On the semi-discrete finite element approximation

for the nonstationary Stokes equation

By Hisashi OKAMOTO

1. Introduction.

We are concerned in this paper and a forthcoming one mainly with the semi-
discrete finite element approximation for the nonstationary Stokes or Navier-Stokes
equation. Here “semi-discrete” means that we discretize only the space variables,
keeping the time variable continuous.

Recent study shows that the accuracy of the finite element approximation for
the stationary Stokes equation is analogous to that for the Poisson equation.
Among various works Bercovier and Pironneau [2] is worthy of particular notice
because of the following two characters; their elements are continuous and very
simple (piecewise linear or piecewise quadratic), yet the error is of optimal order
(compare it with the earlier work Crouzeix and Raviart [7]); the condition divu=0
is indirectly approximated by means of the linear relation (divw, ¢)=0 for all ¢
in a certain class of scalar functions, and the discretized pressure arises as a
Lagrange multiplier for some variational problem. Their work may be considered
as a special and concrete application of a general theory developped in Girault
and Raviart’s book [12], where they constructed an abstract theory for the mixed
finite element method, however, without obtaining optimal rate of convergence.

On the other hand, Fujita and Mizutani [10] gave another general method to
derive error estimate committed by finite element approximations for evolution
equations of parabolic type. Their error estimate for nonstationary solutions was
given in terms of the error estimate in the stationary problem. with the aid of
the Dunford integral. Actually they succeeded in obtaining optimal rate of con-
vergence for nonstationary solutions of parabolic equations without assuming
smoothness of the initial value (in the case of piecewise linear elements).

Our aim in the present paper is to show for the nonstationary Stokes equation
that we have optimal rate of convergence similar to that in Fujita and Mizutani
[10] when we use Bercovier and Pironneau’s finite element spaces. Our results
are valid whenever the initial value belongs to H, which is the set of solenoidal
L?-vector functions (for exact meaning see Section 2). In particular, the existence
and further regularity of the derivatives of the initial value is not required at
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all, which may be regarded as one of the merits of our analysis. In a forthcom-
ing paper we shall deal with the Navier-Stokes equation, where the dependence
of the error on the initial value will be studied in detail.

The present paper consists of six sections. In Section 2 we formulate the
Stokes problem and the scheme of semi-discrete approximation for them within a
framework of the operator theory. In Section 3 we derive an error estimate with
respect to H'(2)-norm, while in Section 4 an error estimate in L*(Q) is given.
Section 5 is devoted to error estimation for the pressure. Throughout the above
five sections the time variable is left to be continuous, but in Section 6 we shall
give some remarks about the full-discrete approximation. There we consider
the backward or the forward finite difference schemes with respeet to the time
variable.

After finishing this work we have been informed of Heywood and Rannacher’s
-recent work [18], which treats the same problem as ours for the Navier-Stokes
equation. They have obtained an optimal rate of convergence in a way quite
different from ours. Their method requires some estimates for du/ot or 9*u/ot®
(0<t), where u is the solution of the nonstationary Navier-Stokes equation. On
the contrary our method requires only [[u(0)[z2co,<oo or even [[u(0)]z1co) <o to
derive similar results. In particular, we need not estimate 32u/dt:t. For details,
see Okamoto [20].

The author wishes to express his sincere thanks to Professor H. Fujita for
his valuable advice and unceasing encouragement. He is also grateful to Professor

F. Kikuchi for his useful comments on some technical details of the finite element
method.

2. Notations and formulations of the problem.

2.1. Continuous problems.

Let 2 be a convex polygonal (or polyhedral) domain in R® (or R®. We in-
troduce the following symbols; X=H{(2)*--- the space of all R*-valued functions
defined in 2, which vanish on the boundary 92 and have all the first order de-
rivatives in L*(Q)* (k is 2 or 3 according as 2CR? or 2 RY).

M= {q & L(Q); qu(w)dx=o} ,

V={veX;dive=0 in 2},
H={ve L}2)*; divv=0 in 2, v-»=0 on 02}.
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Here n is the outerward normal vector on 02. As is obv1ous, X is a Hilbert
space with respect to the inner-product (u, v)y=(u, 7;)—!—2 (0w/ox;, 0v/ox;). Here
and hereafter (, ) means the inner-product of L2(Q)" or Lz(.Q) The norm of M
or H is the L* norm i.e., llql%= S lg@)?de, lula= S lu:(x)|2dx. Furthermore

H is the closure in LXQ)* of Cg,()={v=(v,, - ,vk)eC0 (Q); diveo=0 in 2} (see
Fujita and Kato [9] or Temam [22]).

Under these notations we can formulate the nonstationary Stokes equation as
follows:

Find ue C(0, cof: H)NCY(I0, ool: H) and pe€ C(10, col: M) such thal

@21 u)eV <),

(), (2.2) (duldt, v)+(Vu(t), Voy—(div v, pE)=0 (0<D),
for any ve X,
2.3) u0)=a.

For simplicity we have assumed that the external force is absent and the boundary
condition is homogeneous. We assume that the initial value ¢ belongs to H.
Now we eliminate the pressure p(t) and obtain the following formulation:

Find we C(0, oof: H)YNC (10, oof: H) such that

2.4 u@®eV 0<t),
), 2.5) (du/dt, v)+(Vu@), Voy=0 (0<?)
) for any veV,
2.6) w0)=

In order to study the problem (S), from the view point of abstract evolution
equations we make the following

DEFINITION. The self-adjoint operator in H associated with the quadratic form
(V-,V-) on V is called the Stokes operator and is denoted by A. Namely, A is
characterized by

D(A)={v e H; w—{Vv, Vw) can be extended to a bounded
funetional on H.} -+« (the domain of A)

and
(Av, w)=(Vv, Vw) (veD(A), we V).

Then we see easily that the problem (S), is equivalent to the following abstract
Cauchy problem:
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Find e C(0, cof: HYNCYJ0, cof: H) such that

du/dt+Au=0 (O<t)
(S)s
w(0)=a.

Since A is positive definite the problem (S); has a unique solution u(t)=e*a
according to the theory of semi-groups of operators (see, e.g., Yosida [23]). It is
well-known that for this u(f)=e*“a we can find out a unique pressure pe¢
C(]0, co[: M) such that {u, p} is a unique solution of the problem (S), (see, e.g.,
Temam [22] or Ladyzhenskaya [19]).

2.2. Semi-discretization of the problem (S),.

From now on we consider mainly the two dimensional problem for simplicity.
As for the three dimensional case, see the remark in Section 4.

Let us triangulate £ as usual and let {F,},50 be a regular family of the
triangulations of £ with the size parameter A (see, e.g., Ciarlet [6]). For each
h>0, .77, is composed of element triangles. Furthermore we introduce a refinement
ﬂi of .77 in the following manner. Element triangles of .7, are obtained from
those of 7, by dividing each element Ke.97, into four
equal triangles by segments connecting midpoints of the
side of K (see Figure I). Following Bercovier and

Pironneau [2], we introduce finite element spaces below.

X, is composed of all the continuous functions v,; 2— Figure I.
R? vanishing on 92 such that their restrictions v,|K onto
each triangle K eﬂi are polynomials of degree=1.

M, is composed of all the continuous functions ¢,; 2—R with Spqh(x)dx:()

such that q,|K for each K<€.7, is polynomials of degree=1.
Vi={vi € Xu; (vs, V@u)=0 for all g, M,}.

We note that X,cX, M, CMNHY2), however, in general V,& V. We regard

X,, M, and V, as Hilbert spaces equipped with the L*-inner product.
Denoting the L2-projection from L*%) onto V, by @,, we formulate the ap-
proximate problem as follows:

Find wu, € CH[0, co[: V) and p, € C(0, o[: M,) such that
2.7 (dus/dt, vi) + (Vats, Vo) + (05, VD) =0 (0<1)

SHr for any v, X,
2.8) %,(0)=Q,a.
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Similarly to the case of the continuous problem, we can eliminate p, from
(2.7) and obtain a formulation involving u, alone.

Find w, € CY[0, ool: V) such that
2.9)  (duy/dt, vi)+Vu,, Vu,)=0 0<7),

Sy for any v, €V,
‘ (2.10) %,(0)=Q,a.

The corresponding analogue of (S), is given by

’ 2.12) u,(0)=@ua,

where the operator A, is an approximation of A defined below.
DEFINITION. We define the self-adjoint operator A, in V, by
(2.13) (Anvn, wi)=Vu,, V) (W, W € V),

and we call 4, the discrete Stokes operator. Now it is easy to see that the probiem
(S)¥, which is equivalent to (S)#, has a unique solution uy(H) =exp{—tA,}Q.0.

Here we refer to the question whether (S)} is equivalent to (S)!, i.e., whether
we can find the diserete pressure p, which satisfies (2.7). We can answer to this
question affirmatively with the aid of Lemma 2.1 below due to Bercovier and
Pironneau, which requires the following assumption.

Assumption B-P: All triangles of -7, have at least one vertex in £ (not on
a8).
This assumption is assumed throughout this paper.

LEMMA 2.1. Under Assumption B-P there exists a positive constant § which
18 tndependent of h such that

(2.14) sup (Y0 > ggq 1, (g, M,).
vpeXy H?)n”o
(Here and hereafter || |l means the L’-norm.)

As for the proof of Lemma 2.1 we refer to Bercovier and Pironneau 2] or
Glowinski and Pironneau [13].

The importance of inequalities of the type (2.14) for mixed finite element
methods was earlier indicated by Brezzi [4] and Kikuchi [17]). Essential use will
be made of Lemma 2.1 when we derive order estimates of the error as h—0 in
later sections. It should be noted that in Lemma 2.1 the convexity of £ is not
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required.

With the aid of Lemma 2.1 we can show in the same way as in Bercovier
and Pironneau [2] that (S)! and (S)} are equivalent. In view of completeness let
us sketch the proof of the unique existence of the discrete pressure p,(2).

The uniqueness of p,(t) is immediate from Lemma 2.1. The existence of D,(8)
is assured as follows.

For each t>0 let ¢, be an element of X, defined by
(@2, Vi) = —(dun/dt, v,)—(Vu,, Vo) (v, € X3),

in terms of the solution u,(t) of (S)2. Then ¢, | V,. ¢, is continuous in ¢ <[0, oo,
since u,(t)=exp{—tA,}Q@,¢ is a Cl-function. On the other hand, we define a
bounded linear operator B,; X,—M, by

(B, ¢n)=(ws, Va,) (wr € X,, g, € My),

and denote its adjoint operator by B¥; M,—X,. Then we have

¢.€ V(= the orthogonal complement of V, in X,)
=(Ker B,)*
=R(B%) (= the range of B¥)

by the closed range theorem (see, e.g., Yosida [23]). Hence there exists .t e M,
such that for all v,€ X, we have

(Aunldt, v)+(Vaty, Vo) =—(@;, v,)
=—(B¥pu(t), v)
—(0u(1), Byvy)
—(Vp,(t), v,),

which implies (2.7). Since (B%)™* exists by (2.14), the continuity of p,(&)=(B¥) ¢,
in ¢ is obvious. Hence (S)! and (S)! are equivalent. Q.E.D.

Henceforth, in addition to Assumption B-P, we assume what is called the

inverse assumption, i.e., there exists a positive constant ¢ independent of % such
that

¢h< min W(K)

Keo,

where k(K is the length of the greatest side of K €.7; (note that A= max h(K)).

As a consequence of this assumption we obtain the inverse estlmate (see,
Ciarlet [6])
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(2.15) 11Wn1|1<ch’1liwhllo (w, € X1,

which will be used in Sections 3, 4 and 5.

Here and hereafter we denote the usual norm of the Sobolev space H*(Q) by
I {,. Furthermore we use the symbol ¢ to denote various constants independent
_of % which may be different in different contexts.

3. Error estimate in H(Q)%.
The aim of this section is to prove the following

THEOREM 3.1. There exists a positive constant ¢ which depends only on £
such that

(3.1 lu@®—u®) i =Zchlal/t  ©0<2),
where u(t) or u.(t) is the solution of (S), or (S)I, respectively.

The proof of this theorem will be given after we have prepared several
lemmas.

Tollowing Fujita and Mizutani [10], we start with the integral representation,

(3.2) w(t)—u () =e " a—e 41Q,a

=i.§ o5 {(z— A) ' —(a— A Q,ladz
27[’1/ r

where the path I” in the complex z-plane is taken as shown in Figure II.

wly

Figure II.

We put X={z€C; n/3=l|arg z|=x}. The following lemma was proved in Fujita
and Mizutani [10].

LEMMA 3.1. There exists a positive constant ¢ such that for any zeX and
any vE€X we have
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8.3 [zl o +lvli=elz(w, v)— (Yo, Vo).

Now we see from the formula (3.2) that the problem is reduced to estimate
(z—A)a—(2—A,)'Q,a. Therefore we put w=(z~A)'g and w,=(z—A4,)'Q,g
for arbitrary z€X and ge H. w and w, are characterized as follows: we V and
it satisfies the condition

(3.4) 2w, v)—(Vw, Vo)—(v, Vo)=(g,v)  (veX)
for some pe M, while w,€ V, and it satisfies
3.5) 2wy, V) — (th; Vo,)— (v4, Vﬂh) =g, Vp) (v, e Xy)

for some p, € M,.

Here p=p(z) € M and p,=p,(2) € M, are uniquely determined by the well-known
properties of V and by Lemma 2.1 (see Bercovier and Pironneau [2], Temam [22]
and the proof of the existence of Pu(f) in Section 2). Concerning w=w(z) and
WrL=w,(2), we need two Iemmas below, the proof of which are established by
means of Bercovier and Pironneau’s method for the special case z2=0.

LEMMA 8.2. There exists a positive constant ¢ such that for any ge H
and any 2€ we have

(3.6) 2] [|w—w,[l§+ lw—w, |3
é‘i,}?pfh{]z} lw—vu I3+ lw—w, 3

+e inf [[o—q,[3.
My
PROOF. Let v, be an arbitrary element of Vi Substituting w,—v, in (3.4)
and (3.5) for v and v,, respectively, and subtracting them, we obtain
2w —Wn, Wa—0) — (V(w—1w,), V(w,—v,)) +(diviw,—v,), p—p,) =0.
or equivalently,

3.7 z”'wh*'vh”g”““V(wh_vh)”%
=2(W— Vs, W =) — (V(w—v,), V(w,—v,))
+(div(w,—wvs), p—pn).

Since w,—», belongs to V,, we have for any q,€ M,
(3.8) (div(wh_'vh)y P”‘Ioh):(div(wh—’”h)y o—q,).
From (3.3), (8.7) and (3.8), it follows that
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(2] lwp—valli+ lwn—valli
=cl2(w—vn, wp— V) — (V(w—4), Viw,—vs))]
+el(diviw,—v1), 0—a5)]
=clzlV2|lw—wallol2* *lwn—vallo ¢’ llw—vallelws—valls
¢’ lwn—vallill o—aullo,

which, together with the inequality
st=<es?/2+1%/2¢ (s, t>0,>0),
yields

(3.9 12| |lwa—vall§ +Hllwa—wall}
Zellz| lw—v i+ lw—v]li}+cllo—anli.

Now (8.6) follows immediately from (3.9) and the obvious inequality |w—w,|;<
No—v,ll;+fvn—wnll; (7=0,1). Q.E.D.

LEMMA 3.8. There exists a positive constant ¢ such that for any ze€2
and g€ H we have

(3.10) inf {lz] lw—vall§-+llw—v.ll3}
eV,

<e inf {(|z|+A" )| w—yl5+lw—v.ll.

ypeXy

ProOF. Let 4, be an arbitrary element of X,, and consider the solution
{vs, 72} € X, X M, of the following problem:

(3.11) —2(Vs, Pn)+ (VU Vo) —(div @4, 74)
=—2(Yu, P) + V¥, Vo) (pn € X0,
(3.12) v, € Vs

The solution of this problem exists uniquely sinece z€X. We substitute v.—¥,
for ¢, in (3.11). Then we have

(8.13) —z2lloa— Y3+ V(0 — Y lls= — (0o —Ys, V71).
From (8.3) and (3.13) we have

(3.14) 12] loa— s IV —y)li= el Vs, vi—¥2)
=c|(Vr, w—yu)l,

since divw=0 and v, € V,.
On the other hand, we have
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(3.15) Vralle=ec{lz| H'vh—yh”o_l'h_l”vh_yhnl}s
which is a consequence of Lemma 2.1, (8.11) and (2.15). Namely,

IVrallo=p~* sup ns Vru)l
enedy feallo

—B sup 12(¥n—Yns 2) — (VW0 —Y1), Veou)
PheXp llenllo
Zecflzl lva—vallo+ 2 ve—ynl1}.

Now we obtain by (3.14) and (3.15)

2] fva—yalli+ lvn— w3
=c{lz| ”'vn_?/n”0+h—1”vn—?/h”1}”w—yh“0

=2l o= ali+ 12l lo— ol

L A AT
which implies
(3.16) 2] ]Ivh_yh[|%+“vh_yhlﬁéc(lzl+h—2)[|w_yh”(2)-
Then we have (3.10) by means of (8.16) and the obvious inequality

lw—vili=llw—wuls+1ya—v:ll;  (5=0,1) Q.E.D.

In order to obtain the optimal rate of convergence, the regulality result
8.17) DA=H*DNV, |Avi=clvl., lv.ZcllAvll, (veD(A4))

is required. In the case where £ is a convex polygonal domain in R?, which we
are considering, (8.17) is true due to Kellogg and Osborn [16]. On the other hand,
we have from the general theory

[AsGz— Ay Zelzl -t (0=a=1, z€3),

where || || is the operator norm in H. In this way we obtain
(3.18) lwllo=ll(z—A)glls=eclz|gll,

(3.19) lwll:=eclz17*"*[\gll,,

(3.20) lwl=elgllo.

REMARK 8.1. (8.17) assures that

we C(0, cof; H2(2)N'V), and hence pe C(0, cof; HD)).
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With the aid of the foregoing lemmas we can now estimate the error for
the resolvent, i.e., we have the following

THEOREM 8.2. There exists a positive constant ¢ such that for any g€ H
and any z€ X, |lw—w,l:Zchlgl, holds true, i.e.,

(3.21) [(z—A)g—(2— A" 'Qugli=ch]gllo.
Proor. From LEMMAS 3.2 and 3.3 we obtain
(3.22) IIW—wnlhécyig}fnh{IZIl’zllw—yhl!o+h‘1llw—yhllo+Hw—ynlll}
+cqhig§h lo—axlo-

In order to estimate right hand side we recall the following well-known results
(see, e.g., Bramble and Hilbert [3] or Ciarlet [6])

(3.23) Jnf llp—aqulo=ch|Vylo (7 HX@)NM)
REMp

(3.24) inf [E—yulli=ch®ICl. € HHQNHKD), 7=0,1)
YpeXp

(3.24) g Je=tlo=chlel: e Hy(@).

The standard estimates (3.23), (8.24) and (3.24) allow us to estimate the right-
hand side of (3.22) as

inf lo—allo=chliVol.,
apeMy

inf {|z12|w—vullo+ 2w —Yullo+ lw—uall:}
ype Xy

Zchlz|VHwl,+h ek |lwl]l -+ ehfjw.
=c'nlgle.

Here use has been made of (8.19) and (8.20). Thus we have [lw—w,l:=chligll.+
¢hllVell,. On the other hand, we have

(3.25) IVello=cllglle

by the equation Vo=—g+Aw+zw, (8.18) and (3.20). Therefore (3.21) has been
established. Q.E.D.

PROOF OF THEOREM 8.1. By virtue of the formula (3.2) and the estimate (3.21)
we have
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[l(®)— wa (&)l

g—zl—g o] | (e— A)ta— (e— A~ @uall|dz]
T Jr
gchgwe‘”/zllallodr:2ch[|a[lot”1. Q.E.D.

4. Error estimate in L2(Q)%.

Notations introduced in the preceding section will be used here and in Section
5. The aim of this section is to prove the following

THEOREM 4.1. There exists a positive constant ¢ which depends only on Q
such that the inequality

4.1 lu@®—u Bl =ch?tal, (0<P)
holds true.

This theorem is a direct consequence of Theorem 4.2 below. In fact the
same argument as in the proof of Theorem 3.1 is applicable to the present case.
Therefore we have only to show the following

THEOREM 4.2. There exists a positive constant ¢ such that for any ge H
and any z€2 we have |lw—w,l<ch*gls, i.e.,

4.2 ”(Z_A)_lg—(z‘“Ah)—lth“o§Ch2Hg”0-
We begin with the discrete version of (3.18), (3.19) and (3.25):

LEMMA 4.1. There exists a positive constant ¢ independent of h or z€X
such that

4.3) v lwallo=cizl~*gllo,
4.9 lwl:=clzl*2lig ],
(4.5) IVoullo=cllgle.

Proor oF LEMMA 4.1. (4.3) and (4.4) are proved in the same way as in Fujita
and Mizutani [10], p. 757, Corollary 3.4. Therefore we can omit the proof. (4.5)
is proved as follows. By means of Lemma 2.1 we have

(4.6) 1Voullo=5t sup 10m )l
wexn ol

By making use of (3.4) and (8.5), we see easily that
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(Vs v1) = —(g, V) — (Vws, VVu) +2(wn, v4)
= —2(w—wy, V) +(V(w—ws), Yva)+ (s, V).
Then we obtain
IVoullo=ellz| lw—wsllo+h lw—wsl+ Vol =cligl,
by (2.15), (8.18), (8.19), (3.25), (4.3) and (4.6). Q.E.D.

PROOF OF THEOREM 4.2. Our proof is based on Nitsche’s trick (see Bercovier
and Pironneau [2] Proposition 3).
Let {n, z} € XX M be the solution of the problem

4.7 —2(n, v)-+(Vn, Vo) +(v, Vo) =(w—w,, v)  (veX),
(4.8) neV.

Then we know

(4.9) ne HXQ)NV, e HXQ), lpl.+[Val=cllw—ws..
Substituting w—w, for v in (4.7), we have

(4.10) llw—walls=—2(, w—ws) +(V7, Viw—10,))
+{w—w,, V)
=— 29—y, w—wy) +(V(p—w,), V(w—1w,))
+(w—wy, V) —2(v,, w—10,) +(Vo,, V(w—w,))

for any v, € X;.
By making use of (3.4) and (3.5), we can rewrite (4.10) as follows:

4.11) fw—wull§=—2(—v4, w—w,) +(V(p—2,), Viw—w,))
+ (w—ws, V7)— (v4, V(0—p04)).

On the othér hand, by virtue of divw=0, w,€ V, and divy=0, we have for any
g€ M,

(4.12) (Vs V(o—02))=— (=01, V(0—00)),

(4.18) (W —1w4, V) =—(div(w—ws), T— ).

From (4.11), (4.12), (4.13) and the Schwarz inequality, we obtain
(4.19) Ilw—whllﬁévirelﬁh{lzl ln—vallollw—wallo

HIV@—=va) oIV —ws)o
+ llﬁ—vhlloHV(P—Ph)Ho}
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+ldiviw—w,)], inf lz—gllo
My

={ch*l2] [lw—wpllo+chllw—w,l,
+ch?[|[Vio—pu) o} 7]
+cllw—w,lch|Vzl,

=c'R*|lgllolInil2+ 1 Vz[lo)

=c”’h?||gllollw—wsllo.

Here we have used Theorem 3.2, (4.3) and (4.5). Thus we obtain (4.2). Q.E.D.

REMARK 4.1. So far we have dealt with the two dimensional problem. How-
ever, even in the three dimensional problem we obtain the same result if we
assume that
(4.15) DA)=H*2*nV, [vl.=c|Av],, [Av],=cllvli.
for any ve D(A).

Unfortunately (4.15) is not proved yet even for the case of a convex polyhedral

domain in RS2,

REMARK 4.2. In order to obtain optimal rates of convergence we need (3.17)
(or (4.15)) which is not valid for non-convex polygonal (polyhedral) domain 2.
However, even when £ is not convex, we can obtain strong convergence in Hi(2),
i.e.,

(4.16) [u@®—u @, —0 as h—0,

where the convergence is uniform in t€[¢, o[ for any ¢>0. To show (4.16), it is
sufficient to prove that

4.17) lz—A)tg—(2—A4,)'Quglli—0 as h—>0,

where the convergence is uniform in z on each compact subset KCJ3.
Let us show (4.17) briefly. Even if 2 is not convex, Lemmas 2.1, 3.1, 3.2
and 3.3 are still valid. Hence we have

Ilw—wnlllécvhirelgh{IZI”lew—vnl]ﬁ Ilw—vh]|1}+6qhi§)fjl le—anllo
=c{lzlV*lw—vllo+ [w—2vls+o—7llo}

+e¢ inf {|z|V2lo—vullo+lv—vili}+¢ inf [lr—aqulle
vy €V, ap €3y

for any rc HY(2) and any v H*(@)*NV (k=2 or 3).
Applying the same argument as in the proof of Lemma 3.8 to the second
term of the right side, we have
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(4.18) lw—w,l. Z el lw—wvllo+ lw—v]l+ | o—7l}
+chinf (U212 B Y lo—yullo+o—Yull} +c infh“’l"_(h”o-
yp e Xy qheM

Let ¢>0 be an arbitrary fixed number. By virtue of the compactness of K,
we can take L>0 such that for all z€3 there exists v,€c H¥Q)NV and r,€ HY(?)
satisfying

(4-19) ”vz“2§Ly “vz—wlhzﬂvz—w(z)lhés and “V'rzlloéLy IIP—Tz"oéS.

Then the first term of the right side of (4.18) is majorized by ce. The second
and the third term tend to zero as h—0. Therefore, we obtain (4.17). Further-
more, the convergence of (4.17) is uniform in z € K, since L in (4.19) can be chosen
independently of ze K.

5. Error estimate for the pressure.

The aim of this section is to show that [p(#)—p.@®)l, is O(h) as A—0. £ is
still assumed to be a convex polygon in R®.

LEMMA 5.1. There exists a positive constant ¢ such that
(6.1) Ndu/dt—du,/dello<cht>*|all, 0<D),
(5.2) VoDl e=ct Hall, ©<I).

PROOF. To show (5.1) we make use of

(5.3) lw—willo=Il(z—A)g—(2— A) " Qugllo=chlz| [ gll,,
which is a consequence of Lemmas 3.2 and 8.8. In fact, from these lemmas we
have
(5.4) IZP”IIw—whlloécyinf, {212+ lw—yall
rEXn

+Hlw—vall}+e inf lo—aullo
TR ey

In the proof of Theorem 3.2 we have already shown that the right hand side of
(5.4) is majorized by chlgll,. Hence we have (5.8).
Now differentiation of the formula (8.2) with respect to ¢ yields

du/dt—duh/dt::lfg v {(z— A) " —(z— A) Q) adz,
2ne T

whence we obtain by (5.8)
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ldu/dt—dw,/dt]l,

gLS [21**le” %] |21"*](z— A)*a—(z— A,) " *Qualloldz]
2z Jr

=cht=*"|al,.

To show (5.2) we note an inequality obvious from Lemma 2.1:

(5.5) 2.8l =p* sup 2 1wy Vph(t))l_
ueiy (vl

On the other hand, we have from the defining equations of u(t) and u,(t)
(5.6) (Vn, VOu(0)) = (du/dt— dun/dit, v2) + (V(u—1u), Vo) + (vs, V(L))
for arbitrary v,€ X,. Then from (2.15), (3.23), (5.5) and (5.6) it follows that

Vo llo=cllldu/dtllo+ | dun/dello+ b u—uyll, + | VD@l o}
=ct .

Here use has been made of
“duh/dt”o: 14, eXp{—tAh}QhaHoét‘l|]Qha[|o§t‘1l|al|o
which is obvious in view of the self-adjointness of A, and A, >0. Q.E.D.

By means of the above lemma we can prove that the error o) — 0., is
of optimal order. Namely, we have

THEOREM 5.1. There exists a positive constant ¢ which depends only on
2 such that

(5.7 2@ =0l ZchE 2+t ]al,  (0<8).

ProoF. We again use Nitsche’s trick. We start with the equality

(5.8) o) —p.®)llo= sup &, pO)— PO,
€1l

It is well-known that div; V*—>M is an isomorphism, where V* is the orthogonal

complement of ¥V in X with respect to the inner-product (V-,V:). (See, for in-

stance, Temam [22] or Girault and Raviart [12].) Hence for any €M we can
choose ¢ € X which satisfies

(5.9) dive=¢, [gl.=cll],.

Then we have for any ¢,¢€ X,
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(5.10) (&, p(t)—p.(t) =(div ¢, p(t)—p.(t))
== (P— Py, V(D(E)—Dpu(t))
— (B, V() —.(E))).

By means of (8.4), (3.5) and (5.10), we obtain

(&, p(O) —pu(t)) = — (¢— b, V(P(E) —p4(E)))
+(du/dt—du,/dE, ¢,)
+(V(u(t)—u,(®), Vo).

Then, by the arbitrariness of ¢,€ X,, it follows that

(5.11) (€, PO — a1 =Rl Bl VP@) o+ [V Da (@) [lo}
+ || du/dt—dun/dt|ocll¢ll+ cllul@) — w1l
Zc/BliElollallo(Et +170%).

Here use has been made of (3.1), (5.1) and (5.2).
Now (5.7) follows immediately from (5.8) and (5.11). Q.E.D.

6. Convergence rate of the full-discrete scheme.

In this section we make a brief study of the full-discrete scheme where the
time variable is also discretized.

In the first place, we deal with the backward difference scheme for time-
discretization combined with the finite element approximation for space-discreti-
zation considered so far. Namely, let >0 be the time mesh, and consider the
problem

6.1) Up(t+7)—up () +cApun(t-+7)=0 (t=nr, n=0,1,2, --.),
(6.2) %(0)=@ra,

or equivalently

(6.3) w®)=(1+74)"Qua  (t=nz, n=0,1, ---).

Then we obtain the following theorem, the proof of which is the same as that of
Theorems 6.1 and 6.3 in Fujita and Mizutani [10], and so is omitted.

THEOREM 6.1. Under the above situation we have
(6.4) [un@®le=1  (E=nz, n=0,1,--+),
(6.5) lu@—un®lloZch*+o)tall, (E=nc, n=0,1,--.).
where u(t)y=e*a, u,E)=UT+74,)"Q.a.
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In the next place, we consider the forward difference scheme, i.e.,
(6.6) Uy (E4-7)— Uy (£) 7 A 0, (8) =0 (t=n7, n=0,1,2, --+),
6.7) 1, (0)=Q,a.

Then the approximate solution is u%,(t)=(1—74,)"Q.a (n=0,1, -+.). The following
theorem is essentially an application of Theorem of Fujita and Mizutani [10].

THEOREM 6.2.
i) If the condition

(6.8) o] 4,=2 (x>0, h>0)

1s satisfied, then we have the stability in the sense that

(6.9) lA—zA)=2 (n=0,1,2,--).
ii) If the condition

(6.10) sup || 4,1 <2
T, h>0

18 satisfied, then we have the error estimate
(6-11) ”e_tAa—(1—7Ah)th,a”0§c(h2+T)tH1”a'”0 (t:nfy nZO! 1’ 2: M ')-

REMARK 6.1. The stability condition (6.8) is equivalent to

(6.12) (V90 V0) g1,

e [1alls
According to the inverse estimate (2.15), there exists a constant ¢, such that
IVéallo=coh™Idulle  ($re X0,
and, therefore, the stability condition is satisfied if
(6.13) T/h?=2¢;°.

REMARK 6.2. More sophisticated time-discretization, for instance, the Crank-
Nicolson scheme, can be dealt with similarly (see, e.g., Fujita and Mizutani [11]).
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