Full-discrete finite element approximation of
evolution equation u,+A({)u=0 of
parabolic type

By Takashi SUZUKI

1. Introduction

In the present paper, we make an error analysis of the full-discrete finite
element method for the parabolic equation.

Let Q< R? be a bounded domain whose boundary 842 is smooth, and let — %=
—7(t, %, D) be an elliptic differential operator of second order with smooth coef-
ficients. We consider the parabolic equation

1.1 %wy(t, o, Dyu=0 (O<t=T, zc2)

with the boundary condition either

(1.2) w=0 (0<t=<T, wedQ)

or

1.2) Ea—uwu:o O<t=T, zed2)
Va4

and with the initial condition
(1.3) Ul=e=0a(x) (x<€).

We discretize the equation (1.1) with (1.2) (or (1.2")) and with (1.3) as follows.
For the space variable x=(z,, #.) we adopt the finite element method, triangulating
2 regularly with the size parameter h>0. Adopting “piece-wise linear” trial func-
tions, we firstly obtain the semidiscrete finite element approximation of %, denoted
by w,=ua(t). In the next place, we adopt the backward difference method with
the size parameter t>>0 with respect to the time variable ¢ and obtain the full-
diserete finite element approximation of u, denoted by w5=u%(t) ({=nz). For
details, see §2.

Our purpose is to estimate [|u(®)—u5(#)ll2@,. To this end we estimate {u(f)—
w2y and [l (&) —u5 @20y, respectively. The estimate

(1.4) @) — w220y SCREl 0l 220
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has been obtained for the boundary condition (1.2) in Fujita-Suzuki [7]. A weaker
estimate

1.4) () — @222, =Co(h*[t)all 20y (0<F=1)

was given for the boundary condition (1.2’) in Suzuki [18]. On the other hand
the estimate

(1.5%) flun(®) — s @)l 220, S Crle /) |a]| 22 o 0<r=1)

was shown in Suzuki [19]. In the present paper we show that (1.5') ean be im-
proved as

(1.5) lun(t)—u5 (Ol 220y SCrftlall 2oy

Furthermore, we show that (1.4) holds even under the boundary condition (1.2'),
which gives our final estimate

(1.6) [u@®)—u5 @)z 0 SCRt+/t)]all 2o -

Fujita-Mizutani [6] showed (1.6) in the case that A(#) is independent of ¢,
where A(t) is the realization in L*(2) of the operator A(¢, z, D) with the boundary
condition (1.2) or (1.2’). Baker-Bramble-Thomée [3] also showed (1.6) in that case,
assuming that A(f)=A4 is self-adjoint. Sammon [15] showed (1.6) under the bound-
ary condition (1.2), assuming A(f) to be self-adjoint. For other references, see
Suzuki [18, 19, 20].

The present paper is composed of six sections. In §2, we shall take some
preliminaries. Sections 8, 4 and 5 are devoted to the proof of (1.5). The proof
of (1.4) for the boundary condition (1.2’) is given in §86.

The author wishes to express his sincere thanks to Professor H. Fujita for
his hearty encouragements and valuable advices. Thanks are also due to Mr. A.
Mizutani, who kindly provided the author with information about numerical
methods. This work was supported partly by the Ffiju-kai.

2. Preliminaries

Let £ be a bounded domain with boundary 92 of Ct-class, and let — %=
—87(t, %, D) O=Zt=<T, zc2) be an elliptic differential operator of second order:

2.1 ——M:—JV(t x, D)

=2 az,(t )

S, e, ‘+Z bi(t, x) +c(t x).

ox
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Uniform ellipticity

2.2) Re 3 at, &2V Il €=l eC?)

133
is assumed, &/ being a positive constant. As we stated in §1, we consider the
parabolic equation

2

(2.3) pm

u+(t, ¢, Dyu=0 O<t=ZT, z€2)

with the boundary condition either

(2.4) u=0 O<tZT, 2€002)
or
2.4 PByu=F ¢, ©, D)u

Eaiu+au=o 0<t=T, z€dQ)

Y4
and with the initial eondition
(2.5) Ulmo=a(x) (xe€N).

In (2.4, c=0(t, #) is a given function on [0, T]X 32 and d/or, means the differen-
tiation along the outer conormal vector v,:

2.6) 9 _ iz

0
N0ty €)=,
al)A (7%} ij( x) 0%

1 i
where n=(n,, n,) is the outer unit normal to 2. In what follows, the standard
norm in H(Q) (§=0,1,2, ---), the Sobolev space W2/(2) of order j, is denoted
by ||-]l; and various generic constants are denoted indifferently by C. 1If C depends
on some parameters, say a, f, ---, we shall denote it by C.,s,.... However, some-
times we write C in stead of Cr.

Let V=HY2) or HYD) according to the boundary condition (2.4) or 2.4,
where Hi(2) is the closure in HY(2) of Cy(2), the C~-functions with compact
support in 2. We consider the following sesquilinear form a, , ) on VxV:

2.7 a(u, v)= ) % ) SQ aij(t9 x)

133=

9 d 2 0 .
dx— b,(&, B)y—u-vd
390,- w awz Vo iv§;1 S[) J( m) 396ju ves

—S c(t,m)u-ﬁdw-{-g o(t, -7 dSE  (u,ve V).
2

a2

Then an m-sectorial operator A(f) in X=L*%) associated with a.( , ) is defined
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through the identity
(2.8) a(u, V)=(AMu,v) weDAWE)CV,veV),

where (, ) is the L’inner product. See, Kato [12] for instance. Assuming
ai{t, -ye C{@), byt -) € L™(Q), e(t, -) € L™(D), o(t, +) € C°(3Q) (0=t=T)and a € LX),
we can reduce the equation (2.8) with (2.4) (or (2.4")) and with (2.5) to the evolu-
tion equation

(2.9) LU awu=0 0<t=T)

in X with

(2.10) u0)=a.

In fact we have

(2.11) la(u, I=Cllulllivll, (u,ve V)
and

2.12) Re a.(u, wzdlulli—2lluli (we V)

with constants C,6>0 and 1, € B. Also we note that the equality
D(A®)={u € H¥Q) | a0=0}
holds if V=H{(£2) and the equality
D(A(t)={u e H2(2) | ' (t, %, D) j30=0}

holds if V=H*(2). See Agmon [1] and Lions-Magenes [14], for example. See also
Tanabe [22]. TFrom the view point of our problem, however, we may consider
A(t)+2 in stead of A(t) by considering v(f)=e M1tu(t) in stead of u(f). Therefore,
we shall assume

2.12) Re a,(u, w)=ollul} (weV)

in stead of (2.12') without loss of generality, hereafter.
We now assume that a.(¢, %), b,(t, 2), ¢(t, x) and ¢(¢, z) are uniformly Holder
continuous in ¢ with the exponent 4. Hence we have

(2.13) la(u, v)—a,(u, I=Clt—s|’|ulllvl, (¢ se€l0, TI; u,ve V).

Assuming 0>>1/2, the inequalities (2.11), (2.12) and (2.13) assure us of the existence
of evolution operators: X — X of C*class denoted by {U(, s)| T=t=s=0} of which
‘generator is A(¢), by virtue of the generation theorem of Y. Fujie and H. Tanabe
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(Fujie-Tanabe [4]). Namely, the continuously differentiable solution w=u(t) of the
equation

2.9 %%—+A(t)u=0 (s<t=T)

with

(2.10%) w(s)=a

is given by

(2.14") w(®)=U(t, s)a.

Therefore, the solution u=u(t) of (2.9) with (2.10) is given by
(2.19) w(t)=U(t, 0)a.

Furthermore, the inequalities

(2.15) 1UE, s)l=C (T=t=s=0)
and A

(2.16) 1A@Q UG, 9II=Ct—s)™ (T=t>s=20)
hold.

REMARK. The generation theorem of Kato [10] or Sobolevskii [17], which is
based on the assumption of the Holder continuity in ¢ of fractional powers of A(t)
in a certain sense, is also applicable. In fact the inequalities (2.11), (2.12) and
(2.18) yield

2.17) | A@)r As) P —1I=Cplt—sl” (T=t, 520)

for each p in 0<p<1/2, by a theorem due to T. Kato (Kato [11]). The generation
theorem of Kato-Tanabe [13] is also applicable under some more assumptions on the
smoothness in ¢ of a;;, b;, ¢ and o, and is made use of in later sections in deriving
the estimate (1.6). See, Proposition 4.1. When we consider the boundary condi-
tion (2.4), we can apply the generation theorem of Tanabe [21] or Sobolevskii [16].
In fact we make an integration by parts in (2.7) and obtain

(2.18) AR A —1=Clt—sl’ (T=t, s20),

by virtue of the elliptic estimate of A due to Agmon-Douglis-Nirenberg [2].
In this case, the assumption 1=#>1/2 can be weakened as 1=6>0.

Now we proceed to the diseretization of the equation (2.9) with (2.10). When
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2 is a convex polygon, we triangulate it regularly with the size parameter A>0
and put

V.=all functions in V which are linear in each element.

In our case, however, since a9 is curved, we must modify V, in a certain way.
See, Zlamal [24], in this connection. Anyway, we can construct a finite dimensional
space V, contained in V, and V, satisfies

(2.19) ian lx—v],=Chlvll; (ve VNHQ))
LeVp
in virtue of the theorem of M. Zlamal (Zl4mal [24]). We restrict a,( , ) to VXV,
and get an m-sectorial operator A4,(f): Vw— V. through the identity
(2.20) ao(u, V)=(A4,Ou, v) (u,ve V).

Let P,: X—V, be the L*-orthogonal projection. The equation

@.21) ‘fd—?mh(t)uﬁo 0=<t=T)
in V, with
(2.22) u,(0)=P,a

can be regarded as an approximation of (2.9) with (2.10), and the solution u,=
unt) € V,, is called the “semi-discrete finite element approximation” of #. The

generation theorem of Y. Fujie and H. Tanabe is also applicable to A4,(¢) and we
obtain

{2.23) u(B)=U,(&, 0)P,a,

where {U,(¢, s) | T=¢=5=0} is the family of evolution operators: V,— V,, generated
by A,(t). Furthermore, we have

{2.24) UL s)I<C
and
(2.25) AU, 9 =CEt—s)*

by re-examining their theorem. In the next place, we discretize the equation (2.21)
with (2.22) with respect to the time variable ¢ and consider the equation

(2.26) Wi+ ) —ui (@) c+ At +0)us (E+0)=0 (t=mnc; n=0,1, .-+, N)
with
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2.27) #50)=PF,a,
>0 being a small parameter with <N=T. Let t,=nc. Then, we have
(2028) uii-u(t): U?i(t; O)Pha’ (t:tn; n:()y 1: Tty N)1

where

22 Uit ty= {<1+7Ah<tn>)-1 (Lt oot oo Ubediltp) ™ (1>4)

1 (n=7).
ws,=u5(t) € V, (t=t,) is called the “backward difference full-discrete finite element
approximation” of u.

As is stated in §1, we shall give the estimate (1.6) in later sections. To this
end, we add more assumptions on the smoothness of @y, b;, ¢ and o. Namely,
we assume that they are continuously differentiable in ¢ with uniformly Holder
continuous derivatives whose exponent is a (1=a>0). Furthermore, we assume
b,(t, e CYD) in order that the adjoint operator A()* of A(f) is nicely defined.
Note that from these assumptions follows #=1 in (2.13) and (2.17). Then, the
inequalities (1.4) and (1.5) are claimed in the form of the following Theorems 1
and 2, and will be proved in §6 and §5, respectively.

THEOREM 1. Under the assumptions stated above, the estimate
(2.30) U, 8)—U,(t, )Pl =Ch*/(t—s) (T=t>s=0)
holds.

THEOREM 2. Under the assumptions stated above, the estimate
2.31) 10, 0= U5, I=C/t+27) (=t
holds, C>0 being independent of h.

Indeed, the estimate (1.6) follows from (2.30) and (2.81), if we assume that a;;, b,
¢ and ¢ are so smooth that a=1 holds.

Before concluding this section, we state the following two lemmas for the proof
of Theorem 2.

LEMMA 1. Under the same assumptions as in Theorems, the inequality
(2.32) MUz, t) At )P S Calta— t)f (m—3>P
holds for each B in 0=B<4/3.

LEMMA 2. Under the same assumptions as in Theorems, the equality
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(2.33)  Au(OULE, 9)— A Uy(r, 8)=A,H)[e~ ¢4, ® —e T D)L A (2, 6(E, 7, 8)
holds with

(2.34) 125,62, 7, HI=Cplt—r)*(r—s)f~t (T=t>r>s20)

SJor each B in 0<p8<1/2.

Lemmas 1 and 2 are proved in §8 and §4, respectively.

3. Proof of Lemma 1
It is easy to see that (2.82) is reduced to
8.1 [ ALEP U, e SCalta—t)"F  (0=<p<4/3),

by considering the adjoint operator of Uj(t,, t)A4(t;.)%. On the other hand, in
the same way as in (2.17), the inequality (2.18) yields

(3.2) [ An@) Auls)e—1I=C,lt—sl° (T=t,5=0)

for each p in 0<p<1/2 by means of the theorem in Kato [11]. Therefore, the
following abstract Lemma 1’ gives our Lemma 1, when applied for X—= Vi, A=A4,,
U-=U;, =1 and m=3.

LemMMA 1'. Let X be a Banach space, and let A(t) be o bounded operator in
X which satisfies the following (A0) and (Al).

(A0) The relation

(A DG ={zeCllarg 2| > U0} 0<o,<z/2)

and the inequality
(3.3) lG—A@) =M/A-+12) (2€Gy)
hold where p(A(¢)) is the resolvent set of A(t).

(A1) The inequality
(3.4) [A@y Ay ?—1|<Lit—sl? (T=t, s=0)

kolds for p=1/m and p+6>1, where m is a positive integer.
Furthermore, let ©>0 be a small parameter with tN=T and put

3.5) Ut t)= {:(I-].-I-TA(tn))_l s (1+TA(tj+1))—l EZE;;

where t,=nc. Then the inequality

(3.6) IAGEU (s tN=Colta—t )t (n—3>p)
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holds for each B in 0=<8<0-+p, Cs being a positive constant depending only on
w, M, L, p, 6, 8 and T.

In this section, we shall prove Lemma 1/, which is a discrete version of a
theorem by T. Kato. Indeed, he showed

(8.6") IA@FUE, )| =Cy(t—s)*
for each § in 0=3<0+p (Kato [10]).

Put :
3.7 D(t, s)=A()A(s)°—1.

Then, Sobolevskii’s identity

8.8 At)—Als)= Z;}nl A@)r-reD(t, 8)A(s)??

gives
39)  Utlts t)—(A+cAlt)) "
::Z;zl [A+cARN" 2D (g, tj) —(1+ TA(tn))—("_k) U~(t,, tj)]

:Zé‘l (A+7AED)) > P[1+cA®) — A+ Al NIU Eess, T9)

©,

]
|

=r 1 (L4+7A@E,))~ ™ [A@E)— AU (e, )

k

i

m n—2
:pé:l T kgj (147AR) P AR 2Dy, 1) Al ) U (s L))

Now we introduce a few notations. Let K, (t., t;) (1=1, 2) be operator-valued func-
tions defined on D=D"={(t,, t,) | N=n=7=0}. We define another operator-valued
function K=K, *K,=K, %K, on D=D" by

(3.10) (K Koty £) = (K % Ko) (b 1)

B2
=T kgj Kl(tny tk+1)K2(tk+1y tj)-

We put

(8.11) We(tn, t)=U(tn, t)— A+ AlE)) "7
and |

(3.12) Yilta, t) =AW (L, t,).

Then, (8.9) gives
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(8.13) Yi= %1 H;, % Y5+ Y5,
=
where
(8.14) H; (b t)=A@,) 20 (147 A(E)) "0 Dk, t,)
and
(3.15) Yio= 5 Hipk Y5
with
(8.16) Y5 1(ny £) = AP (AT A(E,) -,

Therefore, Y¢ (1=q¢=<m) satisfies

3

8.17) Yi=% Yi.

where

(3.18) Vo= i Hi, % Y5, (i=0,1,---).
P2

In order to give estimates on || Y3,,|/, we make the following

DEFINITION. An operator-valued function K on D is said to belong to
Q(a, M) if

(3.19) 1K s, eI =ME—t ) (NZn=g=1)

holds.
The following elementary proposition is useful throughout the present paper.

PROPOSITION 8.1. Let 0<a=b and a<1. Then the inequality

(3.20) BY(a, b) E% :z: (1 - %)H(%y—lgma, )

= Sl (A=) 1071 dy
0
holds.

Proor. If b=1=a, then flz)={1—=x)*x*! is monotonously increasing in
[0,1), which implies (8.20). If @, b=1, then f(x) is convex in (0, 1), which implies
(3.20). 1

From now on, we drop the suffix = for simplicity.



Full-discrete finite element approvimation of evolution equation 205

PROPOSITION 3.2. Let K,cQa;, M, (i=1,2) with 0<a;=1 and 0<a,. Then
we have K, * K, € Q(a,+a., MyM,B(a,, a)).

PROOF. By Proposition 3.1, we have
n—2
(K % K3) (s tN1 =2 ké:j 1Kty tre) |- 1 K o(Ersas £

n—2
=M M, kZ =t )™ (e — )%t
=i

§M1M21a1+a2—1(n__j)a1+a2—an—j(a1’ a2)
EM My, —t)m " Blay, a) (0 (3.20)). d

PROPOSITION 3.8. The relation
(3.21) H,,cQW0—qp+pp, Cyp)
holds ©f 0=1—pp+gqp<2.
Proor. Fujita-Mizutani [6] showed
(8.22) [A@PL+A®) ™| <Cplme)? (0=¢=T)

for m>p=0, which will be proved in another way at the end of this section.
Hence we get

[Hy, o(tas tISN AR 2720 (L 42 A®E) 0 |- | DRy 8]
SCqp(t,—t) 7t r2emeet? (o (3.4)). a

PROPOSITION 3.4. The inequality
3.23) [ Hpu( tesd) —Hyyu(bn, EN|SC(tn—t1i1) (e —1)? (NZn>Ek+1>520)
holds if 0=<gp<2.

PrOOF. We have

(3.24) Hypbns tesd)— Hoyultay £5)
= AL+ T A)) P Dy, tir)— AP+t A®E))™ "2 DL, )
= AP+ A®E)" " — A+t A®E) " " P1D (b, urr)
+ AP+ T A®E)) I OID gy b —D(Eny B

The following inequality is proved at the end of this section for 0=f<j=n=N
and 0=a=1:

(3.25) AP+ A@) ™ (L+<A@) ]
< Cplta—t)ot7eP=CorP(n—3)5j=cf (O=t=T).
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By means of (8.25), we get

(3.26) N AE)e[(L+7AR)) 2 — (LAY DT D (Esy tesd)]
=Cy(e(n—J+1)—c(n—k)?(c(n—Ek—1))"%° 0t ,—t,,,)°
= Cq(tk+1—'tj)a(tn_tk+1)_qp-

On the other hand, the identity

(8.27) D(t, r)—D(t, s)=A()* A(s)*D(s, r)
yields
(3.28) AR+ AR)) 90| | D(Ea, tess)— D(ts, ol

SC(n—J+ D)) (L —t)" (7 (3.4), (3.22))
écq(tn—tkﬂ)_qp(tkﬂ_tj)y'

(8.24) combined with (8.26) and (3.28) gives (8.28). O
PROPOSITION 3.5. We have

(3.29) Y,.0eQ1+0—qp, C)

with a constant C,>0 if 0=qp<0+p.

Proor. By (8.22), Y,,_,€Q1—pp, C,) holds. Therefore, by Propositions 3.3
and 3.2, we obtain

(3.30) Hy %Y, 1€Q1+0—qp, C)

for p=1,---, m—1, because of 0—qo-+po>0 1=<p=m) and 1—pp>0 1<p=<m—1).
On the other hand, we have

(3.31) Hq,m * Ym,—l(tm t])

n—2
=T IZ' Hq,m(tm tk+1)A(tk+1)(1+TA(tlﬁ-l))_(k-th)
=3

l

T Zé:z Hy,n(Cns tes ) [AQ ) A1 A®Gg)) = 4179 —~ At )A+7A(E)) ¢H0]

n—2
o B [Hpn(bn teed)—Hym(tn, 81 AL+ A(E) =12
=3
+z :Z_IZ Hy,u(t, t)AR) L+ A(E)) - F1-0,
=3
The following inequality is proved at the end of this section for 0=<p<1 and n=
1,2, -+
8.32)  [A@PL+zA@) "~ A (L+cAl) ™| SClt—s|/(n0) 8 (0=t, s<T).

Therefore, the first term of the right hand side of (8.31) is estimated as
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339 % Honlte bl TAG DL+ A®)) 40— AL+ 4G5

éCqT :22 (tn—tk+1)_qp+0(tk+1—tj)o((k+1—.7.)7)_1 (- (8.21), (3.32)

=C (t,—t)e¥ (v (3.20)
écq(tn_ t]) —qp+ﬂ.

In the next place, we note
%n—2
(3'34) (tn_tj)'z. kgj [Hq,m(tm tk+1)—Hq,m(tny tj)]A(tj)(1+TA(tj))_<k+l_j)
n—2
=T kgj (tn_tk+1)[Hq,m(tn, tk+l)—Hq,m(tny tj)]A(tj)(l+TA(tj))~(k+1_j)
n—2
+z kZ, (Eerr— ) Hy,m(bay Erar) —Hy s TIAG) A+ AE)) 412,
=4
By Proposition 3.4 we have
»n—2
835) ¢ % (b tu[[Hynltur tros)—Honltn )1 1AG(LH2A() 017
n—2
=Cy kZ (tn—t ) (e — )0
=j
=C,(t,—t)r et (o0 (3.20)),
and by Proposition 3.3 we have
n—2
(3.36) T IcZ—-:j (tlc+1_t1‘)(“HQJm(tn, tk+1)“+ ”Hq,m(tn! tl) ”)' “A(tj)(l+TA(tf))—(k+1_j) “
S0t T bt 9074 (b))
=7
=C(t,—t,)"e 0™ (o1 (3.20)).
Therefore, the second term of the right hand side of (3.31) is estimated as

(3.37) T :T:z [Hy,w(ta tirr) —Hy, o (Cn, tj)]A(tj)(l'i‘TA(tj))“(}H‘l_j) éCq(tn—tj)_qu.
=j

Finally, we have

= | Hy, u(tn, 21— (147 AE)N - "2]|
S Hg, mEa tANA+[A+AR)) "2

<C,t—t)" (0 (3.21), (3.22)).

(3.39 e T Hyulte £ AL A(E)
=3

Honlto 8) 5 [(L2A®)) 6P~ (L4 A 4-2)

|
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Thus, (8.81) combined with (8.83), (3.87) and (8.38) gives

(3.39) Hyw# Yo, -1 € QULA+0—qp, C,).
We now recall (8.15) and obtain (3.29) by means of (3.30) and (3.39).
PRroPOSITION 3.6. The relation

(3.40) Y, eQO—qo+1,C) (¢g=1,---,m)

holds.

Proor. From (8.29), (8.21), (3.18) and Proposition 8.1, the relation

(3.41) Y, €QA+(G+1)0—qp, L) (g=1, ---, m)
follows for ¢=0,1,2, --- by an induction, where
(3.42) L/ Li=CmBWO—1+p, (3+1)6).

We obtain (3.40) by (8.17) and (3.41).
Proor or LEMMA 1’. We first show

(3.40,) Yq € Q(ﬁ—qp‘Fl, Cq)

for each ¢ in 0=¢p<0#-+p which is not necessarily an integer. In fact, by (3.40)

and (3.21) we have

(3‘43) Hq,p*YpeQ(6_4P+1, Cq) (p:]-! MY m)

’

provided that 6—qo+pp>0 (1=p=m). Therefore, (3.43), (8.29) and (8.13) give

(8.40’) for each ¢ in 0=<qp<4+p.

Putting f=g¢p, we have (3.6) by means of (8.11), (3.12), (8.22) and (8.40’). [

In order to complete the proof, we show (3.22), (8.25) and (3.32) before con-

cluding this section.

PrOOF OF (8.22). For simplicity, we put A=A(t). By differentiating (m—1)-

times in 2 both sides of the well-known identity

(3.45) (A—Z)“1=re“e““‘ dr (Re 1=0),
4]

we obtain

1 oo
3.46 1474y "= = m=1,=7p=17r4
(3.46) (1+<4) -1 SO r*le e T4 dy
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by putting A=—1/c (z>0). The known estimate
(3.47) |APe=4[| = Cpr8,

which is derived from the assumption (A0), gives

-8 oo
AP(L e )= S b di
(m—=1! }o
=Cslzm)™® (m>P)
by means of Stirling’s formula. 1
PROOF OF (8.25). We first note that the elementary inequality
(3.48) A+ —1=n|2] (Rel=0)

holds. Actually, we have

(L) —1|= | S %(14—2)""012’

gng l(L+2)""] |de]

Iy Iy

gng |dz] (in fact Re(z)=0 on I';)
Iy

=nlil,
I", being the segment connecting 2 with the origin. Furthermore, the estimate
(3.49) (A4 SA 47028 (larg 2l=wy)

is derived by the binomial theorem and is proved in Fujita-Mizutani [6], where
B, is the smallest integer which is greater than §--1, and where 7, is a positive
constant. Let I” be a positively oriented boundary of Gi={1€C| larg 2|>w} U {0}
Putting A=A(t), we get by (3.48) and (3.49)-

(3.50) 1A+ A)y— (14 A4) 7]

1 J] A~ ~N— =) — -1
o= er(1+ DA+~ —~1](1— A) dxll

gcS“’w*(l+ro<jw>ﬁo>-1<n—j>wd7°” (0 (3.3), (3.48), (3.49))
0

=Ce(n—4)j 8175
On the other hand, we have

(3.51) JAS[A+cA)y"— 1+ A [ 48+ A) | + | A1+ A) ]
=Cy(jr)*

by (8.22). In virtue of (8.50) and (3.51), we obtain (3.25). i}
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PROOF OF (38.32). If f=n=1, we have

(3.52) AL+ A@) " A} (14 As) ™
=[AM®A+2A@) " —Als)(1+7As)
=t (1+rA@) - A+ A)

gﬁ 1A@ 21+ A@) - 1D, 9)l- [ AL+ AE)™ ] 7 (3.8)
épC— E—sl? (0 (8.22), (8.4)).

Otherwise, since the inequality

(3.53) 1A—A@®)*—Q—AE)=Clt—sl/12] (1€ Gy)

can be shown in the same way as in (3.52), we obtain

(3.54) | A(t)Be 4 — A(s)be 4 ||

=lso= S #e (i~ A~ A= Als) ] ‘”H

<CX pBg-ricoso; :[t sl ( (3.53)

=Cslt—s|fr-8,
Thus we have
(3.55) [A@®*A+A®)"— A()P(L+7A(s) "]
< 1 S r71e7r || A(f)Pe= 4w — A(s)Be=TAW || dpr  (*r (8.46))
(n—1)!
Cﬁ n—1p—7 [ 8
L 1)'8 rierlt—s0er)Pdr (0 (3.54))
:Cﬂr‘t’lt—s]”( _]_‘1)'8 r*i=be=rdpr (in fact, n>p)

ZCpePlt—s|on-P

by means of Stirling’s formula.

4. Proof of Lemma 2

We define another sesquilinear form d4,(, ) on VXV by

@l afu,v)= S 2 ik, B2y d— %S 9 5, w)—u Fd
ot axj "o 2 ot

S —a-c(t - vdm-{—g —t—a(t, Hu-5dSE) (u,ve V).
Q2
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Then, by means of the assumptions stated in §2 we have

(4.2) @ (u, )| =Clluldoll, (w,veV),

(4.3) ld(u, v)—di(u, )| =Clt—sl*lulilwl, (w,veV)
and

(4.4) lim  su L (@i a) ey v)— dyl, 9)| =0.

D
t—s w,veV,lullp,luly<t | T—8

Henceforce we write (a@,—a,)(%, v) in stead of a.(u, v)—a (u, v). We shall also write
(A—a)(u, v) in stead of A(u, v)—a.(u, v), hereafter. In the first place, we assert
that the hypotheses of the generation theorem in Kato-Tanabe [13] are satisfied
for A,(t) uniformly in . Namely, we have the following

PROPOSITION 4.1. The inequalities and the relation (2.11), (2.12), (2.18) (with
6=1), (4.2), (4.3) and (4.4) make the following four conditions to be satisfied:
(A0) The relation

(4,26 ={1eCllarg >0 U} (0<w,<7/2)
and the inequality
(4.5) HA—A N H=M/A+12) AeGy)

hold where o(A,(t)) s the resolvent set of A.(f).
B A, is continuously differentiable in t.
(B2) The inequality

d

4.6) H—%Ah(trlf L4, sKit—slt ¢ se0, TD
holds with a constant K>0.

(B3) The inequality
@ H ;—t(l—Ah(t))“l <L/IAl (2€Gy)

holds with a constant L>0.
Proor OF (B3). We put
wi (&, H=Q—A,E) P9 (A€ Gy, $eX)

and show that it is continuously differentiable in ¢ and that the inequality

0 it )

4.7) pr

=C/1atlell

0




212 Takashi Suzuki

holds. To this end, we recall that (2.11) and (2.12) give

4.8) a1 ligls+ 12D =10—a)(@, )| (1€Gy, e V)
with a constant 6,>0 by Fujita-Mizutani [6]. We note

4.9) Q=a)wa(t, 2, 0=(5,%) eV

and obtain

81121 w5+ 1w 1D =10 —a) (a0, wi)|
=, w)| (- (4.8)

=llllo- llewsllo.

Hence we get

(4.10) lwalle=07"ligllo/12]
and
(4.11) lwall:=o722(16 1172 w132

=artllglle/ 12142,
Now, we differentiate formally in ¢ the both hand sides of (4.9) and get
(4-12) ('Z‘_a’t)(wh(ty 2, X =a,(w,t, 2), Xy (e Vn)-

Since the right hand side of (4.12) is a bounded antilinear form of r ¢ Vi we can
define 2,(¢, 2} € V, by the equality (4.12) by means of Lax-Milgram’s theorem. Re-
call (4.2) and (4.8). Defining 1, as above, we show that actually

wy(t, ) —wy(s, )

(4.13) lim
t—s

t—s

=0

1

- wh(sy 2)

holds. 1In fact, we put x(f)="(w.(¢, H—w,(s, D)/ (t—s)—w,(s, ) € V,, and we have

QA—a)(u(e), 21t))
1

:'t___s(z'_at)(wh(t)—wh(s)y D=0—a)uls, D, 7) @=xt)e V)

=tT18(Z—a;)(wh(t)—wh(8),X)—ds(wh(s, A, D A(a—a)(dals, 2,0 (0 (4.12)

=tTls((2—as)—(2-—a;))(wh(s, Ay D—awals, D), D)+ (a—a)anls, 2,2 (o (4.9)

= {io5 @ a)mits, 5, D= d.wi(s, 2, D} +@—a)nls, D, 0.

By (4.8), we have
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(4-14) ”x(t) “%§51_1 t'}‘S (a/l'_a/s)(wh(sy 2)9 x(t))_as(wh(s9 z)’ Z(t)) ‘
+o7IC - sl laals, DIz,
hence
@15) @[ ZClt—sl- ltin(s, Dl
+C sup |-t (m—aau%w,n,m~axwuaz»xﬂ.
xevilizlhst | t—8

Therefore, we have by (4.4)

(4.16) ’ lim lx@1.=0.

Now we show (4.7). By (4.8) we have

(4.17) 0:(121 - levalE, DG+ Nleon(Ey DD =S1A—a,) (@0nlE, 2), 0alE, 1)
={a W, A), wa(¢, )]
=Cllw.(t, Dllsllebnlt, Hl;.

Hence we get

(4.18) o (t, Dli=Cllwa(t, Hllx
=Clgllos/1217* (0 (4.11))
so that

(4.19) llabat, Dlloe=Cllwa(¢, HIi7*- lebn(t, DIT1ATE (0 (4.1T)
' =Cligllo/12] (. (4.11), (4.13)). O

PRrOOF OF (B1) AND (B2). The proof of (B1) is similar to that of (B3). We put
H®)=A,)Pg ($eX)

and note

(4.20) a.(fu®), 0=($, 1) X V).
Defining f,(t)e V, by

(4.21) a(Fa®), D=—a/fu(8), ) @€ V),

we can show

(4.22) lim

18

fh(t)'—fh(s) . fh(s)
t—s

=0.
1

In order to prove (4.6), we show

(4.6 | Falt)— Fu(&) = Clt—s12lg e,



214 Takashi Suzuki

[l-ll;+ being the norm in V*, which is weaker than |||

glls=sup (g, D).

1eVilixlly =1

In fact, we put

r=x(t) :fh(t)_fh(s) eV,
and get

3Xl:=Re a(fut)—fuls), 1) (0 (2.12)
=—Re ¢,(fu(t), ) —Re (@.— a)(F4(8), 1)+ Re &,(fu(s), 2)
=Re (d,— @) (fu(®), 1) +Re ¢.(fu(8)—fult), 1) —Re (a:—a,)(f4(s), %)
=CUt—sl*l fu@®l izl Fils) —F® ezl + 16— sl | Aal) alxl)-

Hence we get
(4.23) 1£2@—Fu =l

ZCt—s1*| L@+ Fule) —fu® s+ [E—s | fn(S)]y).
Now we have

ol f®i=Re af(®), fu(8) (v (2.12)

=Re (¢, fL@)=Cllgllrs[ /O (= (4.20)),
hence
(4.24) I £ @1 =Cllg .
Similarly, we have

3176 I=Re a,(F4(s), f4(s))

=—Re d,(fu(8), fa(8) (. (4.21)
ZC|l £l Fuls)ly,

and hence
(4.25) I/ =Cl AL =ZCligl (. (4.24)).
Finally, we have
5”fh(3) _fh(t)[HéRe a.(fo(8)—fu(t), Ju(8)— 1)
=Re (a:—a.)(fa(s), Fu(s)—Ffu(t)) (. (4.20)
=Clt—sl| ||fn(s)]hllfh(s)—fn(t)lll

whence

(4.26) /(&) —fu@ . =Cle—s| | fuls)l
=Clt—sllglys (o (4.24).
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Thus, by (4.28), (4.24), (4.25) and (4.26), we have (4.6/). U

In future, we may drop the suffix & for simplicity. In virture of Proposition
4.1, we can apply the generation theorem by T. Kato and H. Tanabe to A(¢) (=Ax(f).
Hence the evolution operator U(t, s) (=U.L(t, 8)) is given by

4.27) U, )= 949 £ W2, 5)
with
(4.28) Wit, )= gt e CIADOR(, 5) da.

Here R(t,s) is the solution of the integral equation

(4.29) R(t, $)=Ri(t, 8)+ Y Ru(t, HR(z, 9) dz,
where

— a a — (=) A(e>
(4.30) Ri(, 8)‘"('5{+'a? e

— 1 —(z—s)i__a_ —_— -1

o/ —1 S,ﬁ o U ADdz

and satisfies
(4.31) |BE, HI=C (Tz=zt=s=0)

and
4.32)  ||R(t, 8)—R(r, HI=Cy{t—r)(r—8) " +(E—1r)(r—5)*%1 (Tz2t>r>5=0)
for each 7, § in 0<r<1, 0<d<a. See, Kato-Tanabe [18]. Therefore, we have

(4.83) ADUE, sy—Alr)Ulr, s)
= A(t) (e~ 40 - WL, 8))— A(r}{e~ 24+ Wir, 8)
—_ A(t)[e— (t—8) A —e (r=s) 4(0) ] + 14~(t)ﬂ[A(t)1-'§e'~ -4 A(,’.)l-ﬁe— (r—s) A(r) ]
+ABEFL— AR PAMP A(r) e 04D
+A@RPFLAG) W, s)— Alr)EW(r, 8)]
+ARPA—AR)PAPB)A(r)EW (7, 9),

so that
(4.34) Zﬁ(t, 7, s)={A(t)1—ﬁe—(r—s)A(z),_A(,r)l—-ﬁe—(r—s)d.(r)}
+(1—A@)PA)B) Alr) -~ T40 L LA EW (L, 5)— A(r) W (r, 5)}

+{1—A@RPA@B AW PW(r, 8)
holds.
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In the first place, by (3.54) the first term of the right hand side of (4.84) is
estimated as

(4.35) [A()Be =040 _ A(p)i-Bgmr=9 40 || < Cy(t— 1) (r—s)P~.

In the next place, considering the adjoint operator of 1—A(f)~2A(s)®, we have
(4.36) [1—A@)PAGP|=Clt—s] 0<p<1/2)

by (8.2). Hence the second term of the right hand side of (4.34) is estimated as
4.37) 11— A@)PA@)E]- [ Alr)Pe T2 4D [ <Cylt—r)(r—5)F Y,

by (8.47). On the other hand, we have

4.38) lA@=-* W, s>n=‘

St A(t)l—ﬂe—(c—z)A(t)R(z’ S) dz

=G Xt(t——z)‘”ﬁdz (. (8.47), (4.31))
=C5(t:s)5,
5o that the last term of the right hand side of (4.34) is estimated as
(4.89) =A@ PA@P|- | A W (r, ) SCplt—r)(r—s)f (0<B<1/2).
In this way, Lemma 2 is reduced to the following
LEMMA 2. The estimate
4.40) [A@ W, 5)— Ay W(r, 9| =Colt—r)r—s)f (0<p<1/2)
holds.

In order to prove Lemma 2/, we prepare a few propositions below.

PROPOSITION 4.2. The estimates

(@.41) ”A(t)ﬁaitA(t)-ﬁchﬁ 0<p<1/2),
(4.42) 2L wtt, y——Law(s, 2) || ZClt—sloge
ot 08 1
and
(4.43) H A(t)"g—tA(t)*ﬂ——A(s)"%A(s)"ﬁ ”gcplt—sla 0<p<1/2)

hold, where w(t, H=1w,(t, )=0A—A,{t)Pp 1eG, dcX).
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Proor oF (4.41). Clearly,

2 qpp=—t S g—amy
(4.44) O A= g | T Ay

exists. Hence making ¢—0 in the inequality
|A@FAG+e) P~ AR P) /el =Cp,
which is derived by (3.2), we obtain (4.41).
PROOF OF (4.42). We put 1=2x(t)=1w(t, )—w(s, 1) and obtain

(A—a )X, 1) =0—a)((t, H—1(s, D), 1)
:az(w(ty 2)7 X)+(a/c'—as)(7/‘.)(sy /2)’ X)—ds(w(sy 2); pa] (. (4-12))
:(dt—ds)(w(ty 2)7 x) +(az'—as)(w(sy l)’ x)+as(w(t, 2)—“}(8, 2)1 X)-

By (4.8), we get

217

3 (B + 121 D) ZCle—s1lw e, Dl [l +Clt—sillzi(s, Ml Nl + Cllw(E, 2 —w(s, Hll:lxtlls-

Hence we obtain
(4.45) lxlh =Clt—sie|wt, D+ Cle—s] ks, Dl +Cllw(t, —wis, ;.
On the other hand, we have

Sillw(@, D= 1Q—a) (wit, 2), wt, D) - 4.8)
=, wt, NI=ZNllelw, DI, - (4.9),
dullavt, DIFZ1Q—a) @it D), wit, D) o (4.8)
=|a(w(t, 1), w(E, D) (0 (4.12)
ZCllw(@, Ml Dl
and
3. lw(E, H—wis, VF=Z1@—a)w(t, H—w(s, 1), wt, H—w(s, N (. 4.8)
=|(a,—a)w(s, 2), w(t, H—wls, NI (. 4.9)
<Clt—sl llw(s, Dl Jw, H—wis, D,

so that the inequalities

(4.46) lw(t, DL=Cliglly=,

(4.47) (s, DI =Cligllye

and

(4.48) lw(t, H—w(s, D, =Clt—s! Sl

follow. (4.45), (4.46), (4.47) and (4.48) imply (4.42).
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PROOF OF (4.43). We note the identity
80 Anyb— {0 _ 4 -8
(4.49) AP Al <6t A(t) )A(t)
and obtain
(4.50) A®P-2_A)— A(s)P2_ A(s)-
ot 08

__{_8 -8 (_9_ -

= ( 2 A(t)ﬁ)A(t) ﬂ+( 2 A(s)ﬁ)A(s> ’

__{9 _9 s 0 81 -

=—(Z-awr-2 A ) Ay o+ (-2 A ) Al L1 AP A )
Since (3.2), (4.49) and (4.41) give
(4.51) H(—g—A(sw)A(s)—ﬁH-1|1—A(s>ﬁA<t>-ﬁugcnt—sl,

S

(4.43) is reduced to
4.52) H( A(t)ﬂ——A(s)ﬂ H<Cﬂ|t sl AEP] (Ge Vi 0<p<12).

PRrOOF OF (4.52). Recall
(4.58) A@)Pp=A(t)f - A(t)p
—stnzp S P AD) A dye

—Sﬂj—ﬁg (L= e A ) dp.
See, Tanabe [22], for instance. By this identity, we have

(4.54) (ait AP, x)z—a—(A(t)ﬁsﬁ, 2)

_sinz=p
T

2 ——(#+A(t)) ‘6, x)de ($, 1€ V),
|, (= 2

if 0<B<1/2. To see this, we have to show LE((Bot) e+ AD) ', 1) € L1(0, o). But,
since this can be done by the same arguments as in the proof of (4.61) below, we
omit the proof.

Let af( , ) be another sesquilinear form on VX V such that

(4.55) afu, v)=a,v,u) (u,veV).
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We put
(4.56) allu, v)=%{a,(u, 0 +aku, vt @ve V).

Then the m-sectorial operator Hy(t) associated with a¥( , ) on V., XV, is self-adjoint
and satisfies

(4.57) Clvl, S Hu @ 0o =Cllv]: we Va).

See Kato [12], for example. We again drop the suffix » and write the equality

4.59) —<—§7(p + A — %(ﬂ-l-A(S))'l)
=H)"*(u+Ht) ™ B(¢, s)H(s)'*(z+H(s) ™

and claim

(4.59) |1 B(t, s)|=Cle¢—sl%,

which will be proved later. We also note the following known identity

(4.60) S‘” (O H Y+ H) 26| dp=Col HA|? (3 € DIHP)

0

for 0=$<1/2, H being a non-negative self-adjoint operator, which will be also
proved later for completeness.
By means of these relations, we get

((—gt—A@)ﬁ—%A(sw)qs, x)

___sinzB (* 0 a0 -
=078 [ (Lot Ay = e A ), 2)
s r (B, $)E(s)*(u+ H(s)~6, H(E)*(u+H) ™) dps,

so that we have
(4.61) l <(% A(t)ﬁ_.aa? A(S)g>¢, x) l
g(J'Eillfé(gjﬂz"llH(s)““’(;z+H(s))-1¢[poz,,l)“2

><<S°° llH(t)‘”(#+H(t))'1%IIde>1/2lt—s["‘ (v (4.59)
=Cel| H(s)®pli- 12l lE—sl* (" (4.60)).
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On the other hand, as Kato [11] shows, the inequality
(4.62) Catll AnPo I S [ HL ()RS =Coll Au(0)P8]] (e V)
is true for 0=$<1/2. Therefore, we get (4.52). a

In order to complete our proof, we prove (4.60) and (4.59).

PRrOOF or (4.60). Let Hzrsz().) be the spectral representation of H.
Then (4.60) is given as ’

o0

S‘” (B H V(- H) g d/J=S 8 dy S“’ Wk 2 d| B
Q0

0

:S”zdnmmnz §°° (2P 2) 2 dps
- g‘”z AIE@G|- 2201 Sw (2P 1) dy
~Cj §°° A EQP=ClHP . 0

PROOF OF (4.58) WITH (4.59). We define an operator AL V,—>V, by
(4.68) afu, v)=(A4E)u, v) (w,ve V).

Then, we have
(4.64) ait(thAh(t))"1 =—(p+ A D) AL (n+ A8)

We again drop the suffix % and obtain

(4.65) _ (ait(/l-l- A(t))‘l—-aas-(ﬂ-l- A(s))‘1>

=(p+A@) A @ e+ A@) — (24 As) A () (2 + A(s)
=(p+ A A @O+ AB) ™ — (u+ A(9) ]

e+ A@)) LA () — A/ ()] A(9))

+ e+ AR — (e + A()) T A (s) (4 A(s))
=—(p+A@) A )+ A@®) (AR — A (p+ Als) ™

e+ A@)) (A (&) — A/ () (4 A(s) ™

— (e A@)HAWG) — Al (e + AS) LA () + As) .

Therefore, we have

(4.66) B(t, s)=—B\(t, 8)+ B(t, s)— Bi(t, )
with
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(4.67) By(t, )=H®) " *(p+H@)) e+ A@®)  HE) - HE) 72 A HE) ™
X H@)Y3 (p+ A@) T H() 2 Ht) ™ *(AQ)— A(s) H(s) 7
X H(s)**(p+ A(8)) (p+ H(s))H(s) ™,

(4.68)  Bi(t, 9)=H@) V*(p+H®)(p-+ AW®)"H®)*- HE) /%A’ (1) — A’ () H(s) ™
X H(s)**(p+ A(s)) (u+H(s) H(s)™*

and

(4.69)  Bult, §)=HO) ™+ HE)) e+ A®) HOY* HO)™(Alt)— Als) H(s) ™
X H(9)*(u- A(s) ~H(s)"* H(s) ** A'(6) H(s)
< H(8)*(-+ A(s) ™+ HEH(s) ™

Thus, (4.59) is reduced to

PropPOSITION 4.8. The following inequelities hold:

(4.70) I H,(8) 2 (p+Hy () (p+ Au0) H ()2 =C,
(4.71) [ Ha®) " ALV HA () =0,y

(4.72) [ Hu &)+ An() T Ha(0) 2| =C,
(4.73) IHL.(8)*(An() — Au() Hi(s) 2| =ClE—sl,
(4.74) | HL(8) 2+ An@) e+ HW @) HL(6) 2 =C,
(4.75) [ Hu () 2(ALE) — ALY Hi(s) | =Clt—s|*.

PROOF OF PROPOSITION 4.3. Let {-ll»¢ be the norm in V, defined by

”f”vh: sup L A0 (fe V).

1eVplidly,s

Then we have

(4.76) =AW =C,
@ C < IH, )y <C
and

4.78) 1A%l <C.

‘We again drop the suffix k. Since

H@) ™ (p+HO) e+ AC)H@)Y*
=H(t)"*(1+(Ht)— A@) e+ A@) " H@)*
=1+H@)Y*(p+ AW) " H(t)*— HE) > A@) e+ AG)*H©B?,
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(4.70) is reduced to (4.72) and

(4.79) [H(@) > Alt) e+ A@®)THE) V| =C.

(4.79) is proved as follows: We recall the inequality

(4.80) 12— A@) e =CI(121+1) Qe GY.

See, Tanabe [22], for instance. Taking ¢e V,, we have

I H(&)~ 2 A (e + A@) T H@) ¢,

SCIA®(u+ AW H@Y?gllye (0 (4.57), A7)
=CUHQ@Y ¢ lps+ pll(e+ A@) 2 H(E) 2 ||yx)

=CIH®) *¢lly» (" (4.80))
=Clglle (- (4.57), 4.77),
which shows (4.79).
Taking ¢ € V,, we can prove (4.71) as follows:

[H@) A QHE) ¢l =Cl A/ OH @Gl (v 45D, @.T7)
=CIH@™ ), (- (4.76))
=Clglle (- 4.5D).

Similarly, (4.72) is proved as

NH@Y (4 AR HE) ),
=Cl(e+A@)H@® ¢l (. (4.57)
SCIA®(e+A@) T HEY dll,x (0 (4.76))

SCIH@) ™A@+ AG)HE gls (- (4.57), 4.T7)
=Cliglls . (4.79).

Noting the inequality
{4.81) HAh(t)*—Ah(S)llvhw;éClt—ﬂ,
which is derived from (2.13), we get (4.73) as

IH@) ™A@ — A@)H(s) ™ *¢ll <Cl(A®)— A()H(s)™*3llye ("o (4.5T), (4.77))
=Clt—sl |H(s)"*¢lly (" (4.81)
=Clt—sligllo . (4.67)).

(4.74) is obtained by considering the adjoint operator in (4.70). Finally, the proof
of (4.75) is similar to that of (4.73). O

Thus, Proposition 4.2 has been obtained. In virtue of it, we have the following
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PROPOSITION 4.4. The estimate
(4.82) LA®)BR.(£, s)— A(r) Ry (r, )| =Cs(t—r)(r—s)f* (T=t>r>5=20)
holds true 1f 0<B8<1/2.
PROOF. By means of (4.30), we have

(4.83) A(t)BR(¢, 8)
0 d
—— -8 Y_ —G-4AW -8 — (t—$) AC8)
A(t) Py e Alt) o e

- {%(A(t)_ﬁe_(‘"3)‘4“))—l—A(t)l"ﬂe_(‘_s)‘“”)} +(_@_ A(t)—ﬁ>e—(z—s)A(t)
7 ot

- __a"’t_( zm/l——l SF 1Be 13— A(t)) dz)

_ 1 1-Bp=(t~=D A 7 -1 (__Q__ —ﬁ) = (- AW
= Srz e 91— A@)~ da+(—2- A e

1 0
—— B =i~ _(h— 1d2a A 8 —(z—s)A(c),
S SF oD G- At +< - )

so that we obtain
(4.84) AQ@)#R(t, s)— A(r) PRy (r, S)

—-__.—1____ —ﬁ{ —(L s)l ~1__ —(r—s)l d
=t ), ? = AG) or

_a_ -8 —(t—s)A(t)_(____ —ﬁ) —(r—s)A(’r)}
o e

1 d
e ]—ﬁ —(r—8) A[ p=(t—7 2 __ 1— A -1 42

(J.—A('r))‘l} aa

—2ﬂ—j=g Z‘ﬁe*““”{i(x—A(t))‘l—%(x—A(r))"l]dz
+[( At~ ﬁ)A(t)ﬁ—(——A(fr) )A(?’)‘]A(t)‘ﬂe“”"”‘“”
+<3—;A(¢)-#)A(r>ﬂ[A<t)~ﬁe-(»-Mn~A(t)—ﬁe~<r-s>4<t>]
+(;—TA(T)";)A(T)"[A(t)‘ﬁe"‘T‘M("——A(w)"’e“(’“s“(”].

The first term of the right hand side of the (4.84) is estimated as

|

__._1___ By~ (r—s -~ {t—7 v -1
(4.85) H — ¢:§ Jrpemr-igmeei1] (z A()tda

223
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éCS 2-Bp-(r— s)zcoswl(t r)z dz ( (4-7))

=Cplt—r)(r—s)P 1,

The second term of the right hand side of (4.84) is estimated as
(4.86) H—J: S ).‘ﬁe"““S“[L(R—A(t))‘l——a—(z—A(aﬂ))"l}dz H
2zv—1 )y at or

§CSwz“ﬁe‘“‘”ms“’l(t—r)“dz (v (4.42))
]
" =Calt—r)*(r—s)FL.

By considering the adjoint operators in (4.41) and (4.43) we get

@.41) H( A" 5>A(t)5H<Cﬂ
and
(4.43") H (ait A(trﬁ)A(t)ﬁ— (%A(s)‘lB)A(s)ﬁ ’gcﬁlt—sla.

Therefore, the third term of the right hand side of (4.84) is estimated as

asn |(Z-aere)awr—(Z-Aor )P Ao o]
=Cs(t—r)9,

because of the known estimate

4.89) |A®)*I=C;.

See Kato [10] for (4.88). On the other hand, we have

{4.89) | A(r) [e~t4® —e 4D | ZC(t—s8)s*1  (£=8>0)
for £>—1 and
(4.90) [A@)Pe 4@ — A(s) Pe 4D || <Cylt—s| - ro~1

for 0<B<1, which will be proved just later. Therefore, the fourth and final
terms of the right hand side of (4.84) are estimated as

4.91) H(%A(o«)-ﬁ)A(r)ﬁj] JAG) e 94— A(t)Bem 040 | ZCylt— ) (r—s)8-1

and
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@92 ||( Al F) Al |- | Aty P40 — Al e | ZColt— e,

respectively. Hence (4.82) follows. O
PrOOF OF (4.89). We have

“A(r)lc[e—tfi ) _e—sA(r)]”
=‘ 1

2rv =1
O zeos dz
—EC pFgszc0 a)l(t_s)z*
0 2

SFl"e”“[e‘(“3)1——1](2—A('r'))‘1d2’l

=C,(t—s)s™**. _
PROOF OF (4.90). We have
JA®) e m4® — A(g)Pe74W ||
0

gcs rPereosot—sldz (0 (4.48))

1§ asera— A — (1— A(s) !
- Srz e (3— AH) " — (— A(s)) ]dz”

=Cylt—s|re-t 0
PROPOSITION 4.6. The estimate
4.93)  [A®)ER(t, 5)— A(r)ER(r, )| =Cslt—r)*(r—s)-t (T=t>r>520)
holds true 1f 0<B<1/2. |
PRrOOF. By means of (4.29), we have
(4.94) A@) R, 8)— A(r)PR(r, 9)=[A(t) 2 R,(t, s)— A(r)ER(r, 8)]
n StA(t)‘ﬁRl(t, DRz, 9)dz

+ S’[A(trﬁRl(t, 2)— A(r) P Ry(r, 2)]R(z, s)dz.

The estimate of the first term of the right hand side of (4.94) is given by (4.82).
In the next place, we note the inequality

(4.81") 1B, (2, )II=C,
which is proved in Kato-Tanabe [13], and get an estimate of the second term as

(4.95) S LA®) 2 | R, 2)]1- | Rz, 8)|dz=Cat— ).

Finally, the third term is estimated as
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(4.96) S’nA(t)-ﬁRlu, 2)— A tRy(r, 2)|- IRz, 9)|dz

§cﬁ§'(t—r)a(rr—z)ﬁ~1dz (- (4.82), (4.31))
=Cﬁ(vt——'r)“('r—s)5.
Thus, (4.93) has been established. |
Now, we give the
Proor oF LEMMA 2/. By (4.28), we have
(4.97) AR EW(E, s)—A(r) P W (r, s)
- StA(t)l‘ﬁe‘(“’““’R(z, s)dz

+ ST[A(t)I—ﬂe—(t—z)A(t)_A(q,.)l—ﬁe—(r—z)A(r)]R(z’ s)dz
- S‘A(t)l—ﬁe— -2 10[R(z, s)— R(t, 8)ldz

+ST[A(t)l—ﬂe—(z—z)A(t)__A(,,-)l—ﬂe— =240 . [R(z, s)— R(r, 8)]dz

3

+ {StA(t)l—ﬂe—(t—z)A(:>dzR(t’ S)

8

4 ST[A(t)l—ﬁe-%t—z)A(L)_A(,’-)l—ﬁe—(r—z)A(r)]dz,R(/r, s)} .

By (8.47) and (4.32), the first term of the right hand side of (4.97) is estimated
as

(4.98) St LAt -Pe= 240 || | Rz, 5)— R(t, 5)|dz

écﬂ,r,aSt(t—z)"‘l{(t—z)’(z—S)’T+(t—z)"(z—S)““"“l}dz
0<r<1,0<6<m)

=Cj,y ‘t(t—z)‘“‘l”(z—s)"ﬁ“‘r- (z—s)P'dz
Jr

+Cﬂ,5 St(t—z)ﬁ_”a(z.—s)-ﬁhx—a. (z—s)P-tdz

r

=GCg,; St(t—z)"‘l”(z—r)""i“‘TdZ(r—S)""1

r

+Cs,s St(t—z)“"”"’(z——'r')“”‘*“’dz(’r—s)’a‘1

r
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(in fact we can take y and 6 in —f+1—7<0 and
—pB+a—06<0, respectively)
ZCH(t—r)*(r—s)P1,

In order to estimate the second term, we recall (3.54) and (4.89) and obtain

(4.89') I]A(t)l’ﬁe" (-2 A4() ___A(,r)l—ﬁef(rfz)ﬂr) ”
é ”A(t)luﬁe" (:—z)A(n)__A(,),.)l—ﬂe—u—z).ur) “
+ ”A(,r.)l—ﬁ[e—~(z-—z)A(r) —e (r—z)A(r)]”
ZCs(t—r)r—2)*2.

On the other hand we have

(4.99) [ A(t)1-Be 240 _ A(p)1-Bg= (-4 |
Z||A(p)Be - 4w ”_{__”A(,r)l~ﬁe—(7—z)A(7‘) H
=Cy(r—z)F*

by (8.47), hence

(4.100) “A(t)l—ﬁe—u*z)zt(z)_A(T)l—ﬁe—(r—z)Akr) “
SCat—r)(r—2) =t (0=£=1, 0=8=1).

Therefore, the second term of the right hand side of (4.97) is estimated as
(4.101) SrlIA(t)l“ﬁe“‘*”‘“’) —A(r) e~ 24D [ R(r, s)— Rz, s)||dz

éCﬂ.r.axr(t—r)“('r—z)‘““a‘l{(r—z)T(z—S)”“r(’r—z)ﬁ(z—S)“"j‘l}dz

0<y<1,0<6<a)
ZCs(t—r)r—s)*! (in fact we may take J in a—p8<0).

The last term of the right hand side of (4.97) is rewritten as

z=1
-R(t, s)

r

(4.102) A(t)—ﬂe—(z—z)A(z)}

z

+{A(t)—ﬂe—(t—z)d(t)_A(,r)—ﬂe—(rkz)A(r)}]z:T,R(Ir’ s)

:A(t)—ﬂ{l_e—(z—r)Au)}R(t’ S)
+A(t)—5{6-(z—r)/t(t)_e—<z—s)A<z)}R(1.’ S)
_A(q,.)—ﬁ{l_e—- (r—~s)A(r)}R(,r, S)

={A®)PR(, s)— A(r)"*R(r, s)}

—e” UMW A)PR(E, 5)— Alr) P R(r, 5)]
—e DAL A(r)F— A())*IR(r, )

227
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__(A(t)—pe—(z—s)A(t)__A(t)—ﬂe—<r~s)A<L))R(/r’ S)
_(A(t)—ﬁe—(r—s)A(t)__A(q,-)-—ﬁe—(r—s).d(r))R(,r’ S).

The estimate of the first term of the right hand side of (4.102) is given by (4.93).
Similarly, the second term is estimated as

(4.103) fle~¢ 4@ | A®)R(, s)— A(r) ER(r, 8)||
ZCat—r)H(r—s)f .

Since the estimate
(4.104) HA@)2— A(s) 8| =Cplt—sl

is derived by (3.2) and (4.88), the third term of the right hand side of (4.102) is
estimated as

(4.105) lle= 4| | A(r)2— A@) Pl | R(r, s)|=Cplt—7).
By (4.89) the fourth term is estimated as

(4.106) HA(t)—Be— (=) A0 __ A(t)—ﬁe—(r—s)AQ) “ . ”R(’l’, S)”
=Ct—m)(r—s)f,

and by (4.90) the last term is estimated as

(4107) “A(t)—ﬂe—(r—s)A(t) __A(,r)—ﬂe— (r—8) A{r) “ . “R(’I", 8)”
ZCE—r)r—s)fL,

Thus, (4.40) follows. O

5. Proof of Theorem 2

Put
(56.1) un(t)=U,(t, 0) Pra,
56.2) wy(O)=U;({, 0)Pra (t=t.)
and
(5.8) e (O =us @) —u(f) (t=t.).

By means of (2.21) and (2.26) we have

5.4) ez(t+r>—ez(t>=St“[Ah(r)uh(w)—Ah<t+f>uz<t+7)1do~

t

= §t+r[Ah(’)')un(”') - Ah(t + T)un(t + Z')]d’)‘ ’—TAh(t - T)ez’-‘ (t+T) ’
k3
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hence

5.5) G b+ ) =1+t Ayt e () + (L e A t+2) ™
><S:“[Ah(o»)uh(f)—Ah<t+f)uh<t+f)1drr (t=t,).

Since

(5.6) €5.(0)=0,

we have

5.7) &(t)=Eilt) P

__3
k

=1

St" At e An(t)) (1 e An(Eas)) ™

tp—-1

<o (147400 AL U.(ts, 0)— A7) U.lr, 0)ldrP.a,
E:(t) being the error operator:

By virtue of Lemma 2, we have

69  —Eit)=1 y’“ (L rAy(E)) - (e Ay(8) Ayt o4 60 — gm0 ]dor

T Jtp—

+3 &”’ A A () - - e At AntP o ol 7, 0)dr

= gy

:(1+1Ah(tn))—1Ah(tn)Y“ [o-an 4w — g rin e |drr

tu—1
7—1 %
+ Y g Uit b Ap(t)le 4% —e 0 |dr

k=1 te—1

+3 St" Ut b Autf 2 ot 7, O)dr (0<A<1/2).

=t e

Supposing #=2, the first term of the right hand side of (5.9) is estimated as

(5.10) n<1+rAh<tn»-1A,,<tn>ugt“ lle=tmti ) — 4400 | dr

tn—1

gcz-lgt” (t—mr-tdr (- (4.89))

tp—1

SCrte¥ () t=CR T

By (2.32) and (2.34), the third term of the right hand side of (5.9) is estimated
as
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k=1

% tr
(5.11) > S E MUty b)) AP 1 Za, oty 7, O) e
b1
éCﬁ i‘ th (t—tp) Bt — )~ edy
k=1 1
gcﬂlz": (n— K+ 1) PeBoati(foc)—2
jo=1
:Cﬂfalf; (—k+1D)PEP<Cre (0 (3.20)).
=1
Therefore, we have only to prove

(5.12)

k=1

n—1(1p i
2 S * Uik, tk~1)Ah<tk>[e-trcAzzw—e""’“"””}léc’ .
tp—1

To this end, we note

w1t
(5.13) ”,Z S k Ui(ta, tiot) A, (E) 60640 @) — o748 G |l
=1 by
n—1 t
L N R
=t t—1

2

5 DU 1) A0 ] " Au(tle o0 —err )
=2

th—1
0<8<1/3).
The first term of the right hand side of (5.18) is estimated as

(5.14) :‘7:1 (n—k+ DI U5, 21 An(t) P - Stk | An(te)~Ple~ 4P —g=r 4 | dr
e=1 th—1
§Cgf§(n—k+1)—ﬁf-1-ﬁ§t" (—r)rt=idr (0 (4.89), (2.52)

th—1

§C{i:§1 (n—Ek+1) 2Pt (ho)ft
r=1
=T, (n—k+ ) HIZC (0 B20),

The second term of the right hand side of (5.13) is estimated as

7n—1 i
(5.15) 12 E=DNUiltn, 1) Anltn)? HS : 1AL (E)PLe %40 0 — =40 B |||
e=2

tp—1

S0 (=Dt # " mrirtar (: d8), 232)

tr—1

gcﬂg (o—1)(1—F-41)P~1c5~ 22 (fo— L)r) B~

=Cﬁ:§: (b—1)"*m—k+1P*=C (v (3.20)).



Full-discrete finite element approximation of evolution equation 231

Thus, (56.12) follows. Il

6. Proof of Theorem 1
We put
(6.1) E,¢, s)=U,(t, s)P,— U(t, s).

t
By operating S -dr on both sides of

8

(6.2 —aGT[U"(t’ PP B (r, )I=U,t, P A(r)P,—P, AUz, 5),
we obtain
6.3) PE, s)=§tUh<t, PIPLAT) — Ay PUGr, s)dr.

We introduce the so-called Ritz-projection R,(t): V-V, through the identity
(6.4) a (R, )v, D =a.(v,%) (e V,1e V).

Lax-Milgram’s theorem assures us of the well-definedness of R,(f). Since for
v€ D(A(t)) and x € V, the equality

(AL RO, D) =a,(R,(t)v, 1)
= a’t(v: X) == (A(t),l)y X)

holds, we have
(6.5) AR, (Hv=P,A(t)v.
Therefore, the equality

(6.6) Eh(t, S):(I—Ph)Eh(t, s)+PhEh(t1 S)
=EP@, 8)+EP(E, 9+ EP(E, 5)

follows, where

6.7) EP(, 5)=(1—Uy(t, PRt — DU, 9),
6.8) B, s>=§tUh<t, ) An(P) [ Bo(r)— Ry(DIUE, $)dor
and

(6.9) EP(t, 8)=XtUn(t, 1) Ap(r) P (B ()= DU, )= U8, 5)1dr.
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We want to prove |EY(t, s)|=Ch*/(t—s) for j=1,2,8.
Estimate of E (¢, s): The inequality (2.19) implies the following

LEMMA 8. The estimates

(6.10) [(Bu®)—1v],=Chlv], (we H2)NV)
and

6.11) [(Ru@®)—Dolo=Ch*v]. (we HX2)NV)
hold.

Therefore, by means of the elliptic estimate of Agmon-Douglis-Nirenberg [2],
we have

(6.12) IEL@, ) I=A+H1ULE, 9 [P [(R.@—DA® M- | AB® UL, 5)|
=Ch¥(t—s) (.0 (2.16), (6.11)). [
Proor or LEMMA 8. We put
2=(1—R,(t)v (wveHX)NV).
Then we have .
dllz[i=Re a,(1—R,®)v, 1—R.(&)v)
=Re a,((1—E,(H)v, v) (. (6.4)

=Re a,(A1—R.()v, v—2) (7 (6.4)
=ClA—R.@)vlllv—xl,

X being an arbitrary element in V,. Hence we get
l2l,=C inf [lo—xzl,=Chlv|;
xeVy,
by (2.19). The estimate (6.11) is given as follows by virtue of Nitshe’s trick:
Taking 2¢ V,, we have

fzlli=a.(z, A(t)*12)
=a((1—R.t)v, A)*2—2) (" (6.4)
=CIA—E.@)oll | A@)* 2—xll,,
so that

[|2113§Chllvﬂ2Ziglfhi!A(t)?"lz—xlll
=Ch* vl A *2ll.=Ch*[v],] 2]l
by the elliptic estimate. O
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Estimate of E®(t, s):
LEMMA 4. The estimate

(6.13) IR — RN, =Cht—s| lv]. (weHNQNV)
holds.

By this lemma and by the elliptic estimate, we obtain
(6.14) IE2(E, sl éStH U, (¢, 1) An@)]l- [(Ru(r)— Bo(O)A® - A UG, 8)lldr

gCSt(t——T)*“hﬂdr(t—S)‘l

=Ch*=Ch*/(t—s),

for
{2.25") 10, 8) A =CE—s)"
is obvious by considering the adjoint operator in (2.25). O

PROOF OF LEMMA 4. Let B,(t): V-V, be the Ritz-projection associated with
the adjoint form of a;; namely,

(6.4) a X Botv, =05, 1) (weV,%e V),

where a/%(,) is the sesquilinear form given by (4.55). In the same way as in
Lemma 8, the estimates

(6.10") (B ®—Doli=Chllvll: we HXQNV)
and
(6.117) IO —Dwlle<Ch2vl. (weHXQ)NV)
hold.

We put

z=(R,t)—Ru()veV,
and obtain
zlli=a.(z, A®)* '2)
=a,z, R(DAR ) (7 (6.4))
=a,(1—Ru(s)v, Bu(A®)*2) (0 (6.4)
=(a,—a.)(1—Ru(s)v, RiOARY'2) (0 (6.4)
=(a,—a)(1—Ry(s)v, (Ru(O)—DAE)*2)
+(@—a)(1— Ry(s))v, AR)*'2)
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=(a,—a.)(1—Ru(8)v, (Ru(t)—1) At)*1z)
+a,((1—Ru(8)v, (A(s)*-1— A(ty*1)z)
=(a—a:) (1= Ry(s))v, (B(t) —1) A(t)*12)
+a,(1—Ru(s)v, A—Ru)(A()* 1~ A®*Yz) (" (6.4))
=Clt—s| [(1— R (& IR — D AR 2|,
+ClA—Ru(s)vll: | (1— Ri())(A(s)* — A(t)* 1)z,
=Clt—slh®||v]l)lzl,
+CR* ol (At — A@)*Dzl, (. (6.10), (6.10")).
From the elliptic estimate, the inequality )
(6.15) CA(sy*1— Aty* 2], <Clt—s] 2],

follows. See, Tanabe [22], for instance. Therefore, we get (6.13).

Estimate of E(t,s): We note the equality

(6.16) | (t—9BPE, 9=2 FO(, 9),
where
6.17) Fo, s)=§t<o~~—s> Un(t, ) Au) PUR) —DIU(r, 5)— U, s)]der,
(6.18) Fog, s>=§t<t—r> Ult, ) A #) (Bo(r)— Ru(s)[Ur, 8)— Uk, )ldr,
(6.19) o, s)=gt<t—r>[Un<t, 1) AU — U, $) Ax(s)]

X Py(R(8)—D[U(r,8)— UG, 8)ldr,
(6.20) F(t, $)=—U,(¢, ) Au() Pa(Buls)—1) Stw—s)[w, )~ U, 9)]dr
and
(6.21) FP(t, 9)=U(t, 5)40(5) Pa(Bals)—1)(t—3)- St[mr, 8)— U, 9)]dr.
The following inequalities will be proved later for 0=8=1 and 0=Z¢k<a:
(6.22) “ U(t, 8)— U("'y S)“L2(9)~32<!)>

SCHE—rPr—s) P+t —r)(r—s)"1} (T=t>r>s=0).

(6-23) ” Uh(t: "')Ah("')— Un(t, S)Ah(s)”

SC{G—r) B —s)f+(t—r)t(r—s)f} (T=t>r>s=0).
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=G,

L2(-H2 @)

(6.24) | HS:[U(t, §)—Ur, 9)ldr

From these inequalities, we ean derive the following estimates:

629 IFPeol=] r—91U. DA
X HRu) =Dl w2 @y-2 @ 1 U, )= U, 9)llz20)-n2rdr
gcxhzgt(r—s)(t—frl{(t—w)ﬂw—s)-ﬁ-w(t—r)~(a~—s>~1}dr (- (6.22)
=Ch? s(0<ﬁ<1).

620  [FPE 9= S:(t—r)!l U, (¢, 1A
S Bl — Rt or-2coo | U, 9)— Ul 9)l120r-micandr
écshzY(T—S){(t——r)‘s(”r—s)""‘l+(t-—qﬂ)”('r—s)‘l}dr (" (6.18)
<Ch? s(0<ﬂ<1).

620 IFO¢ o))< Y(t—wn Uty ) Alr)— Untt, 8 48]
X “Rn(s)—lnzﬂ H-12¢) ” U(t, 8)— U(”', s) HL2 (.Q)—»H2<.Q>d”'
éthZSt(t—T){(t—T)‘l“ﬁ(T—s)"+ (t—7)"(r—5)7)

X{t—r) (r—8)" 1T+ (t—r) (r—s) Hdr (0 (6.23)
<CRr* (A=p=e>7>0).

6.28)  |FP, )lI=IULGE, 5) A9l

XN RA(8)— 1l 2 c0y~r2 (9>Stu U, 9)—Ulr, lza-r2 (r—s)dr

§Cﬂ(t—s)‘lhzgt{(t——r)"(’r—s)"*‘l—t—(t——fr)"('r—s)‘l}-('r——s)dr
<Ch (0<f<1).
(6.29) LEDE, I ZNULE, ) Ans)] - 1Ru(8) =1l z2 02y (E—S)

% St[U(r,s)—U(t, s)idr

L2 (@—H (D

<Ch®* (."(6.24)).
Summing up these estimates, we obtain

(6.30) IEP®E, HI=Ch*/(¢—s). 4
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In order to complete the proof, we show (6.22), (6.23), (6.24). To this end we

need

LeMMA 5. The estimates

(6.31) 1A@TUER, s)— A Ulr, )]

SCAE—7Pr—s) P+ (t—r)i(r—s) ™} (T=E>r>s=0)
and
(6.82) A UL, 8)— Au(@) Unlr, s)||

SCAE—rPr—s) - E—r)(r—s)"} (T=t>r>s=0)
hold for each B and r in 0=Z8=1 and 0=r<a.

PROOF OF LEMMA 5. The proof is similar to that of Lemma 2. In fact we
have

(6.33) AU, 8)— AP Ulr, s)
=(A{)e™ 04D — A(r)e= T4 L (AR WL, 5)— Alr) Wi, )

by (4.27). The first term of the right hand side of (6.33) is estimated by (4.100).
That is

(6.34) [A(t)e (L—S)A(t)___.A(,r)e—(r-—s)A(r) I
SCt—r)f(r—s)-t (0==1).

By (4.28), the second term of the right hand side of (6.33) is equal to
(6.35) ABDWE, s)— AlrYW(r, s)
zgtA(t)e‘ =24® R(z, 8)dz

+ ST[A(t)e— (=22 A0) . A(T)e— (r—2) A ]R(Z’ S)dz
=§tA(t)e‘<‘“”‘“” (R, 5)—R(t, 5)]dz

4 Sr[A(t)e—(t—z)AQ)_A(,r)e-*(r—z)xi(r)][R(z, S)—R(T, s)]dz

+(1—e 44D R(¢, s)— R(r, )]
_ (8— (t—s) A —e'(’—s>A<T>)R(’I', 3)'

Each term except the second one of the right hand side of (6.35) is estimated in
the same way as in §4. That is, we have
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(6.36) StnA(t)e*t-W I- 1Rz, 8)— R(t, 9)lidz

gcmgt(t—z)ﬂ{(t—z)f(z—s)*+(t—z>5<z—s>a-6-1}dz

(v (4.82) (0<y<1,0<6<a)
=Ct—nr)(r—s)™

(6.37) (A +lle 4@ R(t, s)—R(r, 9l

<G, AG—7)r—8) T+ E—r)r—s)= 7} (7 (4.32) (0<y<1,0<d<a),
and
(6.38) ”e—(t—s)A(t) __é~(7—s)A(7‘) ” . llR('r‘, s)ll

<CE—r)r—s)™t (. (4.100), (4.31)).

Finally, the second term of the right hand side of (6.35) is estimated as

(6.39) STIIA(t)e‘“‘Z’A‘” —A(r)e T 240| | R(r, 5)— R(z, s)|ldz

éCmSr(t—T)”(T—z)““l{(r—z)’(z—S)“T+(a'—z)ﬁ(z—s)"-ﬁ—l}dz (" (4.100))
=C (t—7)(r—s)*l+(r—s)* 1} 0<e<a—0)
=C(t—r)(r—9)7,

taking 0=x<7, 0. 0

PROOF OF (6.22). We shall only consider the case of the boundary condition
(2.4/), for the proof is simpler in the case of the boundary condition (2.4). We
take a € L*Q) and set

u(t, x)=(U(, s)a)(x).
On 02, we have

B(t, x, D)ult, )=0,
hence

(6.40) & (t, %, D)Yult, 5)—u(r, )
=(B(r, x, D)—F(t, x, D))ulr, ) (x€d).

One the other hand, we have

(6.41) o7, 2, D)(ult, x)—ulr, ©))
=(A®)U(t, s)a)(@)—(A(r)U(r, s)a)(x)
+[‘M(Ty &, D)—M(t, L, D)]u(/ry m)-
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We extend n=n(x) € C*(692), o=0(x) < C°(6.Q) to n=7(x) € C¥Q), 6=5(x) € C%2), and
put

(6.42) @, 0, D)= 3. A, m)%—l—&(t, 2) (telo, T1, v e D).
i,5= 2

Then, by the elliptic estimate we obtain

(6.43) UG, )= Ulr, s)lal.=u, )—ulr, )|
=C(o1t, -, Dut, -)—ulr, )1l
+1€2(¢, «, D)u(t, -)—ulr, )|z eo)
=CUA® U, 9)— A U(r, s)al,
+ (A, -, D)—2712, -, D)ulr, )|,
+IFr, -, D= Z, -, Dpulr, )]l
=CNAQUE, )= AU, - lallo-+E—r)ulr, -,
SCUADUE, 8)— AN U@, - lalo+E—rr—s)al) (. (2.16).

Thus, (6.22) is reduced to Lemma 5. |

PROOF OF (6.23). By considering the adjoint operator in (6.32), we obtain
(6.23). |

PROOF OF (6.24). We shall only consider the case of the boundary condition
(2.4"). We take ac L*(2) and set

ul(t, ) =(U(Z, s)a)(x).
Then, in the same way as in the proof of (6.22), we have

(6.44) S7s, 2, D)ult, 2)—ulr, x)]
=(S1s, #, D)—(t, ©, D)ult,z)
+ (S r, ©, D)—s, %, D))ulr, x)
+TA@BUE, 8)— A(r)U(r, 9)la)(x)

in 2, and

(6.45) (s, 2, D)[u(t, x)—ulr, ©)]
=(Z(s, », D)~ Z(t, &, D))ult, ©)+(F(r, 5, D)—Bs, x, D)u(r, x)
on 0f2. By the elliptic estimate we get

(6.46)

St[U(t, s)—U(r, s)ladr

2

St[uw, D—ulr, )ldr

2



[1]
[2]

18]
[91]
{10]
{11]

2]

Full-discrete finite element approximation of evolution equation 239
gC(u—s)n(&/(s, «, D)—57t, -, Dhult, o

+S’{n<&/<fr, ., D)— (s, -, D)ulr, s

+(B(w, -, D)— (s, -, D)ulr, ldr
(-9 (s, -, D=t -, D)ult, -)ul>
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S LA U, 5)— Al Ulr, s)ldra
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=Ct—9)llalo+Clall
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