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Introduction

In a previous paper [4] we constructed a certain class of theta-functions
associated to rational quadratic forms of signature (n, 1). These functions, which
are holomorphic Siegel modular forms of weight (n-+1)/2 and genus n, are
direct generalizations of Hecke’s elliptic modular cusp forms of weight 1 as-
sociated to real quadratic fields (the case n=1). When the quadratic form in
question is anisotropic over @, our Siegel modular forms are once again cusp
forms, as in Hecke’s case. However, when the quadratic form is isotropic (e. g.
n=4), we were only able to obtain our functions under a certain technical con-
dition [4, p. 5217 which excluded certain “singular” theta-series, whose integral
is not termwise absolutely convergent. Unfortunately this technical restriction
did not allow us to determine the behavior of our functions at an arbitrary cusp
and was inconvenient for several applications. In this paper we will use a
method, employed by Shintani [8], to compute the integral of the “singular”
theta series and thereby eliminate the technical condition of [4]. As a conse-
quence, we will show that our functions are not, in general, cusp forms in the
isotropic case.

We now give a more precise description of our result.

Let V(Q) be a rational vector space with dimgV(@)=n-+1, and let (,) be a
non-degenerate symmetric bilinear form on V(@) with signature (n, ). Let LC
V(Q) be a Z-lattice and assume that the dual lattice

L*={veV(@)| (v, v)EZ, W' el}
contains L, i.e. L¥DL. Let
GC@)=1{geSLV@)| (gv, gn=Q, v) Yvel}

be the special orthogonal group of V(Q), (,), viewed as an algebraic group over
Q. Let

IL)y={geG@Q)| gL=L and g acts trivially in L*/L}.
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We fix a subgroup of finite index I'CI(L)NGY(R) where G%R) is the connected
component of the identity of G(R).
For r€$,, the Siegel space of genus #, and for he(L*/L)", let
1
. . — -1, 2
0.1) 94k, L= 3 oX)| Tl Ze(5tr (X, X))

(X, X)>0
mod [”

where e(X)==+1 is a certain “sign character” defined by (3.1) and |I'y] is the
order of the stabilizer in I” of the frame X. This series is absolutely convergent
and defines a holomorphic function of r=9,. Moreover, if V(@), (,) is aniso-
tropic, or if he(L*/L)* is non-singular as defined in §2 below, then %(¢; i, L)
is, in fact, a holomorphic Siegel modular form of weight (n+1)/2 with respect
to a certain congruence subgroup of Sp(n, Z). This was proved in (4] by in-
troducing a non-holomorphic theta-form O(z; h, L) given by (2.3) below. The
series (2.3), whose transformation behavior with respect to the action of Sp(n, Z)
on r was given in [4], determines a [tinvariant n-form on the space B of
majorants of (,) on V(R). For any V(Q), (,), L*DL and h, the form @ is L?
on a fundamental domain for /" in B, and so the integral

©0.2) Ie:h, L: F):gF\B@@; h, L)

is well defined. On the other hand, when V@), (,) Is anisotropic or & is non-
singular, the integral of the series (2.3) is actually termwise absolutely con-
vergent so that we may compute it term by term to obtain

0.3 Iz h, L;IMy=2"29%c;h, L;I.

In general the integral of the series (2.3) is nof termwise absolutely con-
vergent. More precisely, let [, -, [, be a set of representatives for the /-orbits
in the set of isotropic lines in V(@). Then we can write

0.4) O=G++ é}@(i)

where ©* and @ are I'invariant n-forms on B given by (2.18) and (2.19) of
§2 below. If we let % and #% be the series (2.20) and (2.21), obtained by
summing the pointwise norms of the terms in ©+ and O®, then 6% is rapidly
decreasing at every cusp of I'\B and 6% is slowly increasing at the cusp cor-

responding to /; and rapidly decreasing at all other cusps. Thus, as before, we
can integrate ©* termwise to obtain

0.5 I*(@, b, L, IN=2""1*9%z, h, L, I)

where I*(z, h, L, F>:Sr B@". However, the “singular” integrals
\
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0.6) 9, h, L, F):Sm@m

must be computed by another method.

To compute I we introduce the Eisenstein series E(z, s, L) defined, for
Re(s)>n, by (41). This series has a holomorphic analytic continuation to the
half-plane Re(s)>n—3/2 except for a simple pole with non-vanishing residue at
s=n—1. We then define the wave packet

©0.7) £z, s)=—1 X""”“’ B o L)
: % T 270 Jog-ie s—p % P e

where n—1<p,<Re(s). Then

0.8) k= lim (oc—n+1)é&, o)
g(n-1)+
is a finite constant and
() — 1, i _ S5
©0.9) Sm@ e lim (o n+1>§F\Be<z, PICH

On the other hand, for Re(s)>n-3 the integral on the right hand side of (0.9)
can be computed term-by-term. By analytically continuing the resulting expres-
sion—Propositions 4.5 and 4.6—we obtain an explicit formula for I e, h, L, I—
Theorem 4.7. As a consequence we obtain our main result—Theorem 3.2—which
describes the “singular” term 9%z, h, L, I") which must be added to 9*(r, h, L, I
to obtain a Siegel modular form when £ is “singular”.

The functions 9(z, h, L,I"), for general h, have several applications. In
particular we hope, in a later paper, to give a geometric interpretation of the
singular term 9%z, k, L, ") in terms of the boundary behavior of the totally
geodesic cycles of [5] in the non-compact case.

I would like to thank the Institute for Advanced Study for providing a
stimulating and congenial research environment during the academic vear 1980/81.

§1. Preliminaries.

We retain the notation of the introduction.

1.1. Let
B={ZcV(R)| (Z, Z)=—1}°

be one component of the hyperboloid of two sheets in V(R). We fix an orienta-
tion of V and determine an orientation of B by requiring that, for every prop-
erty oriented basis {wy, -, wa} for TxB)=Z* (see (1.18)) the basis {w,, -,
wa, £} is properly oriented for V. Observe that the action of GYR) on B pre-
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serves this orientation. We also identify B with the space of majorants of (,)
by defining, for Z< B, the majorant

(,) on Z*
(1.1) (7)Z:
—(,) on RZ.

1.2. As in the introduction, let [, -, [, be a set of representatives for the
Torbits in the set of isotropic lines in V(@). Choose vectors wu,, ==, u, Wwith
u;€ L primitive and such that

1.2) Li=Qu;
and
1.2y (uy, £2)<0 YZeB.

Also choose g,€GYQ)=G@ NG (R) such that
1.3) Giko=U3

and with g,=1.
We choose a properly oriented Witt basis uo, v5, =+, Va1, ug for V(@) with
(wo, ub)=—1/2, (ug, up)=(us, v:)=(uo, v)=0 and set
=y, v e M, Q).
Then Q=!Q>0 and

—1/2 \
(14 ()~ Q .
v —1/2 /
Let P be the Q-parabolic subgroup of G defined by
P(@={g=G@)] glo=1}.
Then
I 2'xQ QLxl
1.5) N@)y=4n(x)=! lnss x xe@r?
\ :
is the unipotent radical of P(@) and
t
(16) AQ={at=| L. ||te@
\ 1
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is a maximal Q-split torus in P(Q). Here Q[x]=!xQx.
Since we assumed that (Z, u,)<0 for all Z<B, fix

1
1.7 Zy=| 0 |eB.

1
Let

K={g=G(R)| gZ=Z,}

be the corresponding maximal compact subgroup of GR). Let

1
M= m meSO(Q)R)
1
so that
M=P(R)NK.
Then we have decompositions
(1.8) G (R)=N(R)AR)K
and
1.9 PYR)=N(R)A(RYM

where PY(R)=P(R)YN\G*(R) and A’ R)=A(R)NGYR).
For te R}, let

(1.10) Ar={a@tYc A(R)| t'>1}

and for an open, relatively compact subset wCN(R), define the Siegel set

(1.11) =wAKCG(R).

Then by [1, Théoréme 13.1] there exists a Siegel set GCGYR) such that

(1.12) G (R)=\Ul'g,©
and
(1.13) B=\UIlg,&

where &' =6-.7,.

1.3. Let
B={z=(z,, z) € RIX R™" | 2,—Q(z,)>0}

443
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and define an isomorphism

(1.14) ¢: B~ B
z+—> P_(2)(z0— Q(z)) """
where
<o
(1.15) P.(2)=| z, |eV(R).
1

For g=G%R) and z= B we define the automorphy factor u(g, z)€ R} by
(1.16) gP(z)=P-(gz2)(g, 2)
where we define the action of G(R) on B via ¢. Also define
t: G'(R)— RX
by the condition
'(1.17) g=n{x)alt)k
with t=#(g) for the decomposition (1.8). Finally, for ze B and Z=¢(z)€ B we let
HZ)=t(z)=1(g)

where z=g(l, 0). Note that then Z=gZ, By an easy calculation we obtain:

LEmma 1.1,

) Hg=wueg, I, 0"

i) Hgz)=plg, 2)"()

i) t2)t=z,—Q(z1) when z=(z,, z.)=B
iv)  ulg, 2=2|(uo, gP-(2)].

1.4. For Z=B we observe that the tangent space Tz(B) to B at Z can be
canonically identified with Z* i.e.

(1.18) TAB)y=Z"*.

The inner product (,) then determines a G°(R)-invariant metric on B since its
restriction to each Z* is positive definite. Let dp denote the corresponding in-
variant volume form on B.

Let C(B) denote the space of continuous functions on B. For g;eG%@Q) as
in 1.2, and for Z<B, let

(1.19) t(Z)=tgi’Z) .
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Then for r= R we define a semi-norm p,(») on C(B) by setting
(1.20) pUrNN= SURHZY | f(giZ)]
= sup L(Z)|A(Z)],
Zegie!

where &' is the Siegel set in B chosen in 1.2. We also let

(1.21) p)(F)=sup pr)(f)

and, identifying C(I"\B) with C(B)”, the [“invariant functions on B, we define
(1.22) CAI'\B ;n)={feCI'\B)| p(r)(f) <o}

and

(1.23) C(I\B ; )={feCU\B)| p(r)(f)<oo}.

LemMma 1.2, If r>1—n, then
C(I'\B ;n)CLXI'\B, dy).

§2. A theta series and its singular terms.

For ZeB, XeV(@)" and r=u-+ived, we let
2.0 (X, X)e z=u(X, X)+iv(X, X)z
where (,)z is the majorant associated to Z, defined by (1.1). We then define an
n-form @(r, X) on B by
2.2) Ble, X)z(W)=det v'* det (X, W)e(—;— tr (X, X)..z)
where W=(W,, ---, W,) with W, eZ+=T,(B). Finally, for he(L*/L)" we define
a [tinvariant n-form on B by
2.3) O h, L)= > O, X).

Xen+L?

For convenience we shall sometimes omit the dependence on 7 and write @ or
O(h, L) for O(z; h, L) and O(X) for O(z, X).

We want to consider the convergence of the integral (0.2) of the introduc-
tion. Write

(2.4) O(h, LYy=0(h, L)dp

where 6(h, L) is a [linvariant function on B.
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PROPOSITION 2.1.. The n-form @Ch, L) defined by (2.3) is L* on I'\B, i.e.
6(h, Lye L\I'\B, dp).
Proor. First note that for g=G%@Q),
(2.5) 6(h, LXgZ)=0(g™*h, g7 L)Z).

Therefore, by (1.13), it will be sufficient to show that, for arbitrary 2 and L,
6(h, L) is in LY&").
Next choose MeZ-, such that, for the Witt basis chosen in 1.2, we have

(LNY*DL*DLDL!
where L’'=MZ"*, We then have

(2.6) Oh, Ly= 3 O, L")
hde

and

2.7 0(h, L)= 6h’, L.
skt

Thus it is sufficient to prove that each @(h’, L") is in LY&").
Let W, be the properly oriented orthonormal n-frame in Z§ given by

0 1
2.8) We=—| T 0
0 -1

where TeGL;_(R) such that 'TQT=1,... Then for Z=n(y)ta()Z,€& we
have .

(2.9) O(h', L'YZ)=detv"* 3 det(Y, W(,)e(i tr (¥, Ve, z,)
X=hi(L) 2

where Y=a()"'n(y)X. Note that if

Xo
X= X1
Xg
then
Yo PN x0+20yQx+QLy1xs)
{2.10) Y= 5 |= X1t+yx, ,

Vo tx,

where x,=h{~+x} and *x} runs over MZ". We now apply Poisson summation
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to the sum on x; and obtain, after a straightforward but lengthy calculation
which we omit:

(2.11) g(h', L'XZ)

=—Cdety 4™t 3> det AWt e(—l— tr (@Ly :H—lz'tzv‘x x ))
tyei~1zn e 2 ! 2 e
Ilshi(M)

Toz=hyp(M)

Xe(—alw)exp <—27rt2(w—ixzu>v“1t<w—lx2u>>

2 2
where
(2.12) a=hi+2'yQx1+QLylx,
and
(2.13) C=iM™"2"*" det Q2.

To estimate |6(h’, L')| on & note that all terms in (2.11) are exponentially
decreasing as t— oo except those for which x,—w=0. But the coefficient

2w—x,F
det
Y1

vanishes for such terms, and so #(h’, L’) is in LY(&’) as claimed.
Next we write

2.14) D(X)=p(X)dp
and consider the series

(2.15) Oxh, Ly=_3 1p(X)].

h+L

It was shown in [4], Proposition A, that #.(h, L) is not, in general, in L'\ B).
We need more precise information.
First note that @(X)=0 if dimgspan X<n. Let

. Fr,={X&V(@)"| dim, span X=n}
and for each isotropic line /CV(Q) let

S()={XeFr,| [, span X}.
Also let
S n=&lJ Sa(D)

and, for any subset A of the set of isotropic lines in V(Q), let
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et
We will call S, the set of “singular” frames in V(Q).

LEMMA 2.2.
1)y Fro=Fri S,
where

Fri={XeFr,| (,)span x 75 non-degenerate}.
ily If I+, then

Sa(DNS.(N=3
so that

Sn:IT[ Sa(0).

Proor. To prove (i) observe that if XeFr#, then (span X)* is a line on
which (,) is definite, either positive or negative. Therefore Fri N\ S, ()= for
all /. On the other hand, if XeFr,—Fri, then (,)|can x is degenerate and

{x=span X N {span X)*

is, by signature considerations, precisely the isotropic line such that X<S,(0).
This proves (ii) as well.

If [, ---, [, are a set of null lines as in Section 1.2, then

(2.16) Sp=I1S.(["-15).
We then obtain a decomposition of @(h, L) into I-invariant n-forms
(2.17) Oh, Ly=0*(h, L)+ 0%, L)
given by:
(2.18) O(h, L)y= > D(X)
XEh+LMNFrE
and
(2.19) OD(h, L)= > (X).

Xeth+L™MNSp (L 1)

We also consider the series

(2.20) wWh, L)= > lo(X)]
XEh+L™MNFry

and

2.21) 09, L)= > lo(X)1.

Xeh+LMNS (I 1)
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PROPOSITION 2.3.
i) 0%k, LYeCU'\B;r) Vr
iiy 0¥(h, LYeC{I'\B;r) for r<—(n-+3)
and
08h, LYeC{I'\B ;) Yr if i#].

ProOF. If Z&®’ and if g,€G%Q) is as in Section 1.2, then

09(h, L)(g,2)= > ) (XX D).

XEgF18n I IppngFln+Ln

Now the proof of Proposition A of [4] actually shows that, for arbitrary A’
and L/,

o™+ if [=l,
lp(XNZ)| ={

>
XES AT +(LH) 0(e~c*) otherwise

on &', Since
Sl g7 Sl 1)

if and only if g;S,()=S.()CTS.(-1), i.e. i=j, we obtain (ii). The first state-
ment follows immediately from Proposition A of [4] and its proof.
We can now make the following :

DEFINITION., he(L*/L)"* is non-singular if (h-+L™HNS, (D= for all iso-
tropic lines / in V(@). Note that any A which is non-singular in the sense of
[4] is necessarily non-singular in the sense just defined.

Combining Propositions 2.1 and 2.3 with the results of [4] we obtain the
following :

COROLLARY 24. If h is non-singular in the sense defined above, then the in-
tegral (0.2) can be computed term by term and the Sfunction
Iz;h, L;IMN=2""29%¢;h, L)

is a holomorphic Siegel modular form of weight (n+1)/2 whose precise trans-

formation law is the same as that of the function 9(z ; h, L ; I, given in Theorem
3.2 below.

§3. The main theorem

Before stating our main result we recall and extend the definition of the
sign function (X). If XeFrt, then there is a unique point Z=B N (span X)*.
In this case we define, as in 47,

+1 if X is properly oriented in T,(B)=span X
G.1) e(X):{ ?

—1 otherwise.
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Next for X85, let
3.2) {x=(span X) N (span X)*

so that X&8S,(/x), as in the proof of Lemma 2.2. Now [, and in fact any null
line in V(Q), has a distinguished basis vector uyx determined by the conditions
(1) Ix=Quyx (i) (ux, Z)<0 YZEB, and (iii) uy is primitive in L. Choose any
null line /'CV(R) such that I’+Iy=H is a hyperbolic plane, and note that

3.3) span X=I[y+H*.

Let u’ </’ be a basis vector for !’ satisfying (ii). We then obtain a distinguished
orientation for H* by requiring that, for any properly oriented basis vy, ***, Uz-1
for H*, the basis ux, vy, -+, Un_1, %’ is properly oriented for V(R), with respect
to the orientation of V(R) fixed in Section 1.1. Then define

+1if X and {ux, vy, v1, =, Un-1} determine the
B4 e X)= same orientation of span X

—1 otherwise.

Note that ¢(X) is independent of the choice of /’ since the stabilizer G(R), , of
ux in G°(R) acts transitively on the set of such /s and G%R),,=NR)M is
connected.

If X=8S, there exists an a€Z”, ¢+0 primitive, such that

(3.5) X-a=vuy
with ve@. Note that X determines a uniquely up to +1.
DEFINITION. A frame Xe&8S, is reduced if there exists a choice of acZ?,

a+#0 primitive, such that v<[0,1). If X is reduced this choice of a is unique
and we let

(3.6) v(X)=v.

Note that if X is reduced and yeI'(L) N\ G°(R), then yX is also reduced and
v(X)=u(r X).
The following is then easily checked:

LeMmMmA 3.1.. If a€Z", a+0 primitive, choose a’€Z™ such that *a’a=1. If
XeS, 1s reduced with respect to a, then

X=X——uX‘a’

s reduced with respect to —a,
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y(X)=1—u(X)
and
Bl(”(X))E(X):Bl(y()?))5<)?> ,
whevre
[ a—1/2 if a=0, 1)

Bl(a)z] .
0 if a=0.

The main result of this paper is the following theorem, whose proof will be
given in Sections 4 and 5.

THEOREM 3.2. Assume that I’ is torsion free. Let

9, by L D=1 % BOE)e(Xe( 5 tr (X, X)),
27 rqhigons 2
mod

where By is as in Lemma 3.1 and (X) is defined by (3.4). Let
Yz, b, L, N=9%, h, L, [V+9*(, h, L, I')

where 9+(z, b, L, I') is given by (0.1). Then Hc, h, L, I") is a holomorphic Siegel
modular form of weight (n+1)/2.
More precisely, if NeZs, is such that NL*CL and N(v, v)€2Z for all

v, v’ L*, then for all r=(f (’1’ )el’o(N)CSp(n, Z) such that tr(Xa, Xb)s2Z
and tr Ve, Yd)€2Z for all X, YeL®:
Gz, h, L, I=A7)ab, d; L)ydet(co+d)+b/2

%o tr(Gh, WD) 9, ha, L, T)
where A(7)*=1 and

a(b, d; Ly=|det d|*D/2 Etd e %tr((X, X)bd“)).

XeL/L

Moreover, if n is odd and (v, v)=2Z for all v, v L, then

Iz, b, L, F)=x(d)det(cH—d)"”””e(—;— tr ((h, Wb'))9(z, ha, L, T)

where

a __1\(m+1/2
X<d):((—11§—;ﬁ) (sgn det d)»-D12

Here d=det((v;, v;)) where {vy, -+, Vn41} is @ Z-basis for L.

REMARK. 1) When n=1 and h is singular 9z, h, L, I") is precisely Hecke’s
Eisenstein series of weight 1 [4, Theorem 3.27.
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2) The Fourier coefficients of 9(z, h, L, I') are rational and in fact have
bounded denominators. To see this observe that if MeZ, such that Mhe L”,
then for any reduced X in h+4L™

My X ux=MX-as L a=L
so that My(X)eZ.

§4. Eisenstein series.

In this section we summarize certain facts about the simplest type of
Eisenstein series for SO(n, 1).
For ze B and s<C define

@1 EG s, Ly=_ 3 |, P(2)] 1)
(u, u)=0

where the notation is as in Section 1.3. By Proposition 5.4 of [7] this series
converges absolutely in the half-plane Re(s)>n. We note that, by Lemma 1.1,

“.2) E@ s, =23 3 RGP OO}

i=1 rel 3\

=23 B (e’

i rel )\

where Ii={rel’| ru;=u;. Thus, up to the factor 2°*!, E(z, s, L) is the sum
over the various inequivalent cusps of I” of the standard Eisenstein series for
the constant function. It therefore follows from the standard theory of such
series, [61, [2], that E(z, s, L) has a meromorphic analytic continuation to the
whole s-plane with at most simple poles lying in the interval [1—n, n—1], and
has a functional equation relating E(z, s, L) and E(z, n—1—s, L). In fact we
will only be interested in the behavior of E(z, s, L) in the half-plane Re(s)>
n—3/2 and the facts which we need can be proved by direct calculations which
we omit.
For convenience we assume that

Then there exists a lattice 4;CQ™"! such that

(CXY) Fi={gn)g* | e 43}.
Let
“.5) Ar={e@ ' 1icZ for all Ved;}

be the dual lattice of A..
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PROPOSITION 4.1. The Fourier expansion of E(z, s, L) with respect to the
translations of I is

7 21'(v)

——8+148 . > 7
Bz, s, )=2""+Co 5 S

C(s)_lDi(S; O: l‘)tn_l_8

2z° ., t
Ty B Dl & DAl s, Delth)

A#0

+C

where z=g;n(x)a@)l, 0)eB and t=tz). Here
vzs—%(n—l)

Ci=det Q V2vol(R" /4,
and

Edt, s, D=1"Q7 (A" K (2xtv/ Q7 ()

with K, the usual Bessel function. Finally the Dirichlet series Dy(s, 2, L) in the
A-the coefficient is given by

Di(S) /2} L): EL |(u7 ui)l_s(ﬁi(l} u)

ucs

(u, 1)=0
(u,u{)*0
mod I'§
where, if
a
gilu=| b
[

with respect to the Witt basis of Section 1.2,
&2, uy=e(—c 'Ab).
An analysis of the Dirichlet series Dy(s, 2, L) yields the following:

PROPOSITION 4.2. (i) The function {(s)™Dy(s, 0, L) is holomorphic in the
half-plane Re(s)>n—3/2 except for a simple pole with non-vanishing residue at
s=n—1.

(i) For 20 the function £(s)"*D(s, 2, L) is holomorphic in the half-plane
Re(s)>n—3/2 and there exist a constant C>0 independent of 2 and s and a func-
tion C(s)>0 bounded uniformly in vertical strips such that

|L(s)™ Dils, 2, LY SC($)QHA)Re+C
The analytic continuation of E(z, s, L) follows.

COROLLARY 4.3. (i) The function E(z, s, L) has a holomorphic analytic con-
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tinuation to the half-plane Re(s)>n—3/2 except for a simple pole with non-zero
residue at s=n—1.

Gi) If
Eitz, s, L)=C; I%g) 71 5 LS IDAs, 4, LEAL, 5, De('ax)
Ae/l'i

in the notation of Proposition 4.1, then for Re(s)>n—3/2 and z such that t:(z)>
e>0 for some e,

CGs, €)
T (o+1/2)I(s) |

where C(s, &) is bounded uniformly in vertical strips and C>0 is a constant.

|EYz, s, L) =

f,;(Z)"/Z—le_”i(z)

We now state the analogue of Lemma 2.9 of Shintani [8]. Let ¢(p)=e°"
and define &(z, s) by (0.7).

LEMMA 4.4. (i) &(z, s)eCU\B, Re(s)—n-+1).
(ii) For all 4,
sup [(o—ntDetz, 0)] <eo.

2€8:8’

(iii) The limit
= lim (c—n+1)&(z, o)
g-(n-1)T

s finite with
k=¢d(n—1) I_Qe_s1 E(z, s, L).

In particular, £+0.

The resulting integral formula will be the key to our computation of SI" B@“).
\
COROLLARY 4.5. If fe L¥I'\B, dp), then

lim)+(a—n+l)SF\B e, s)dpz(z):;cgr\B A2)dpz) .

G=>(n-1

§5. The integral of the singular terms.

In this section we apply the integral formula of Section 4, Corollary 4.5 to
the form O defined by (2.19). This gives:

G.1) Sm@mz’“'l lim)+(a——n+1)gr\8€(0)@m.

o—(n-1

On the other hand, by Propositions 2.3 and 44 and Lemma 1.2, the n-form
&(s)@® can be integrated term by term provided Re(s)>n--3. Let
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(5.2) OP(h, L)y= 2 O(X).

XER+LMHNS )

By Lemma 2.2 and the fact that g*@(X)=@(g*X) for geG(R),

(6.3 0D, Ly= ¥ r*0@(h, L).
yel\I"
Thus, for Re(s)>n-3,
) — ®() (0
(.4) Sr\Bé’(”@ Sr\Be@)re‘pzMr 05
:Sri\Be(S)@éi)

by the usual unfolding argument.
A fundamental domain for I3 in B is given by

(6.5 Fi={z=gin(x)a()(1, 0)|x€ R}/ 44}

As in Section 2 write
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(5.6) OF=0{du
where
5.7 oP= > o(X)
Xer+LMHNSpdp

and ¢(X) is given by (2.14). Viewing 6(” and &(s) as functions on B via (1.14),
we obtain

1y —¢(__1\n 1/2 « (1) -n
58) [ pewor=(-1rdet @] | ete, )68 dxde

where z=gn(x)a@®)(3, 0) B and we note that in these coordinates

(5.9) Hdpy=(—1)" det QU3 "dx A - Ndxp NdE.
Let
(5.10) P ()= 2 Alt, De(®ix)
ey
and
(5.11) &z, s)= Z‘Bi(t, s, Ae(—12x)
A4}

be the Fourier expansions of 6 and &(z, s) with respect to the translations of

I Let

(5.12) Io(s):S:Ai(t, 0B, s, 0)t-"dt
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and

(5.13) Il(s)zgle‘Ai(t, DB, s, Dt
=4,
A:#0

' Then, as in Shintani [8] p. 179, Parseval’s identity applied to (5.8) vields

(5.14) vol(R™1/ A,)-* det Q‘”ZXF\BS(S) P =I(s)+1,(s).

LEMMA 5.1. For z=g;n(x)a(t)1, 0),

Ay(t, Dy=vol (R*1/A;)™* e(X)Z)e(—"Ax)d x .

XEWALDNS, (1) XR"“

mod /73l
PrROOF. By Lemma 2.2
0= X % eX)
Xe<h+L"‘;r}§n(li) rel’;

so that the integral

Aty D=vol (R*/A497 | 090 (@e(— x)dx

RN-1;

can be unfolded in the usual way.

LEMMA 5.2. If X&S,(l;) and z=gn(x)at)1, 0)= B, then

P(X)= (—21)n det v'/? det Q21 det( i: >e(% tr (z(X, X)))

1
xexp( —5 71 tr (0 (3= 2 Q)= 2 ¥Q3)) ,
where
Yo
y=gi'X=| 3
Ve
ProoF. Since ¢(g*X)(z)=¢(X)Xgz) for g€ G*(R), it is sufficient to compute
o(XNZ,) for arbitrary X. By (2.2)
(XN Z)=det v"/2 det (X, Wo)e(% tr (X, X),,Z0>

where W, is a properly oriented orthonormal n-frame in T, (B)=Z§. Explicitly
let

0 1
Woy=—| T 0
Vo —1
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where TeGL}_(R) such that *TQT=1,_,. Also
(X: X)r,Z:T(X; X>_2“}(X: Z)(Z: Z)_I(Z; X)
so that, if X is given by (2.10),

1.
(X, X)r,ZOZT(X, X)_—Z‘ WHx o+ x2)(Xo+25) .

Next observe that if X<S,(/;), then g7'X=YeS,(l,) so that y,=0.
LemMaA 5.3. (i) If 1=0,

¥
At, 0)=2-n+D12(, gn-2 > (—Drsgndet|
. XS (h+L™ NS, (L) Vo

mod {7
1 ~1/2 1 2
Xe(i tr (e(X, X)))§~7 exp (—? nt=%)
where Y=g7*X as in Lemma 5.2 and
¥\
E=det vt det ( ) det o[*y,],
Yo

with v['y,l=y'y,. Also C; is as in Proposition 4.1.
(i) If A0

AL, D] <Ctt > g2 exp (—%—n‘l"zf'l——ﬁ tr (u(X, X))).

XEh+LMNSy U
mod [

PrROOF. By Lemma 5.1 and Lemma 5.2 it is sufficient to consider

1, 'D:SRH exp (—%m* tr (0 (=25 QY (30— 22 Q) Je( — Ax)dx .

Note that
[, D=1, 0

so that (ii) follows from (i). Let
( —2Qy: ) ‘( —Zle)
S= v
Yo Yo

7t 0= _ exp (=g mess[(F)])ax.
Then we find easily that

@, O)y=2m-viyn-tdet S-12 12 exp (—1/2 %)

so that

where

457
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Since

y 2
det S=2%"-D det Q* det( ' ) det v
Y2

and £ is as in (i) we obtain the expression claimed.
Next we consider B, s, 4). Let

27’ n-1-s -1
(5.15) bit, s, /D:Ci_[v'a)‘t C(s)Dy(s, 4, L)E:t, s, A

so that

_ 1 potic g[)(p) ’
Bit, s, V=g bt 0, Ddp.

For 20, by(t, p, A) is holomorphic in the half-plane Re(s)>n—3/2 and we may
move the contour of integration in (5.16) to Re(p)=pq with n—3/2< pg<n—1—¢
for some ¢ with 0<e<1/2.

LEMMA 54. Let a=Q ()% Then for any k>0, there exist a constant
C(s, k)>0, depending on s, such that

1bit, s, HIZCls, R)m 1 0aC o (1+at) *
and
| Bit, s, | SCR)X™ 17 *7(1+4-at)™*

where C'>0 is as in Corollary 4.6 and oc=Re(s).

ProoOF. This follows easily from Corollary 4.6 and standard estimates on
K (x)].

PROPOSITION 5.5. Iy(s) is holomorphic in the half-plane Re(s)>n—1—¢ for
some ¢>0. In particular '

lim (o6—n+1DI,(6)=0.
a-(n-1)+F

ProOF. By Lemma 5.4 and (ii) of Lemma 5.3 we have, for Re(s)>n—1—e¢,

=TS 140 DB, s, Dl

=C 2 > E 12 exp(—m tr ((X, X))at'+°
%0 Xe(h+L;l)Ipsn<li)
mod I'§

X S: exp (—%m‘zé“)t”‘s“”(l—l—at)*kdt

=Cp T T afromigrmirombitexp (—x tr (X, X)).

A#0 X
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The series zE a®*-* is convergent for sufficiently large %, so we need only
#0

consider the sum on X. Note that if Y=g7'X for Xe(h--L™NS.({,), then
(X, X)=(, Y)=QLy.], Choose M&Zs, such that MZ**cA; and g7'(h+L™C
(M~Z7+  Then we have

g bitexp (—x tr (W(X, X))

X mod I';
=Cdetpm-t-o-br 2 det vy, ] #+2-m2 exp (—x tr (WQ[y:]))
yIEM~IM 1 (B
v, n-2-0-%
X . det( )
det(Y1)=0 Yo

mod(zﬁzQy lzeMzn-1

For fixed y, the inner sum is convergent for o+k>n—1 and the proposition is
proved.

PROPOSITION 5.6. For Re(s)>n+3 let

Qs b, D= S fls, giXe(5tr (X, X))

XE+L™NS, U
dl';

Y1
det( )
Yo

I()=Cu()e(s) 7 Di(s, 0, L)R2i(s, 7, h, L)

where, for Y=g7'X,
n-1-%

det v[tylj(s+1——n)/2 .

(s, Y)=(—1)" sgn det ( & )
Yo

Then the function

has a holomorphic analytic continuation to the half-plane Re(s)>n—1—e for some
e with 0<e<1/2. Here

T F(V> n—(s- n-2-§ 1 n-1-8
Ci(s)=C3(s) = T(s )2 G-D/2p(n-2 >’2F<§(s—n+2)) det p<ri=9/2,
PrOOF. Let
bi(t, s, 0)=2s%1¢
and
p e T neing
bi(t, s, 0)=C; 1) L) Dy(s, 0, Lt )
and define

potie gb(p) ,
Bit, s, 0)= mg L0, 0, 0dp

po~ie S—
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and

potie ¢<I0) O py, 0 O)dp

po-i= S—p

BIG, s, 0)_—2%5

Then
B, s, 0)=Bi(t, s, 0)+Bi{, s, 0)

and there is a corresponding decomposition

T(s)y=To(s)+15(s).
First consider

PSRN b 1 (potice 2"“1‘"(['(‘0) .
I S0 dprear

where we may take any p,<Re(s). But then
UG(S)[§CS: L At, O)teomdt

=C > exp (—=z tr (X, X)NE-eo?
XE(h+L’;)IQSn(l7;)
poalel i

which is finite for p,<—1 as in the proof of Proposition 5.5.
Next write

7 —p L feseee dlo) o,
GID Bl s 0=b, 5 0gr {770, o, 0o

where p{>Re(s). The same argument as that given for I(s) shows that for
p4>n—1, the contribution of the second term on the right hand side of (5.17)
is holomorphic for Re(s)>n—1—e¢. Finally we find that for Re(s)>n+3,

S:Ai(l‘, b7t s, ()t mdt=Ci(s)e(s)™* Dils, 0, L)Rs, 7, h, L).

We can now, finally, compute the integral of the singular term 6%, For
asZ™, a+0, let

(5.18) Solly, a)={XeS U X -acl}
and let
(5.19) &ih, L)={asZ"|a+0 is primitive in Z® and (h+L™")NS.;, a)+* T}.
For ae&(h, L) and Xe(h4+L"NS(;, a) write
X a=vu,
with v=@. Then since a and u; are both primitive the value

(5.20) va)=eQ/Z
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is well defined, independent of the choice of X. Here for x= R, (x> is the frac-
tional part of x.

THEOREM 5.7.

) — no-1-n/2 9 l
[, 00=(-1r2e 3 Ba) e(Xe( 5 tr (e(X, X))

asZ;(h, L) XE(h+L”)(QSn'<l¢
where ¢(X) is given by (34) and B, is as in Lemma 3.1.

ProoF. We first show that Q.(s, ¢, h, L)=024(s) has a holomorphic analytic
continuation to the half-plane Re(s)>n—3/2. For convenience let L=h-+L"
For ae&(h, L), let

(5.21) o5, 0= _ T fs, g{IX)zz(% tr (X, X)).

Now for X&S,(;) there exists an a=Z™ with ¢+0 primitive and unique up to
+1 such that XeS,({;, a). Thus

(5.22) 26)=2 3 04 a).
ZaEE,;(h,L)

For each ae&,h, L) choose g=SL.(Z) such that ge,=a where ¢;=
¢1,0, -, 0)=Z* Then

(5.23) g7'Salli, a)g=S5u(ly, €0)
and so
_ -1 1 ’
2, 0= T fis, Yg (5 tr (@ (Y, Y))
vegy TanSq Uy e
mod g7 1'{25

where '=!g-zg"%. Now any Y &S,(, ¢, has the form

(5.24) Y=(y', ")

with
b 3o

(5.25) yi=| 0 lel, and y'=| ¥ leV@".
0 0

Then

(5.26) f(s, Y g )=—sgn y}| y§|*'~* sgn det yi|det y1|**"*

0 (S+1-n)/2
L))
‘1

where v'='gvg™*. If g{‘fgﬂsn(lo, e0)F & we may write
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gitlg=h+gy'L"
with k=(k*, #)=S,(,, e). Then since gi'LNl,=Zu, we obtain
(5.27) Qi(s, a)= > —sgn det y|det yi|™**
vk +gylLn-1

(y'. 1) =0,det 10
mod g{ll‘igi

xdet w0, ypIewmite( - tr (' QLO, ¥D)

1] al|n-1-
X 2 sgnyblyf|nioE,
viski+z
i
Y4*0

The inner sum vanishes if ki Z while, if kil Z

(5.28) 2 sgn |yt =HIKRE, s++1—-n)—H(1—<kD, s+1—n)
yé%k})+z
y0¢0

where H(x, s)= X} (x+n)"® is the Hurwitz zeta function, in the notation of Weil
n=0

[9] p. 58. The standard properties of H(x, s) imply that (5.28) has an analytic
continuation to an entire function of s and that its value at s=n—1 is
—2B,(KkD).

The sum on y’ in (5.27) is absolutely convergent for all s and the claimed
analytic continuation of £,(s) follows immediately.
Now setting s=n—1 yields:

1 ,
QD= _ 3 Bk B sgadetyle(— tr@QLO, 3).
a€L(h, L) 'Sk +grlLn-1 2
(y’,u0)=01,'det y1#0
mod g7 ;g

For each y’ in the inner sum let Y=(y!, y’) with y'=<{k>u,, and let
X=g,Yg.

Then X&(h-++L™"NS(;) with
Xea={k{Hu,

so that (k{>=uv(a) according to (5.20). Finally note that

va) ¥
sgn det yi=sgn det
0 i

Yo
=sgn det
Y1

Yo
where g;le( Y1 ) We then apply Proposition 5.6 and the expression just

found for £;(n—1) to obtain the claimed expression for SF\B@“) via (5.1).
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We are now, at last, in a position to finish the

Proor OF THEOREM 3.2.
Summing the result of Theorem 5.7 over ¢ and recalling (0.3) we obtain

zn/zgr\89:3+(7’ h, L, D)9%, h, L, T,

so that this integral is a holomorphic function of z&9,. But 9(z, h, L,I") then
inherits the transformation law of ©(z, h, L) given in Proposition 1.1 of [47 and
the theorem is proved.

REMARK. It was erroneously stated in the introduction to [4] that the
integral of Siegel’s analogue of Hecke’s theta-series vanishes for indefinite forms
of signature (n, 1) with n>1. In fact these integrals vanish for n>2, but can
be non-zero for n=2 as shown by Raghavan and Rangachari [10].
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