists a subset K; of {1,2,8} such that the mapping
(@%:(t, s, 7, 38169, &x,t, s, ¥, 3S/0Y)) s @ diffeomorphism on the set 2,.

2) If feCz(Qy) and P(s, &, 88/0%) (&)= f(%), then the following estimate
holds:

(1.15) 5%, U™, s) (exp (#S(@)/ )/ N ks €x,)

—exp (i(S=(t, s, ¥, 3S/3Y) +SFH)— % (¢, s, ¥, 3S/0Y) - Ex )/ #)

x exp (—(iz/2)Ind y=(¢, s, §) -+l Kilz/d—1i Inert 0ok /0¢x (7))

X |det (0(wke(t, s, F, 08/0%), &x,(t, s, ¥, IS[6Y)/0P)|7/*

X (p5 (&, s, ¥, 08/09)/ 05 (s, s, i, 6S/9y))~**

X T, 8§y OSIOD)] oot g = oty 0,0,5,08759) 2 e, 5.050003 |

=C#| flls,

where Indy*(t, s, 9) s the Keller-Maslov-index of {(w, —H=(u, &*(u, s, ¥, 0S/04(%))),
Z=(u, s, 4, 0S/08)), F(u, s, ¥, 0S/69)E=(u, s, §, 3S/64(#H))); Inert A for symmetric
matriz A is the inertia of the matrix; K| s the cardinal number of the set
K; | Fls is the Sobolev norm of order 2.

REMARK 5. We will see in Section 2 that f=(¢,s, ¥, 7)€ V=(t, &=, s, ¥, 3),
Ex(t, s, 9, 7)) and |F=(, 8, ¥, DI*=ps @, s, ¥, 9)/D(s, s, ¥, 7). Thus if we interpret
that the wave function exp(iS(®&)/%)f(x), f(@)e V*(s, %, aS/a%) (or V (s, &, 3S/02))
represents as #]0 at time s the ensemble of independent classical particles on
the Lagrangian manifold {(#, 3S/6%): # € R®} with the density |f(z)|*dz, then Theo-
rem 2 and Theorem 4 may be interpreted as follows: As # | 0 the Dirac equation
represents the motions of two independent particles, the classieal electron and its
anti-particle, simultaneously. They have an internal degree of freedom (degree
two) whose dynamics is governed by the equation (1.14) which is related to that
for the magnetic dipole moment (see Proposition 2.16). The dynamics of two
particles are independent and the negative and the positive energy parts f=(¢, s, ¥,7)
of the wave function does not mix up. Thus for sufficiently small #>0, we may
neglect modulo the error of order %, the problem about the negative energy.

The quasi-classical limit problem for the Dirac equation has a long history
and there are many references, among which we mention the papers of Pauli [11],
Rubinow-Keller [13], Maslov [8] and Plebanski-Stachel [12]. After Rubinow-Keller
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[18], formal asymptotic series for the quasi-classical solution has been known for
short time and for any finite time this has been extended by Maslov [8]. Un-
fortunately, however, the estimates like (1.12) or (1.15) have not been proved and
hence it has been obscure in what sense the quasi-classical solution obtained by
these authors is the approximate solution to the Dirac equation.

The plan of this paper is as follows. Section 2 is preliminary and we shall
study the properties of the classical trajectories, the action integrals and the
solution of the transport equation (1.8) and (1.14). Using these materials, we shall
construct the propagator U™, s) in Section 8. On the way of the construction,
we shall construet the quasi-classical propagator Gi(¢, s). We shall prove Theorem
2 in Section 4. Applying the stationary phase method to the result of Theorem
2, we shall prove Theorem 4 in Section 5. Section 6 is an appendix and two
theorems on oscillatory integral operators are reproduced from Asada-Fujiwara
[3] and Yajima [15].

In addition to the terminology introduced above, we shall use the following
notation and the conventions. (g**) is the Minkowski metrix tensor: 9%°=1, g¥'=—1
(7=1,2,8), g¢#=0 if p#v. (g9,)=(g*)"'. Einstein's summation convention is
used: every time the same index appears twice, the summation is taken over the
index. For four vector p=(p*), p,=g,p*. Feynman’s slash notation is adopted:
For four vector p=(p*), p=r*p,. 9=(8")=(3/dx,). Using the slash notation, we
sometime write the Dirac equation as

(th3 — e A(x)—m)ulz) =0.

[1=4-3=06%3,.
For multi-index a=(a, as, a;), (3/08)*=(8/02,)"1(0/02,)2(d/0%,)%, Xe=xfiugmss, and
lel=ay+as+as. For a function f(Z), df/oF is a 3-vector (3f/9x’). For a veector
valued funetion f(x)=(fi(x)), 6f/0x is the matrix (3f,/dx*);.. Thus for a function
Sz, ), 0°floxdy=(0%f/oxdy"),., ete. Hess, f=(0%f/0270%"),,, is the Hessian of the
function f(x, y) with respect to the variable z.

S =L}R*, C*) is the Hilbert space of all C*valued square integrable functions
over R°. The inner product and the norm of & is denoted as (,) and | |.
For an integer m=0, H*=H"™(R? C*) is the Sobolev space of order m:

Hr={fe 55 ( 5 @0/ f =] flla<oo.
For a subset 2CR”

B™(Q)={feC™(9): sup IDIIZSMI(G/c'?m)"‘f(oo)| =[£I zm <oo}.
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B(Q)= r;oBm(Q) is the Fréchet space with the seminorms {| [zn.

§2. Preliminaries.

In the following sections we shall construct the propagator and the quasi-
propagator associated with the Dirac equation (1.1). For this purpose we need
several properties of the classical orbits, the action integrals and the solutions of
the associated transport equation. We collect these properties here.

2.1. Classical orbits and the action integrals.

We write as (&%(¢, s, 4, 7), £%(t, 8, ¥, 7)) the solution of the Hamilton equation
(1.5) with the initial condition (&%(s, s, ¥, 7), £%(s, s, 4, 7)=, 7). Since by As-
sumption (A) the functions dH*(¢, & , &)/o% and dH*(t, &, £)/0€ are smooth and belong
to the class B(R® as functions of (&, d), an elementary calculation shows the
following proposition. (See Coddington-Levinson [5], Chapt. 1.)

PROPOSITION 2.1. (1) (&, s, 7,7), &%, s, 4, %) 18 a C-function of (¢, s,4, 7)
and for any multi-index « and B, there exists a constant Cus>0 such that

1(2/09)*(3107)B(Z= (L, 8, F, §)— DI =Cpplt—sl,

1(3/09)*@[07)BE=(E, 8, T, H) =PI =Caplt—sl.
By Proposition 2.1 and the global implicit function theorem (see Schwartz
[14]), it follows that there exists a constant >0 such that if {t—s|=d, the map-
pings (@, @, s, 9,7, %) and (7, Ny, £%(t, s, ¥, 7)) are global diffeomorphisms

on R° and their inverse functions (H*(¢, s, &, %), %) and (¥, 7*(¢, s, ¥, £)) satisfy the
following properties.

PROPOSITION 2.2. For any multi-index o« and B, there exists a constant
CLp>0 such that

[@/08)=(@/07)*(G=(, 8, &, ) —T) | =Clplt—sl,
1@/9) (01087 &, s, F, §)— &) =Caplt —sl.

Using the action integral along the trajectory (£*(¢, s, ¥*(¢, s, %, 7), 1), £=(t, s,
=, s, &, 7), 7)), we define for [t—s|=d as

2.1) S=(t, s, T, 7)==, 5, &, )7

+§ L, 3w, 5, 55, 5, &, ), 9), £, 5, 5°(2, 5, @, 7), D)du,
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where

Li(ty 5/;7 5) :(aHt/aé)(t5 ﬁ, 5) 'sE_Hi(ty ﬂ—é, g)
is the Lagrangian of the system. The funection S*(, s, &, 7) satisfies the following
properties.

PROPOSITION 2.8. (1) S*(,s,%,7) s a C*-function of all variables (¢, s,

S

T, 7).

(2) @8*[ow)(t, s, &, H=E5t, s, 5*(t, 5, &, 7), ), (7=1,2,3).

(8) (@S*[on)¢, s, &, D=y, s, &,7), (j=1,2,83).

(4) 8*(t,s,%,7), satisfies the Hamilton Jacobi equation Sor the relativistic
classical particle:

2.2) (@S=/9t)¢, s, &, )+ H*(t, &, (3S*/3F)(t, 5, &, #))=0.
(2.2 (0S=/3s)(t, s, &, 7)— H*(s, (3S=/a5)(t, s, &, 7), 7)=0
and the initial condition
(2.3) S=(s, s, &, 7)=%-7.
(5) For any 7,k=1,2,8, there exists a constant Cj. such that
2.9 (9*S*[3x;07:)(E, 8, &, 1) —08,.] =Cjilt—s],

where 85, 18 Kronecker’s delta.

(6) For integers n,1=0 and multi-indices a and B such that lal+|Bl+
n+1=2, there exists a constant Criap>0 such that

(2.5) |(6/0S)(3/9t)"(2/0%)*(5/07)ES*(¢, 5, &, )| ZClrias,

PrROOF. Statements (1), (2), (3) and (4) are easy to prove and are well-known
(cf. Arnold [2], Chapt. 9). The estimate (2.4) is clear from (2) or (3) and Prop-
osition 2.2. (2.5) is also clear from (2), (3), (2.2) and Proposition 2.2. Q.E.D.

2.2, Transport equation.
Along with the trajectory, we consider the transport equation (1.8). Write as
2.6) kx@, s, &, $)=pi(t, s, =, s, =, ) %),

2.7 L@, @35, p)=2kit, 5, &, 7)(0/0w,)
—(O8), 5, &, §)— (160" F(t, 3).

By Proposition 2.3, (2), the equation (1.8) can be written as
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(2.8) L=(¢, #; s, ) E*(@, s, %, §)+idEi.(¢, s, 2, 7)=0.
We first study the initial value problem

(2.8) LA(t, & s, Dult, s, %, =1, s, &, 7),
2.9 u=(s, s, &, 7)=als, &, 7).

Notice that by Proposition 2.3, (2)

(dws1de) (&, s, ¥, 7)=@OH=[38,)(E, Z=(¢, s, ¥, 1), £, 5, F, 7))
=pi, s, ¥, NIvit, 8, ¥, 7).

It follows that via the substitution v*(¢, s, ¥, ) =u*(@, s, &*(t, s, #, %), 7) the equation
(2.8)" and (2.9) is equivalent to the initial value problem for the ordinary differential
equation:

(2.10) L=, s, 4, H)v=t, s, ¥, 7)
=2pi(E, 8, ¥, PA/dt)v*(E, s, ¥, 7)
—(O8H)(, s, (L, s, T, 1), NV*E, 8, Y, 7)
—(te/2)0" F (¢, B2, s, ¥, D)v*({, s, 7, 7)
=1, s, B5(t, 8, §, D), ),

(2.11) 'Ui(sy 3; 5/:! ﬁ):a‘(s’ 9?’ 5)'

Applying the standard theorems on the uniqueness, the dependence on the param-
eters and initial conditions of the solution of the ordinary differential equations,
we obtain the following proposition (c¢f. Coddington-Levinson [5]; Chapt. 1).

PROPOSITION 2.4. Let a(s, %, 7) € B(Ty, Ty X R% and fQ,s, &, 7)€ BUTy, T2)*X
RBRY). Then the initial value problem (2.8) and (2.9) has a unique solution
w*(t, s, %, 7) € B({lt—s| <8} X R°).

PROOF. Since pi(t, s, v, )%, (089, s, a7, s, &, 7),7) and F (¢, E1, s, 7, 7))
belong to B{|t—s|<d}x R® by Proposition 2.1 and 2.8, the initial value problem
(2.10) and (2.11) has a unique solution v*(¢, s, ¥, 7) € B{{[t—s| <8} X R®). Hence, by
Proposition 2.2, w(t, s, %, )=v*@, s, *(&, s, &, #), 7) is the unique solution of (2.8)
and (2.9) and it satisfles the property of the proposition. Q.E.D.

LEMMA 2.5. For j=0,1, ---, the equation (1.8); with the initial condition
(1.9); has @ unique solution Ei(t, s, &,7) for t—s|<d and E;(t, s, 2,7) s bounded
with its all derivatives.

PROOF. By Assumption (A),
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(2.12) P=(s, &, §)=1/2+D(s, &, )/ (s, s, &, 7)

is smooth and bounded with its all derivatives. Hence Proposition 2.4 implies
Lemma 2.5. Q.E.D.

PROPOSITION 2.6. If f({,s,&,7) and u=(,s, %, %) satisfy the equations

(2.18) (=@, s, &, 5)+m)f(t, s, &, 7)=0,
2.19) L@, 2; s, Pu(t, s, &, §)+8f(t, s, &, 7)=0,
(2.15) (k=(s, s, &, 7)—m)u(s, s, &, ) +£(s, s, 7, 7)=0,

then u*(t, s, %, 7) satisfies the following equations:
(2.16) k=@, s, &, 9)—myu*(¢, s, 3, )+ £, s, &, 7)=0,
(2.17) (k=(¢, s, &, §) +m)du(t, s, &, 7)=0.
PRrOOF. A little caleulation shows that
L=, @55, ) =0 -K*(¢, s, &, §)+ k&, 8, &, 5)-7
and Proposition 2.3, (4) shows that
k=(t, s, &, §)2=m?.
It follows that (k*—m)- L*=L*-(k*—m), and by (2.13) and (2.14) we have

LH{(E=—m)u*+ f}=(k*—m) L=u*+ L*f
=—(H—m)f+ G-k + k-9 f
=gk +m)f=0.

By the uniqueness of the solution of the initial value problem (2.8)’ and (2.9)
(Proposition 2.4), we obtain the equation (2.16). Since (2.14) is equivalent to

= —m)u* + [+ (5 +m)du* =0,
(2.16) implies (2.17). Q.E.D.

LEmMMA 2.7. For any j=0,1, ..., the function E5(t, s, %, %) satisfies the
Sollowing equations:

(2.18); (K=, s, %, N—m)E5(¢, s, &, §)+i9E5,(t, s, &, 7)=0.
(2.19); (k=(¢, s, &, 1)+ m)dE5(¢, s, &, 7)=0.
(2.20) Bi(s, s, &, §)+E5(s, s,4,7)=0, j=1.

(2.21) Ei(s, s, %, )+ E5(s, 8,3, 7)=L.
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PROOF. The equations (2.20) and (2.21) are obvious. By Proposition 2.6 (with
f=0) and the definition (2.12) of P=(s, &, 7), (2.18), and (2.19), are obvious. Suppose
that the equatlons (2.18); and (2.19); hold for j=<n. Setu*@t,s,,7 )= E: (L, s, &, 7)
and f*(@, s, &, H)=19E:(t,s,&,7) in Proposition 2.6. (2.19), implies (2.13) and
(2.8),., implies (2.14). Note that kj(s, s, &, n=n,—eA s, &) for j=1,2,8, ki(s,s,
&, 7)=—k;(s,s, &, 7) and that the equation (K(s, s, &, 7)+m)f=(s, s, &, 7)=0 is e-
quivalent to (%ks +7:ks+m)°f=(s, s, &, 7)=0. Hence

(= (s, s, &, H)—myu=(s, s, ¥, 7)
=—@2ki(s, s, &, D)) GkE — ki —m) (s, 5, &, )+ (s, 8, &, )
=—(@kg)y Mz -+ k) fH ki + )
=—f*(s, 8,4, 7).

By Proposition 2.10, it follows that (2.18),., and (2.19),,; hold and the lemma is
proved. Q.ED.

LeMMA 2.8. Eit,s, &, 7)=P@t, & &, s, §*@¢, s, &, 1), PN EQ, s, &, 7)
=E§ @, s, 8, H)P*(s, 4*(t, 8, &, 7), ).

ProorF. The first equation is clear by (2.18),. Since both Ext, s, 5, 8, Y, ),
) P(s, ¥, 7) and E;(t, s, £, s, 7, %), 7) satisfy the same equation L=, s, 4, Hu=0
and the same initial condition, the uniqueness of the Cauchy problem implies
Ez(t, s, s, 8, 9, 1), HP=(s, 4, ) =K, s, #*(t,s,¥,7),7). By setting =9, s, &, %),
we obtain the second equation. Q.E.D.

So far the equation (2.8) and (2.10) are considered only locally in time {t—s| <3,
since the function S=(,s, x,7) is defined only for that region. However by fac-
toring out of the solution u*({, s, %,7) the part corresponding to the summand
S, s, %, u(t, s, %, ) in the equations (2.8) and (2.10), we can find the equation
which plays as a substitute of (2.8) and (2.10) and can be considered globally in
[Ty, T X [Ty, Tl

PROPOSITION 2.9.

Y . ¢ (CIS*)(w, s, T*(u, 8, ¥, 1), 1)
S 8,9, 0)= eXp(Ss 203 (u, 8, 8ty 8, 9, 1), 7) du>

— {pﬁ(t, s, 4, %) ‘det<8wi(t, s, i *))\}—1/2.
pl:HS: S, gy 77) 6y

PRroOF. We omit the variables of p3 in this proof. By definition
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205+ @S *120)(t, 5, 5, 7) =S¢, 5, 82, 5, §, §), S, 5, 7, 7).

Using the Hamilton equation (1.5), we have

(d/de)(D5 (¢, 5, 9, §)da*(¢, s, 9, 7))
={005/0t +@ps (0w, (dat/dt) + pi(3/0m,) (v /i) da
={0p7/0m,+(dwi/dt— p3/p§)0pF [on )} do
=—(08*)¢, 5, B2, 5, 9, 7), DNdx=(t, s, 4, 7).

Combining these two equations, we have
(/A5 (¢, s, 4, DI, 5, 3, )Pda(t, s, 5, 7)) =0.

It follows that pi(t, s, 4, $)S*(t, 5, 9, 7)7da*(t, s, 5, D=1i(s, s, 5, )dy. Since J*(z,
8, %,%)>0, we have the desired result. Q.E.D.

REMARK 2.10. The last expression in Proposition 2.9 can be defined for any
t,se[Ty, T,], through it might be infinity or S*(t, s, #,7) may not be defined
throughout the region (¢, s) [T, TxI[T,, T).

COROLLARY 2.11. Let J*(t, s, &, 7)=J*(t, s, 5*(t, 5, &,7),7). Then the function
u*(t, s, &, %) ts the solution of the initial value problem (2.8) and (2.9) if and

only if 45(¢, s, %, H)=J=(, s, T, ut, s, &,7) s the solution of tnitial value
problem

(2.22) [2Fi(t, s, &, 7)(0/0m,)— (ie/2)o F (¢, )]u*(t, s, &, 7)
:Ji(t; S, jr ﬁ)_lf(ty 8, 5/:’ 77)!
(2.23) u*(s, s, &, 7)=als, &, 7).

Notice that (2.22) does not contain S*(t, s, %, 5) explicitly and by the substitution
w*(t, s, ¥, §)=u*t, s, =(t, s, F, 7), ) (2.22) and (2.23) are equivalent for l[t—s]<6 to

(2.22) M=, 5,9, Dlw(t, 5,9, ) =205 (¢, 3, F, D dw/di)tL, s, §, )
—(1e/2)0" F(t, (8, s, , D)w*(¢, s, §, 7)
:Ji(t! 8’ /.L_j! 7-j)_:l..]“(t! s! ji(t, S! g’ ﬁ)) 77)!
(2.23) w(s, s, 9, 7)=als, 7, 7).
Clearly the equation (2.22) has its meaning on the entire region (z, s)elT,, T,1x

(T, Tl

PROPOSITION 2.12. Let K*(z, s, Y,7%) and F=(t,s, 4, 7) be the solutions of the
wnitial value problems

(2.24) M=(t, 5,9, DK=(t, 5,9, D=2, 5, 9, HF, 5, 5, 7)=0,
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(2.25) K*(s,s,4,D=1,

(2.26) F=(s, 8,9, )=P*(s, §, 7).

Then

(2.27) K=(t, s, 4, ) P*(s, 4, 5)=F=(, s, 9, $)P*(s, 9, %)

:Pt(t, ii(t’ s! ?j! ﬁ)’ gi(t9 S! g’ i])))Fi(t! s! g! ﬁ)
:Fi(t’ S’ /!7! ﬁ)'

Thus if f*(s, 9, 7)€ V*(s, 4, ), then F*,s,¥,5)f*(s,¥,7) is the unique solution
of the initial value problem

M=, s, §, HutE, s, 4, =0, w=(s, s, ¥, H=5(s, ¥, 7).

PROOF. Since F=(t, s, q, 7)=J, s, §, #)E=(t, s, Z*(¢, s, ¥, 7), ), the second
and the third equations of (2.27) is obvious by Lemma 2.8. To prove the first, we
need only to check that K*(t,s, #, 7)P*(s, ¥, %) and F=(t,s, §,7) satisfy the same
equation (2.24) and the initial condition (2.26), which, however, is clear. The last
statement of the proposition is clear. Q.E.D.

LEMMA 213, Let T <s=t,<t;<:+  <ty=t=<T, be such that 0<&—1;-1<d;
wi =55, 8,9, 7), E5=E(ts, 8, 9,7, §=0,1, -+, N. Then for any f(s)€C",

(2.29)  E*(t, ty-1, 8%, E50)e - B (G, 6, B, B (L 3, 2, S(8)
N —-1/2
~(( 1 deta=tts, tis, 5, 100 Y @witt, 5.5, imete, 5,5, )
p

Xfi(t! s’ 277 ﬁ)?

5 o
T=Fj_1,9=65-1

where f:(t, s, ¥, 7) ts the solution of
(¢, s, 4, D, 8,9, D=0, F=(s, 8,4, H=P=(s, 5, NS
PROOF. By Proposition 2.9 and Corollary 2.11 the LHS of (2.29) is equal to
il 2 P 2 + =2
]-—-[1 Ji(tfy tj—ly -/Ejiy E?—l)]Fi(t’ tN—ly Lx—-1 EKY—-I)' * 'F_(tly s5,Y, ﬂ)f(S).
i
By Proposition 2.12, and an elementary property of the ordinary differential

equation

F=(t, ty-1, B5-1, g;—l)' - I, s, y, 7)f(s)
:Ki(ta tN——ly 55;?—-1; gﬁ—l)' * 'Ki(tly 8, g! ﬁ)Pi(S: fg! 77)f(8)
=K*(t, s, §, HP*(s, §, Hf(s)=F=*(t, s, §, S (s).

Thus Proposition 2.9 implies Lemma 2.13. Q.E.D.



174 Kenji YarMa

2.3. Miscellaneous properties of transport equation.

Transport equation enjoys some physically interesting properties. We collect
them here. We write as f*(, s, %, 7) the solution of

M=, 8, 9, DF@, 5,5, 0)=0, f*(s, 5, 5, N=F*(s, 5, 7) € V=(s, 4, §)-
PROPOSITION 2.14. For j=1,2,8
(2'30) (ft(ty S, g; i]’)y a’ffi(tr 8, ,.l—jy 77))04:(1)}:(1;’ 8, 171 ﬁ)/p(‘l:(t! S, :‘7, ﬁ))[fi(ty S, ?77 77)!2-

PROOF. Let (p*)eR* and feC* satisfy (p—m)f=0. Then since ¥ and ;i7"
(=1,2,8, j*k) are anti-hermitian, we have 0=Re(zf, 1'f)=—p(f, F)-- 0™, a’f).
Since f=(t, s, 7,7) satisfies (p*(¢, s, ¥, §)—m)f*=0, we obtain (2.30). Q.E.D.

PROPOSITION 2.15. |f=(t, s, ¥, ) |*=(05(¢, s, ¥, H)/0e(s, s, G, D) F=(s, s, ¥, T
PROOF. By an elementary calculation
(2.31) (d/dt)ps (¢, s, 4, ) =eFoi(t, x*(&, s, ¥, MpiE, s, 4, Dive, s, ¥4, 7).

Since ¢** (1, v7:0) are hermite and ¢%=1a’, it follows by (2.80) that and (2.81)
that

(2.82) (@/dt)(1f=¢, s, ¥, DI*/0sE, s, 4, 7))
:_poi(ty 8, ?7; 7~]y)_g{l.fi(ty 8, ?7’ ﬁ)[2(d/dt)p§(ty S, /gy 77)
—2Re(f*(¢, 3,4, 7), (te/A)o* F (8, 8, s, §, D=(E, s, §, D)}
=0.

Equation (2.32) clearly implies Proposition 2.15. Q.E.D.

We write d=(st, 0%, 6°)=(6%, ¢°!, o'?); E(t, x)=(F", o2, %), ﬁ(t, s)y=(F2, I3,
F); 9+(¢, s, 4, 7)=p*@t, s, 4, D/0; @, 8, §, ) and 6*(¢, s, 9§, ) =(f*, s, ¥, 7), 67=(¢t, s,
i, N5, s, 4, 7).

ProprosIiTION 2.16. -

(2.33) P, 8, ¥, PAIAL)G=(E, 8, 4, ) =eH(t, 5=, s, F, D) A6*(t, s, T, 7)
+7=(t, s, ¥, PAE(R, B*(, s, F, P)A6*E, s, T, H)).

ProOF. We omit the variables (¢, s,7,7) in the following expressions. By
taking the real part of (¢rly%%f=, (p*—m)f*)=0, we obtain

(2.34) @S, f9=0*, @, 7).

After a little gymnasium with y7-matrices, we see that
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pE(des/dt)=Re (f*, (ea® F ) f*)—(dpi/dt)ec*
+eRe(f*, 6@ E—is- H)f*)—(dps/dt)s*
t-eHAG=+eE(f*, Y713 f*) — (dps/dt)s.
Hence using (2.31) and (2.34), we obtain the desired result:

pi(ds=(dt)=eHNG* +eE(a*, ) — (K, 52)3*
—eHNG=+3= AE* NG*). Q.E.D.

(2.33) can be regarded as the equation for a magnetic dipole moment.
The following lemma which is supplementary to Proposition 2.3 will be neces-
sary in Section 5.

LEMMA 2.17. If3>04ssufficiently small, 0%S*(¢t, s, 3, 7)/07 (or 8°S~(L, 8, %, 1)/07")
is megative (or positive) definite for 0<t—s<d, (v, 7)€ R’

PRrOOF. Since the matrices 9z=(, s, ¥, 7)oy and 3&%(t, s, y, n)/dn satisfy the
~equations

d [/ ox* tH= ox* , 0*H= 0&*
2.35 - = 98
( ) dt ( o ) ofox oy 080& o7

d /ee=\_  H* ozt o°H* o0&
2.36 - = _ - s
(2.36) dt ( an ) oxdw Iy 0x0& oy

and the initial conditions 9z*(s, s, ¥, 7)/0n=0, 3&*(s, s, ¥, )/on=1I and the coef-
ficients of the equations (2.35) and (2.36) belong to B((T:, T:)X R%), it is easy to
see that

(2.37) 10x=(t, s, ¥, n)/on—(E—s)02H=[0*(s, y, n)|=o(lt—s]).

Explicitly

*H*
afj agv

s, 9, 1) =pi(s, s, 9, 7) {ajk—— (7—eAxs, YN —eAuls, ¥)) }

5(s, 8, 4, )

and is positive definite for “+”-case and negative definite for “—".case. By
Proposition 2.8 and 2.2,

azs-:
0707

¢, 5 & =L, 5, 3, 7)=—A+o(lt—sN I, 5, 4,7
a7 o7
2

52H*
e (s, ¥, DAL +ollt—sl)

=—(t—s)

and thus the lemma is proved.
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§3. Construction of the propagator.

In this section we construct the propagator U "(t, s) associated with the equation
(1.1), prove Theorem 1 and give some additional properties. We follow a general
scheme for constructing the propagator associated with evolution equations of
hyperbolic type using oscillatory integrals (cf. Kumano-go [7]). Recall that
G% 4(t, s) and GL(t, s) are defined as

(L10)  GL.alt, @)= @)\ expliS (1, 5,3, I & WE1G, 5,5, D} i

and

1.1y G, $)f@)=G% (@) + G 5 (&), feS.

We also define as

(.1 E%i, S)f(ﬂ'é):(27rh)”3’2§eXp(’£S*(t, 8, & DINEFE, s, &, L) d7.

(3.2) GE,ult, 9)=2 WEL (1, 5).

We write as <&>=(1+|%[*"* and <B>=(1—A)1’2, where 4=07¢’ is the Laplacian.
For real numbers m and p, Hp=H72(R®, C* is the weighted Sobolev space:

Hi={fe " (R*, C: K&y Dy fll= 1 £ | m,» <00}

H?% is a Hilbert space and the norms I[<x>"<ﬁ>”‘f [l and Il<f)>’”<m>1’ fli are equivalent;
ﬂ> H% =% and the norms {||fll,,.: m, p=0} furnish & with the ordinary topology
of &,

PROPOSITION 3.1. (1) For any integers m, p=0, the operator K% (L, s)
(3=0,1, «-+, N; [t—s|<d) originally defined on S can be extended to a bounded
operator on Hy and there exists a constant C,,>0 independent of 0<A<],
lt—s|<d and fe such that

(3-3) “E}xt,f(t, s)f”m,pécmph_m”f”m,p-

(2) Let m,p, k=0 be integers. If feHrik, Bt s)f is an Hz-valued
Ct-fumction of (t,s) for |t—s| <& and there ewists a comstant Conpi Such that

(3'4) osl-é;sk”(a/at)l(a/aS)"Ez'J(t, S)f”m,pécmpkk_m—knf”m+k,p—’-k'

PrOOF. We prove for E¥ (¢, s) only and omit the subscript or superscript
+ and O in the following expressions. Other cases can be proved similarly. By



Quasi-classical approximation to Dirac equation 177

(2.4), we may take 6>0 such that
(3.5) laS(t, s, %, ﬁ)/awjar;k—ajkugé for |t—s|<a.

We write R=(T,—T,)C,, where C,, is the constant appeared in Proposition 2.2.
By assumption (A) and Propositions 2.1-2.3, we have the following estimates for
lt—s| <a:

(8.6) 10S(t, s, &, /ox| =CGD;

(3.7 10S(2, s, &, 7)/07]=C<@>:

8.8y 10S(t, s, &, P/ot|+ 1S, s, &, 7)/9s| SCKE>+D);
(2.5) the higher derivatives of S(¢,s, x, 7) are bounded.

Thus by (2.5), Lemma 2.5 and (3.5), applying Theorem A.l of Appendix, we see
that there exist a constant C independent of |t—s[<d, 0<h<1 and f€.% such
that

B¢, s)fI=C] A1,

which is a special case of (3.3). To obtain (8.3) in general, and (3.4) we proceed
as follows. Take ¥(%)e Cy(R? RY) such that ¥(%)=1 for |Z|=2R+1 and ¥(Z)=0
for |2|=8R+1 and split E*t, s)f(&) into two parts:

B, ) f(@) =y @) E*¢, )f(&)+A—y(@)E“E, s)f(F)
=J18¢t, s, X)+14¢, s, F).

By Lemma 2.5, (2.5), (3.6) and (3.8), we can write for |8|<m and l+n=k,

(3.9 #7(9/0t)1(9/0s)"(9/a%)*exp(iS(E, s, &, )/h)- (@) K, s, &, 7)]
=exp(iS(t, 8, &, DA " Al prarmill, 8, T, PR

where AZ4,... € C* and for any multi-indices a and 7

(3.10) [(0/02)(3/07) A stn;mi(ts 8, &, ) =Cor

for 0<#<1, {t—s|<d. Hence by (3.9), (8.10) and Theorem A.l,
(8.11) oélg‘gkll(3/38)"(3/3t)lI{‘(t, 8 ) ln,p = Copift ™ “*™ [ fllo,rsm-

We treat IX(¢, s, x) by partial integration. On the support of 1—v(%), we set
(3.12) K=—4(a8(t, s, &, )/67)7%(38(t, s, %, 7)/39,)0/979;.

By Proposition 2.2 and 2.3 (2), we have on supp(l—¥(Z)),
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(3.13) 168, s, &, DIoFIZF— 13, 5, 3, f})—flzlo‘c’l—RE%lﬁl,
and clearly
K+(exp(iS(E, 5, &, 7)) =h""* exp(iS(L, s, &, 7))

By (2.5) and (3.13), the formal adjoint *K?** of K?'* can be written, on supp(1—1),
as

KPR = ¥ alft, s, &, $)(3/a5)*.
lalsp+k
where a,€C* and
1(0/03)™(0/t)(0/02)8(3/07) aalt, S, &, $)| = CogrulEp 27,
It follows that for any 0=l+n<k. |8|<m,
(8.14) 17 +52(0)0)U0/09)™(0/0%)P[exp(iS(¢, 8, &, AV K> H(L—p@)E(E, s, &, 7)F(5))
:eXp(iS(tr S, iy ﬁ)/h)h_m_klaISZT'_*—kngﬂln;mk(ty 8) .’,U, v)<7-7’/h>m+hhp+k(a/ai]’)af)z(;?))
where B¥ 5. € C* and for any multi-indices «, 4,
(3.15) 10/02)(8{07)° Bt pprn:milt, 8, X, = Cos; It—s1<d, 0<A <L,

Since, by partial integration
I, s, 56’)=(2ﬂh)‘3’2h”+’“gexp(i‘5’(t, 8, &, PIKY KT H{1—p@)E(, s, &, 7))1d7,

(3.14), (3.15) and Theorem A.l imply

(8.16) o, 1@100)(@/28)" IE(E, 5, &)l »
SCopht™ 3 G h0j07) )

ZConmt ™™ fll e, pe

Combining (8.11) with (8.16), we obtain
< Z ”(a/at)l(a/as)nEﬂ(t, s)f(-r'z)”m,pécmpkh—(nwm ”f”m-*-k,pﬂcy

=l4nsk
from which the statements Proposition 8.1 follow easily. Q.E.D,
COROLLARY 38.2. If fe &, then EZ% ,(t,s8)f is an -valued C>-function of

(t, s) for |t—s|<d.

COROLLARY 3.3. (1) For any integer m, p=0, G, u(t,s) and GHt,s) are
bounded operators on H? for |t—s|<d and there exists a constant C,, such that
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(3.17) 1GE (&, )l n = Cstt ™™ 1 s 3 [1GEE, ) N, o= Crst ™™ i, -

(2) Let m,p, k=0 be integers and feHZiE. Then G¥ 4, s)f 1s an Hp-
valued C*-function of (t,s) for |t—s|<d and there ewists a constant C,,;;>0
such that
(0<l;ﬂgkll(0/38)"(8/%)‘(?2,1\7(15, ) 1, o= Crpit™ B I, e

18
19 1osg:ngk“(3/9S)n(3/3t)lG55(ty s =CLht™ [ f e
(3) Gis,9)=I

Notice that the exponents of % in the RHS of (3.17) and (3.18) do not depend

on the index p of weight. This reflects the finiteness of propagation speed. We
write

(8.19)  FE (¢, S)f(i)=(2ﬂh)'3’zgexp(i3i(t, s, &, NIW0-E5(t, 5, &, 7 H)dij;

(8.20) Fit, )f@)=F1%, (8, )f(E)+FX 5, $)f(@).

Since 7°9.E3(t, s, &, 7) € B(([t—s]|<8) X R®), the proof of Proposition 3.1 shows
that if fe.7, F 4, 8)f and Fit,s)f is an S -valued C~-function of (¢, s) for
lt—s|<d and

(3-21) 0§H§Sk “(a/as)n(a/at)ngg(ty s)f“m,pgcgzkhv'th”f”m+k,p+k7
(3.2 oo B 11050/ FE sty ), p=Conyi™ M| s s

LEMMA 8.4. If fe%7, then
(8.23) (1h0]ot— H™t))GE y(t, 8)f=1h"* FE (¢t s)f
(3.24) (Phojot— H™ )G, s)f=th" " FLt, s)f.

Proor. By Proposition 2.3 (2), (2.2), (2.6) and Lemma 2.7, we have

(ihoft— HXt)expliS=(t, s, &, §)/h 3. WE, 5, 3, 7)]

j=0
— P (ihi—eA(t, §)—m)exp(iS(t, s, &, )Ih) ﬁo WE, 3, %, 7)]
p2
=exp(tS*(@, s, &, N/ (—§S*—ed—m)E§
N
+ 3 W3S —eAd—m) B+ 105} + GBS, 5, 8, )]
2z

=iV exp(iS=(t, s, &, HIBIEE, s, &, 7).
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Hence the differentiation under the sign of integration shows (8.28). The equation
(3.24) is clear from (3.23). Q.E.D.

Suppose temporally that there exists a nice propagator U*(t, s) for the equation
(1.1). Then, since Gi(s, s)=1, by solving (8.24), we obtain .

(3.25) GHt, s)=Unt, s)+h”gtU”(t, ) Fi(s, 8)do.
If follows that U™, s) can be obtained by solving (8.25) by iteration as
3.26) UM, 5)=Git, s)— " SGx(t ) F¥(a, 5)do
+ 2 a0 dap | doGlG OF o 00, - FHo 9.
R "

We trace the argument backward: We define U, s) by the equation (3.26) and
check that it is in fact satisfies Theorem 1. We write

3.27) (GHEF)(E, )= thmt, SF o, $)do

and for any integers y=0,

7-times

8]
(3.28) (GEEFIG, 8)=((- - - (CLEF HBF 1. - EFAYL, 5).

LeMMA 8.5. Let p, m, k>0 be integers.

(1) If feH?7i:, then (Gf{#F")(t s)f s an Hp-valued C*-function of (¢, s)
for any 7=1,2, -

(2) There exist constants C; and C, independent of j, f€ &, 0<t<l and
[t—s]1<d, such that for any 0=k’ <k

(8.29) ng}lxgk,{H(a/as)"(a/at)l(G;s?F;%)(t, 8)/ .o}

<O e SO o

ProOF. The first statement is clear by Corollary 8.3 and (3. 22) We prove
(8.29) first for =K. A little calculation shows that (6/at)*~ ’(8/83)’(G§6#FN)(25 s) can
be expressed as a sum of at most 2°%*1/2 terms of the form (87+"4GE/9tP198%)0
(31’2+‘12Fﬁ/8t1’233q2) oeeno (apJ+q,Fn/atp]asq,) or (apﬁqlpn/atplasql) 0 ees 0 (apJ IR 7 an/
0tPi-19s%-1), where Z} (pr+a) =k, Z} (p1+a)=k—1 and - stands for #-product or
operator product. Thus, applymg (3 18) and (3.21), we can easily get (3 29) We
show (8.29) for general ggk—t—l by induction. We write R*(¢t, s)=(G% #va)(t s).
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t . .

Clearly R%.(t, s):g RHt, o)F' ¥, s)do and it is easy to see that
8

(3.30) (8/as) (ot} RE (¢, s)zgt(ale’/at’)(t, o) (0"F'%{0s")a, 8)do

+ X (a/at)“p‘l{(apR?/at”/at”)(t, )@ FEs™)(E, )}

0=psl—

— 2 (3fas)y M@ RY[2s')(E, s)OUF T [0s7)(s, )}

0=gsn—1
Notice that (3.30) implies
(6P REjot?)(t, t)=0 for 0=p=j—1,

and if [=<j, the second summand in the RHS of (3.30) does not appear. Hence
granting (3.29) up to 7, 0=k’'<k, we obtain for n+Il=k'<k, j=k+1,

[(0/9s)"(8/3t) RE:a(t, 8).f ln. v

e T it 11 ISR

. (C t—s (G=El+g+1)
Cg:rl,>+k’*q)(l7+k’—f1)qh (mkk’){ 1| l) h (rr 0 GED ”f”m*]c' pHEI .

2n
* ; =k +q+1D.!

0zg=n

Here we used (3.21) and C%), is the constant appeared there. Thus if we choose

Ci=max{1, maxk2" T C2porir-pq and 8§ =min{d, C7'}, we have for [t—s|<d;
1< 0zg<k

”(a/as)"(a/at)zRJﬂ(t 8)fllm,»
éCZh—(mm')(is—z) {271 Z Cé;_’l)_}k,kq)(p%,_q)q}

0=sg=n

C(k—l')]t_sl(j—k'+1)+
s (j—k’+1)+1 ‘f“m+khzo+k'

(Cllt_sl)(j—'k'+l)
(K +1)!

=G, h-—(m-l-k') (j+2) |!f”m+k’,p+k’,

whieh proves the stated result. Q.E.D.

COROLLARY 3.6. Let m, p, k=0 be integers and 5,>0 be as tn Lemma 3.5.
(1) If feHylk, then for 1t—s|<dy,
Ui, s)if= Z( hN)J(Gz’G#F )2, s)

defines an HT-valued Ct-function. Im particular if fe&, UL, s)f is an -
valued C-function of |t—s|<d;.
(2) There exists o constant C$, such that for [t—s|<é;

(3.31) N (@/9s)"(0/at) U™, $)flln.»

=CPh™ 0 D exp(CRLAY ™t — DI f . -
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In particular
(3.8 1T, $)fllo,»=Cy exp(Cslt—sD] fllo, -
LemMMA 8.7. If f€5°, then
(3.32) (1holot—H*(£)) U*(t, s)f =0.
PROOF. Since G, t)=1I, we easily see that
AIUGERFG, )=(F} & FR)¢, )f+@GH0t5Fe, )
understanding (F}é%)F}é)(t, 8)=F7%(¢,s). It follows by (3.24) and (3.30) that

(sho/ot—H ) U*(t, s)f
=(sho/ot— H E)GEE, s)f

+ 5 RGPS & PR, 90+ (hofot—HA)GIRFE, 91f)
=ih] #F3G 9+, (R E PR, 9+ 0 FSEFDE, 95)]
=0. Q.E.D.

CorOLLARY 3.8. (1) [[U,s)fI=|fll, fe L=
(2) If feH}, then U™t s)f is the unique solution of equation (1.1) whick
is Hi-valued continuous and LP-valued C'-fumnction of t.

PROOF. Since H*(t)e B(Hi, 2#) and H™1) mt is essentially selfadjoint (cf.
Chernoff [4]), we see (3.82) holds for f< H! and that

#3[2O)| UHE, s)fIP=(—iH@O UM, 8)f, U, $)f)+(UHt, )f, —iH Q) U, s)f =0,

which implies UM, s)fl|=[U*s, s)f=|fl. The second statement can be proved
similarly. Q.E.D.

LEMMA 8.9, (1) If fes”,

(3.33) n(3/0s)UME, s)f=—Urt, s)H™(s)f.
(2) If lt—sl, [s—rl, [t—r|<d, then

(3.34) Uxt, s)Uk(s, r)=U*t, ) on HZ.

ProoF. (1) Write V*(@,s)f=1#0/0s)U%(t,s)f. Differentiating U=, £)f=f
by t and using (3.32), we have V*(s, s)f=—H?"s)f. Differentiating 8.31) by s,
we have (¢#0/dt—H"(¢)) V*(t, s)f=0. Since V*¢,s)f is an & -valued C*-function by
Corollary 3.6 (1), Corollary 3.8 (2) implies V*(t, s)f=U*(t, s)(—H"(s)f) as is desired.
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(2) It suffices to prove the equation U™, \UMs, r)f=Ux¢E, r)f for fe
By (3.32) and (8.33), it is easy to see that @/2s)UKt, s)U*(s, r)f=0 in the region
being considered. Hence we obtain the desired result. Q.E.D.

COROLLARY 8.10. U, s) is a unitary operator on £ for [t—s|<d:.

PRrROOF OF THEOREM 1. For any T.<s<t<T,, we define U*(, s) as follows:
Take a subdivision s=t,<t,< -+ <t,.,<t,=t such that [t;—t;,_.| <&, for j=1,---,J.
Define

Uxt, sy=U* (t,, ty-1) -+ U*(t, to)

where U*(t;,t;.,) in the RHS is defined by (3.30). If T, <t<s<T,, U*t,s)=
U™s, t)"t. By (3.34), this definition does not depend on the choice of subdivision
and by Corollary 3.6 — Corollary 8.10, U*(t, s) satisfies the statements 1)-3) of
Theorem 1. Q.E.D.

COROLLARY 3.11. The propagator {U%(t,s), Ti<t,s<T,} satisfies Corollary
8.8 — Corollary 38.10 without the restriction |[t—s|<di.

§4. Proof of Theorem 2.

We give a proof of Theorem 2 here. Here and hereafter we omit the arrow
—, for z and 7 are used only for denoting three vectors.

LEMMA 4.1. For any integer p=0, there exists a constant C>0 independent
of 0<h<1, |t—s|<d; and fe€ 5 such that

(4.1) 1T, 9)f —GE(Et, $)fllo,,=CAYIE—s| exp(ClE—s) |0, -

PrROOF. Applying (3.29) to (3.30) with m=%=0, we readily obtain (4.1).
Q.E.D.

COROLLARY 4.2. For |[t—s|<d,
4.2) VU, $)f—GEE, 9)f 1o, , =CH [ fllo. -

PROOF. GE(t, $)=G%.,(¢, 8)—AY " K}, (¢, ), BEf=E% ;+E*; Hence by Prop-
osition 3.1 and (4.1), we obtain (4.2). Q.E.D.

REMARK 4.3. By duality argument, (4.1) and (4.2) hold equally for p=0.

Corollary 4.2 provides a proof of the first half of Theorem 2. We prove the
second half. Since (1.13) is proved similarly, we prove (1.13) only. By Proposi-
tion 8.1 it suffices to prove (1.18) for N=0 and we omit the index N=0 in the
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following expressions. Applying Theorem A.l, we see by Proposition 2.3, Lemma
2.5 and (3.5) that G¥%(t, s)G*(s, )f(x) can be written as an oscillating integral

GH(E, 5)G2(s, 7).f ()
:(27[%)—08 LEXPUS (@, 8, @, ) —§-2+8(s, 7, 2, ) —7-9)/h)
n
XE*@, s, ¢, E (s, 7, 2, 0)f(y)dydydzde.

Write as 0=(¢, 2, ) e R, §(z, 0, y)=S"(¢, 3, &, &)—&-2+8(s, 7, 2, 7)—7+y and
Alz, 0, y)=E"*(t, s, x, )E~(s, 7, 2,7) and set

Cs={(x, 0, y): grad, ¢(z, 4, y)=0}.

Since grady ¢(x, 0, y)=0 is equivalent to y=aS(s, r, z, 7)/dy, £=S(s, r, 2, 7)/0z and
2=08%(t, s, &, £)/0¢, Proposition 2.3 shows that (s, 0, y)¢ Cs if and only if z=
&8, 7, Y, 1), E=E (s, r,¥,7) and 2=y, s, x, &). Hence, by Lemma 2.8, if (z,0,¥) e
Cs, Alw, 0, Y)=E"*(t, s, %, OP*(s, y* (¢, s, @, &), OP(s, 2, £*(s, 7, ¥, N E~(s, 7, 2, 7)=0.
Thus by Theorem A.1, we obtain (1.13). Q.E.D.

§5. Quasi-classical approximation in finite time, preof of Theorem 3.

We prove Theorem 8 here. For a real valued smooth function S(y) given at
time s, we associate a Lagrangian manifold A(s)={(y, 5(y)/0y: y € R®} generated
by S in the phase space T*R*=R*XR®. After time t—s, the canonical transfor-
mation (%*(%,s,¥,7), &, s, ¥, 7)) on the phase space generated by the Hamilton
equation (1.5) transforms /A(s) into another Lagrangian manifold At ={(z*(, s, ¥,
aS(y)/oy), (¢, s, ¥, 30S(y)/0y)): y € R®}. Since A*(d) is Lagrangian, the existence of
covering {£;} of R® with the property Theorem 38 (1) is well-known (see, Abraham-
Marsden [1], §5.8). We prove the second statement by applying Theorem A.2 or
the stationary phase method. Given s,t such that T, <s<t< T,, we take a sub-
division
®.1) ' di s=t,<t, <+ <ty=t
such that |t,—t;.,]<6;, 5=1,2, --+, N and write
(6.1) G}:t(t, 8, NH=G% (ty, ty_y)-- -Gﬁ,o(tl, to).

The following lemma is obvious from Theorem 1, Theorem 2 and the unitarity of
the Fourier transform.

LEMMA 5.1. Let Gi(, s, 4) be as above and KC{1,2,8). Then there ewists



Quasi-classical approximation to Dirac equation 185

a comstant C>0 independent of 0<A=<1 and fe & such that
(5.3) |7 EUKE, 8)f —F HGHL, s, Nf —F FGE(t, 8, DFI=CHIf].

5.1. Proof for the case K;=¢.
We first prove the case supp fC2; and K;=¢. We write x=ux, ¥y==,, and
0=(x-1, X1, D2, * *» 1, Tz, 7o) € R*¥° and set

N
(5.4 $=(@, 0, =1 (S*ts, ti-s 25 Dy-1)— @s-1+7-1) +S(Y);
i=

(5.5) Ax(w, 0, Y)=E#(ty, tats By, Yy-1)* - BT (15 toy 1y 70)-

Sinee, by Proposition 2.8 and Lemma 2.5, S%(t;, t;_1, @, ;1) and E*(ts, tj-1, Ts5 75-1)
(or z;_19;; and I=identity matrix) satisfy conditions (C.1)~(C.8) of Appendix,
Theorem A.1 (8) implies that the functions ¢*(z, 8, y) and A*(z, 4, y) also satisfy
(C.1)—(C.8) with n=38, m=6N—3 and GZ(t, s, MH(eS¥/%f)(x) is written as

(5.6) GL(t, s, DSV "f) (@)
:(2;:%)*31"8 vexp(isﬁ*(os, 0, )i A*(x, 0, Y)f(y)dyds.

RS
The following lemma shows that ¢*(x, 8, %) satisfies the condition (C.4) as well.

LEMMA 5.2. The equation grad,,¢*(®, 9, ¥)=0 determines a function (x,0)=
(=), () of ye R® as follows:

(5.1 70=08()/9y;
(5.7); a=ai () =%, 8, ¥, 7o), Tia()=E (51,8, Y, %), 5=1,2,---, N.
(5.8) |det az=(y)/0y|=c>0 for some ¢>0 and all y€ 2,
Proor. The equation grade,.,d*(w, 8, ¥)=0 is written as a set of equations
(5.9 7,=08(y)/0y;

(5.9); aS=(t;, ti1y Zs, 7]]'—1)/677;'—1:90;'—1 (=1, ---, N),
aSi(th tj—ly Ly 7);—1)/3%2%' (j:]-, Tty N_'l)-

" By Proposition 2.8, (5.9) implies (5.7). (5.8) is clear by the assumption K,=¢.
Q.E.D.

By Lemma 5.2, we can apply Theorem A.2 to G, s, )(e”“%f)(x). Thus by
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virtue of Lemma 5.1, the following lemma with Theorem A.2 concludes the proof
of (1.15) for the case K,=¢.

LEMMA 5.3. Let (2*(y), 0*()) be as im Lemma 5.2. Then the following
statements hold.
(1) Let f=(t, s, y) be the solution of initial value problem

I, s, 9, 2 @)F=(E, 8, 9)=0, F(s, s, ¥)=F(y).
Then

(6.10) A@H), 6°0), 9)=1 |det@*(ts b1, 2, D02) -

2=a i 9, 1=0F—1 )

X D5, 8, Y, 9lUNIDE(S, 8, Y, 2(¥)) V21, 5, Y).

(2) For the phase function,
(6.11)  gla*(y), 65(y), y)=S(y)+StL¢(u, z*(u, 8, Y, 7(¥)), £, 8, Y, (y)))du;

(5.12) det(Hess g, ¢ ) @*(y), 0*(y), )|
= det a0 (9)/ay IT det(@w*(ts, trs, 2, /02

z=xf_1(u),ﬁ=vf_1(y) ’
(5.18) Inert(Hess g, ¢*)(@*(y), 6(y), ¥) =8N +1Ind r=(t, s, ¥, 7.(%)).

ProOF. Statement (1) is a repetition of Lemma 2.13 by (5.5) and (5.7). Since,
by definition (2.1) of S*(¢, s, ¥, 1),
St(t.iy tj—l; xi(tj, S, Y, 770): Si(tj—ly S, Y, 770))_—xi(tj—1y S, Y, no)'si(tj—ly $, Y, WO)
‘.
:S ! Li(uy mi(uy s Y, 770)r Ei(u” $ Y, 7]0))du>

ti 1
(5.11) is obvious. We prove (5.12). Hessy,,,¢*(x, 6, ¥) is written as
(6.14) (See Diagram A on page 187)
where we wrote S7(x;, 7;-1)=S*(t;, t,-1, %, 7;-1), 5=1, -+, N. Differentiating (5.9)
by y after plugging (5.7) into (5.9), we have ‘

@S5 /0w5) (5 (Y), n7-1(¥))ow; (y)/3y
J +(0°S5/0w,07;-1)(wF (¥)ani—+(¥) 9y =075 () /0y;
(6.18) < (9%85/9n;..19w:) (w5 (y), 751 (9))3wF(y)/oy
+(0°S:1973-2) @ (W), im (W) (Y39 =03F (y)/0y;
@*S[0y*)(y) =014(y)/3y.

We apply the following determinant preserving operation to (5.14): Add 27—1)—
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th (j=1,---,N) and 2j—t# (=1, ---, N—1) columns to the last column after
multiplying d95-#()/dy to (27—1)—th and x5, (¥)/0y to (25)—t#. Then by (5.15)
it is easy to see that

(5.16) [det(Hess ¢*)(x=(y), 0*(y), y)!
- {ﬂ 0eb(@*S, /27,100 a5 ), 75400} et 25 0)fou.
Since
(08710710, (25, ;1) =0Y* (&, tjo1, @5, 1y-1)/0%;
=02 (s, L1, Y, 9;-1)/0Y)

y=y"—'(tj»tj_1,xj,ﬂj__1)

by Propositions 2.2 and 2.3, (5.16) shows (5.12). We prove (5.13) next. Recall
that by Lemma 2.17

(5.17) 08 (s, 1,-)/073-. <0, 3*S7(ws, 9,072, >0, j=1,-.-, N

and hence, by implicit function theorem, the mapping R*> 75108 %5, -1 )}/07,;-1 =
Y*(E;1 €5-15 %5, 9;-1) Is @ local diffeomorphism. Since y*(¢,, t;_1, 25(¥), 7. (9) =2.(¥),
it follows that there exists an open neighborhood U;CR® of xi(y) (=0, ---, N)
such that for any (z;, #,,) € Uy X UL, there exists unique Nr-1=N5-1(%;, %;~1) near
77-1(y) such that @, . =y*(¢;, t,-1, ®;, 75-1) OF &;=8*(Es, tyo1, Bjms, V5o, B;_1)).  Write
S3(@s, 0,-0 =855, 031(@1, ©,-2)— o171 (05, 7,1) and

~ N
(5-18) Si(xy By—19 "5 X1y y)E‘élS;ﬁ(%], wi——l)_l_S(y)-

§i(x, Zy-1y * "+, %1, ¥) is defined on a neighborhood UC R** of (xi(y), -« -, 25(%), ¥).
We write §=(xy_;, ++-, %). We remark that S F(x;, 2;-1) is the action integral of
the trajectory {(«*(u, ¢j-1, ®5-1, 1(2;, #5-0)), (U, tioy, Bms, W5a(y, 25-0)): by SUSE)
and that it satisfles the following properties:
(5.19) 053 (w;, #-1)[081 = — 7% (3, 15-0);
(5.20) 32§J¢(90fy Xj-1)[085-1= ——(azsf/aﬁ—l)(xj, 07-1(%5, 25-1));
B.2)  9°S5(wy, ws-0)/003=(32S3/0w3) (w5, 11(ms, T5-1)

+(a2s;;/awfa7/j—1)(xjy 751 (2s, wj—l))aﬂf(-’l’jy T;-1)/005;

(5.22) 8253*(90]-, ©5-1)/0%;00,; 1= (@S5 /0795 ) (@5, 751 (27, T;-1)) "
X (azs?/axjaﬂj—1)(%j: 77-1(25, %;-1)).
(5.23) 8231*/87]3-_1(51;” ni—1(2s, xj—l))a?fq(mi, 2-1)/0;

+(92S5 0m;10m:) (25, i1 (25, 2,-1))=0.
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We write for 1=<j=N,

and
L B
. 0 0
I |
Di= T A dfomi@s, w5y | 2AN—-J)+1.

0 : 0
0 I
0o 0
L '

2(N—j)+2

Clearly B and D7 are non-singular and

(5.24)  Inert(Hesse,,n9* o= (), 6@, ¥)
=Inert(BiD%_,--- DBt -Hessq, ¢ - 'Bi 'Di - - -'D5'Bx)(&*(y), 0*(¥), ¥)-

By virtue of (5.17), (5.19)-(5.23) and (5.24) it is easy to see that

(5.25). Inert(Hess,»$ ") (@ (), 0°(y), ¥)
=3N+Inert(Hessd,,»S )@ (1), 7)), ¥);

(5.25).. Inert(Hess 4,9 ) (@™ (¥), 67(¥), 9)
= Inert(HeSS (E,y)g_)(wA_'(y) s g_('y)9 y)y

since +32H(t, z, £)/0& is positive definite, a well-known theorem on Morse index
(ef. Theorem 15.1 of Milnor [9] and Theorem 17.4 of Morse [10]) shows that

(5.26). Inert(Hess,,»S *)(@* (), 8 (1), )
=Ind{(x" (%, s, ¥, 7(¥)), £+ (1, 8, ¥, n(¥)): sSUSL]
(5.26). 3N—Inert(Hess,»,S )z~ @), §— (1), ¥)

= —TInd{(z~ (%, 8, ¥, 7(¥)), E(u, 8, Y, 7(W)): s=U=Lh
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Thus (5.25) and (5.26) imply the desired equation (5.13). Q.E.D.

5.2, Proof for the case K,#¢.

Since other case can be proved similarly, we prove the case K;={1} only.
Write

3}:(77{1); x, 6: y)=_%{1)'ﬂﬁ;+¢i(x» ﬁr y)-

Then the same argument as in Subsection 5.1 shows that the functions A*(x, 6, u)
and ¥=(p, %, 0, ¥) satisfy conditions (C.1)~(C.8) of Appendix (take (74,25 and
(%), 0) to be x and 0 there, respectively), and

(6.27) TG, 55 DexpESW)/M) ) @w,0, 70)
=(2nh)—”-”2SRGNHexp(@’F(mn, ®, 0, NIH A, 0, y) f(y)dydiday,.

LEMMA 5.4. Theequation grad e ,.o,0%* w, «, 0, ¥)=0 determines a function
(w, ®, 0)=y(¥), 2(y), 0*(¥)) as (6.7) and
(5.28) TaW)=E5, 8, Y, 7(Y)).
(5.29) |det 8(wiz, (1), 75, ¥y | =e>0  for some >0
and all y<2,

PRrROOF. The equation grade,,.0,0 ¥ (7, @, 8, ¥)=0 is written as
(5.30) grade,»¢=(x, 6, ¥)=0 and 74, =0S:({y, ty-1, %, Py_1)/0%y.

Hence by Lemma 5.2, #;=#;(%) and 7,_,=7%%,(y) are determined as (5.7), and by

Proposition 2.3, 7y, =£%(tx, s, ¥, 2(%). (5.29) is clear by (5.7), (5.28), and the as-
sumption K,={1}. Q.E.D.

The estimate (5.29) shows that (2,5, 7u;) can be taken as a loeal coordinate
of the manifold {(z*(, s, ¥y, 2(¥), &, s, ¥, 2(¥)): v€ 23} and (@, V) can be
written as a funetion of (%w,s, 1) 88 @y, Dio,e) = (@ @125, D00))s V551> @Bis,as 700))-
By (5.29), we apply Theorem A.2 to (5.27). Thus by virtue of Lemma 5.1,
Lemma 5.4 and the following lemma show that (1.15) holds for the case K;={1}.

LeMMA B.5. Let (5,(y), 2*(y), 0%(¥)) be as above. Then the following state-
ments hold:
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(5.31) w2 (i) (), €2Y), 05(¥), ) =—25(&, 8, ¥, 2@} -ELE, 8, ¥, 70(Y))
+S()+ Stmu, 5w, 8, Uy TW)), £t 8, U, 7o)

(5.32) |det(Hess czy;,0,0 ¥ ) 05 (1), ©*(¥), 67(¥), Y|
N
=|det d(xE,0(¥), vﬁ}(y))/angl det(@x*(ts, ts-1, 2, MI02)2ax @ mjoy=2, 015
(5.33) Inert(Hess wy),0,0 ¥ ) i (¥), %), 0(4), ¥)

=Ind 7*(@, 8, ¥, o(y)) -+ Inert(@xf,/07m) (@5, »(¥), 75,(¥)) +8N (mod 4).

PROOF. The equation (5.81) is clear by (5.7), (5.28) and (5.11). The equation
(5.32) can be proved in a similar way as was used to prove (5.12) and we omit
its proof here. We prove (5.83). Write for subset K<, 2,3} and s=u,

T+ (w, K)={y € R*: det d(@ke(u, 8, ¥, 7(¥)), Ex (1, 8, ¥, 1o()))/0y=0}.

For each u, >.* (u, K) is an open set and LI% > = (u, K)=R?. For sufficiently small
>0, we set

N
=@, 9, %, 0, 1/)2—93(1}‘7}(1)+j§1 (S* (s, tj-1, %y Nj-1)— o1 Pg-1) +S(Y)

for 0=|t—¢'|<¢, where &y, + -+, ty—1 are taken as in (5.1) and ty=t’. Asin the proof
of Lemma 5.4, the equation grad(zm,.g,y)@’ff(t’,'qm, 2,0, y)=0 determines (9w, =, &)
as a function (5.7) and (5.28) of ¥ € R® with the change ¢ to ¢. Since the functions
=@, nuy, @, 0, ¥), (6.7) and (5.28) are smooth, it is clear that for some §,>0 the
inequality

(5.34) |det a(wi, (5 8, Y5 7o(Y)), 0 (E's 8 Ys 2(Y))/YIZd0

holds for 0= [t—#/|<¢, y € 2;. Hence by (5.82), the matrix (Hess (oyy),0.0 ) E s n61(Y),
#=(y), 6*(y), ¥) is non-singular for ¥y €2, 0= t—t/|<e and its index of inertia is
constant there. Fix y€£2,. Since the focal points on the trajectory {(#*(u, s, ¥, 7:(),
£=(u, s, ¥, 7.y} are diserete (cf. Morse [10], Theorem 17.4), we may assume that
there exists a point t—e<z<t such that y&€2*(s,9). Take a neighborhood U,
of y such that U;CX*(r, $)N2;, and a function feCg(Uy). Then by the result
for the case K;=9, Gi(z, s, (e /*f)(x) satisfies (1.15). Hence applying Theorem
A.2 to the partial transform 7, of the second term in the L.H.S. of (1.15), we
- have

(5.35) Hﬂfa,Gﬂr, 53 D@D EE) @i 112 )

_ldet‘ a(x(i;’,s)(f, s, Y, 7]0(:’/)): Eﬁ)(ry S, Y, 70(?/)))/3?/1_1/2
X (D (T, 8, Yy (W) DE(S, 8, Y, DoY) H?
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% exp( Jzﬁ Ind % (z, s, 3, 770(y))—|—% —%f Tnert ?f‘”
Ty

Eﬁ}(fr s, Y, %(?/)))‘H(Si(t, Y, 0, 'Oo(?l))—l—s(?/)— (1}(ty S, Y, 77(](?1))'77(1))/h)
X P(s, ¥, 7o(4)).f (¥)
=CH|f1..

Comparing (5.35) with the formulas (6.2) and (6.3) for the expression in the RHS
of (5.27), we immediately see that

(m 3)(7, s Y, 770(?/)),

(42,31 741} = (85 3} (28,4, Mg (4)),255) (75,3, 7 (9 ))

(5.36) BN+~ Tnert(Hess e, 0,09 )e, 77(0), (W), 0°(1), 1)

=—Ind y*(z, s, ¥, 7(¥)) —Inert(dx /07 )@k 5(z, s, U, 70¥)),

7 8, U no(y>)>+% (mod 4).

Since LHS of (5.86) is constant for t—e=<c=<¢ and

Ind Ti—(t’ S, y, ’]O(y))_Ind Tt<7! 8, yy Wo(y))
=Inert(dxf)/970) (@, 5(0), 75,(0) —Inert@zf,/67w,) (#h,5,(E), 75,(8)

by (5.34) (cf. Fujiwara [3], p. 124), we obtain (5.33). Q.E.D.

§6. Appendix.

We collect here two theorems about L*-boundedness and asymptotic expansion
of oscillatory integrals which are proved elsewhere. We are concerned with in-
tegral operators of the following form.

6.1) A) F()=(v/27) <n+m>/2§ exp(ivé(@, 0, Y)a(, 0, ¥)f(y)dydo,

R®"XRM™

where the integral is taken in the sense of oscillatory integral (cf. Asada-Fujiwara
[8D). We assume the following conditions.

(C.1) alw, 0, y) e B(R™m, (x,0, y)e R*X R™"x R".

(C.2) é(x, 0, y) e C*(R**™*) is real valued and there exists a constant >0
such that |det D(¢)(%, 8, ¥)|=c>0, where

D ¢):[82¢/8x8y 0% /020
a°0/000y  9°6/9056 |
(C.3) Any entry of D(¢) belongs to the class B(R"=t), We assume n=1,
but m=0 and m=0 is not excluded.
We write
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Cig)={(=, 0, y) € R**™*": grad, ¢(x, 0, y)=0}.

THEOREM A.l (due to Asada-Fujiwara [8]). Let &(x, 6, ¥) and a(z, 6, y) satisfy
conditions (C.1)-(C.8) and AW) be defined by (6.1). Then the following statements
hold.

(1) There exists a constant C>0 independent of v=1 and fe C5(R™) such
that

1AC)I=Clf.

(2) Suppose alw, 0, y)=0 for any (z,0,y) cC(@). Then there exists a con-
stant C>0 independent of v=1 and fe C3(R* such that

lARSAI=C A

(8) Let b(x’,0,y)eBR"™" and v, 0,y)ecC(R*") satisfy condi-
tions (C.1)~(C.3) and BM)f(a’) be defined by (6.1) with obvious alternations. We
set as 0=(0, z, 0") e R ¢(x, 8, y)=alx, 0, 2)b(z, &', ¥) and &(x, 8, y)=¢(x, 0, 2)+
¥(z,0',9). Then the functions c(z,$,vy) and ¢(x,6,y) satisfies conditions
(C.1H-(C.3) with changing m to n+m+m’ and ¢>0 to some other constant
e’ >0. Moreover

(6.2)  AWBW)Sf (@)= (v/2m)EriminD/ 28 exp(ivd (@, 0, y))ele, G, y)fy)dydd.

R2n+m+tm’

Notice that eondition (C.2) implies that the equation grad,,»®(x, 4, ¥)=0 uniquely
determines a smooth function (x,8)=(x(y), () globally on R". Let UCR" be
open subset.

(C.4) The mapping x=2(y) is a diffeomorphism on U and there exists a con-
stant ¢, >0 such that ‘

|det 8x/0y|=e;, yeU.

THEOREM A.2 (ef. [16], §b5). Let conditions (C.1)-(C.4) be satisfied and let
KeU. Then there exists a constant C>0 independent of fe Cy(K) such that

[ AQ)f(z)— A @A) | =C f 2,

where

exp(¢(n+m)r/d—1 Inert(Hess q,,9) (@), 0(¥), ¥)/2+wd(2(y), 6(¥), ¥)

-1/2
(6.3) Aw)f(z)= Z}L‘i;tff:&;)sﬁ;ce(@{)j (), N1~ 2alx(y), 6(8), YIF(Y)

0 otherwise.
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