On the irreducibility of Schottky’s divisor®

By Jun-ichi Icusa

To the memory of Takuro Shintani

Introduction. In [13] Schottky introduced a homogeneous polynomial J of
degree 16 in the Thetanullwerte of genus or degree 4 which vanishes at every
jacobian point of the Siegel upper-half space ©,; and he proved a certain in-
variance property of J. This invariance property implies that J is a modular
form, in fact a cusp form, relative to I'}(1)=Sp«Z). Therefore J=0 defines
a positive divisor of the quotient variety I (I)\&,, which is quasi-projective.
In this paper we shall show that the divisor defined by /=0 is irreducible, i.e.,
it has only one component with multiplicity one. We have also included a
justification of Schottky’s proof of the fact that J vanishes at every jacobian
point. We have emphasized a precise formulation of the “pekannten algebraischen
Satz” in [14], p. 256 and the verification of a subtle condition in that formula-
tion.

The above irreducibility was announced more than 13 years ago in [3], p.
246 and it has been considered by some as a “folklore”. We would like to
dedicate this paper in fondest memory of Takuro Shintani.

1. We recall that Schottky introduced his “/” and examined its basic prop-
erties in [13]; he later gave a clearer presentation of his idea in [14]. We
further recall that his method is closely related to Riemann’s approach which he
explained in his lectures of 1861-62, especially in those on 2-28 and 3-3, 3-4; cf.
[12], pp. 19-23. By extracting J out of certain relations Schottky used, implic-
itly in [137 and explicitly in [14], a loosely formulated lemma. We shall first
give its correct formulation with proof:

LEMMA 1. Let xi, Xy, ==+, x, denote n elements of a vector space V over an
arbitrary field K satisfying

3 ai(x D=0

for some a,, as, -+, an#0 in K; then the dimension, say p, of the K-span of x,
Xeoy 0, Xo in V is at most equal to n/2. Assume that n=2p and let b, -, by,

*) This work was partially supported by the National Science Foundation.



532 Jun-ichi Icusa

1, v, Cn denote 2n elements of K satisfying

Ms

n
bixy= 2 cix:=0;
1 =1

i

then necessarily

a;‘bici:0 .
=1

PROOF. We may assume that x,, ---, x, are linearly independent over K
and we put n—p=gq; then we can write

Y
Xpes= 20 Ay

with dj; in K for 1=j=<q. Furthermore the p* elements x;Qxx; of VRV for
1<i, j<p are linearly independent over K. Therefore if we put

B e !
ap an dor+dgp

the first condition becomes A’+'DA”D=0, and this implies
det (DA"Dy=det(—A"Y=(—1)?a; - a,.

Since a; -+ a,#0 by assumption, we get p=g, i.e., Zp=n.

Assume that n=2p; then not only A’, A” but also D are invertible, hence
A’+tDA”D=0 can be rewritten as (4")*+D"(A”)"**D*=0. On the other hand
if we put

b'=by - by), b"=U by bn), etc,

the conditions on b;, ¢; become b'+*Db"=c’+'Dc”=0; hence
3 artbic="b/(A) ¢+ b (A" i
=((AN D YA 1D Ne'=0. g.e. d.

2. In our later application of Lemma 1 the verification of the condition
“n=2p" becomes a problem. We shall determine the number of “tritangents”
of a canonical curve of genus 4 by a method which we shall use in that verifica-
tion ; the universal field can have any characteristic other than 2:

LEMMA 2. Let C denoie a smooth complete non-hyperelliptic curve of genus
4 and identify C with its canonical curve; then C is contained in a unique
quadratic surface F,, which is irreducible. Furthermore C has 120 isolated
tritangents; in the case where Iy is a cone and only in that case C has a 1-parameter
family of tritangents, and they ave the tangent planes to .

'
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Proor. The first part is an immediate consequence of the Riemann-Roch
theorem. The second and the third parts, except for the number of tritangents,
follow from Weil [16], Hilfssatz 6, p. 49; we shall determine that number:

In general if C is a smooth complete curve of genus g=1 and (4, @) is its
jacobian variety, we shall denote by W the subvariety of A consisting of all
@(a), in which a is a positive divisor of C of degree g—1; then ¢(a) is in Wemootn,
i.e, ¢(a) is a smooth point of W, if and only if La)=1; cf. [16], Satz 4, p. 46.
If X=W., is a symmetric polar divisor, i.e., invariant under x ——x, and if A,
is the subgroup of A of points of order 2, a point » of X"\ A4, can be written
as r=¢(a)+c such that 2a is a canonical divisor; the converse is also true.
Furthermore a is unique if and only if 7 is in Xonootn. The point is that Ny=
card (Xemootn/\As) remains constant under specialization. More precisely if
(C', A’, X") is a specialization of (C, A, X) with reference to some field, then
(X )smootn (A", is the unique specialization of Xemootn/As; cf., €. g., [4], p. 832.
Since the space of moduli of curves of genus g is irreducible by Deligne and
Mumford [1], we see that N, depends only on g; and N, gives the number of
isolated tritangents of a canonical curve of genus 4.

After this observation we take as C’ a hyperelliptic curve of genus 4; for
the sake of simplicity we shall drop the prime. Then X..e, the complement of
KXsmootn 1N X, consists of @(c+P)-+¢, in which ¢ is a hyperelliptic divisor and P
is a point of C; cf. [16], p. 49. Therefore X.ngM\A, consists of 3¢(P)+¢, in
which 2P is one of the 10 hyperelliptic divisors of that form. On the other
hand we know that ‘

9
card(Xf\AZ)ZZB—( A ):130;
cf. [4], Lemma 3, p. 827. Therefore we get N,=130—10=120. q.e.d.

We recall that there exists an irreducible cubic surface F;, unique modulo F,,
such that C=F,- F,; that consequently the space of moduli of curves of genus 4
is of dimension (9+15)—15=9. We also recall a geometric form of Riemann’s
vanishing theorem in the general case: let T denote a canonical divisor of C and
x a point of A; then ¢7'(W,) is defined (as a proper intersection on CxX A and
its projection to C) if and only if the equation x-+¢(f)=¢(m) in the unknown
positive divisor m of degree g has a unique solution; and in that case ¢ '(W,)
=m; cf. Weil [15], Théoréme 20, p. 76.

3. We shall recall some theta relations for g=4; we shall first recall a
symbol introduced by Schottky: for a general g we shall denote by a, b, ¢, m, n,
etc. column vectors injZ%% and e. g., by ¢’ and a” the first and the second entry
vectors of a in Z#4; then
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]' g ! 1. VaN] I
(a, b, 6)=e(§ . gl(aibé’d’-%a’{bici +af bilci)>

is the Schottky symbol; cf. [13], p. 310. It is clear that (e, b, ¢) depends only
on a, b, ¢ mod 2 and it gives rise to a symmetric tricharacter of (Z/2Z)%;
further the usual symbols e(a), e(a, b) become (a, a, a), (a, b, a-+b), respectively.
We also introduce, after Schottky, the following derived symbols:

(a/b)e=(a, b, b+c), (ad.=(a, a+b, a+c),

and (a/b)=(a/b),. We say that a is even or odd according as e(a)=1 or e(a)

=-—1; that a triplet {a, b, ¢} is azygetic if e(a)e(b)e(c). ela+b+c)=—1. We

say that a sequence {my,, -+, m;} is even or odd according as my, -+, m; are all
even or all odd; that {m,, ---,m,} is azygetic if all triplets in the sequence are
azygetic ; that {my, -+, m,}, where % is even, is closed if m;-+ -+ +m,=0 mod 2.

An azygetic sequence with 2g-+2 terms is necessarily closed and it is called a
fundamental system. The number of odd terms in any fundamental system is
congruent to g mod 4; conversely for any such number there exists a funda-
mental system with that many odd terms.

We shall denote by &, the Siegel upper-half space of degree g and for

every = in &, and z in C¢ we define the theta function of characteristic m and
of modulus 7 as

Gz, z2)= pezz;ge(% . r[p-{—%m’}kt(;lkk %m’)(z—% %m")) s

in which z[xJ='xrx. The theta function is a holomorphic function on &, xC*¢
and it obviously has the following properties:

Onlz, —2)=e(m)0n(z, 2),  Omsan(z, 2)=m/n)0n(z, 2).

Consequently if m is even or odd, the function 0,(z, z) of z is even or odd.
If m is even, we put 6,(r)=0,(z, 0); the holomorphic function 8,, on &, is
different from the constant 0 and it is called a Thetanullwert.

In view of the second property above we have only to consider those m
with coefficients 0, 1; we shall denote the set so defined by M and convert M
into a group isomorphic to (Z/22)*¢ by taking as the product mn of m, n in M
the unique element of M satisfying mn=m-+n mod 2. If N is a subgroup of
M of rank 2, i.e.,, of order 4, and if (@), . for any b, ¢ generating N depends
only on a and N, we shall denote the common value by (a)y.

There are three types of biquadratic relations between the 136 Thetanullwerte
for g=4; and they are as follows:

(Type 1) Let {mq, -, my} denote an even fundamental system in M and put
0:=0rn, for 0=i=9; then we have
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0i= 3 (0/i0)0} ;

(Type 2) Let {my, -+, me denote a closed even azygetic sequence in M ; then
there exist 5 elements a+0 of M such that msa, ---,mea are even and for each a
we have

(0s0c0)'= 2(2'6/2'6%(&01-(1)2 ,

in which i, ia stand for my, m,a;

(Type 3) Let {my, ---, mi} denote an even azygetic quadruplet in M; then
there exist 15 subgroups N of M of rank 2 such that the elements of m,N, ---, myN
are all even and for each N we have

T 0n=3% 0y TT 0O,

memyN cmqh

We shall recall one more theta relation or a type of theta relations which
is really fundamental:

(Type 2%) Let {my, -+, me denote a closed odd azygetic sequence in M ; then
there exist 9 elements a0 of M such that mya, -+, mea are odd. Furihermore
for each a there exists a unique pair {ab, b} in M such that miab, mb, -, msab,
meb are all even and if we put

pm(T; Z):Hm(z': Z)ﬁma(fx Z) s Pm(T):Pm(T, 0) B
we have

Do) pelz, 2= 33 (166/i6)a pas(@)pic, 2)

All these theta relations are well known and they can be either proved
directly or derived from Riemann’s theta formula; cf. [107, pp. 289-291.

4. We shall recall some more basic facts on theta functions: we have
1 4 7
Ou(z, 2+ (el )m)=elm, n)e<—7'f[n 1=41'2)0n(z, 2)

for every m,n in Z®%, If we put A=(z1,)Z*¢ and for any m,a in M
if we define pnlz, 2) as 0,(c, 2)0..(c, ), the above property implies that
Pz, 2)/pulz, 2) is single valued on the complex torus C¢/4. We know that
C¢// is biholomorphic to an abelian variety A in a projective space; and the
equation &,(z, z2)=0 defines a positive divisor of €C#/4, hence a positive divisor
of A. If we denote the positive divisor of A corresponding to m=0 by © and
the image of (¢1,)m/2 in A by r, the one corresponding to this m is 6,.

We take a smooth complete curve C of genus g over € ; then a “canonical
basis” for the l-dimensional integral homology group of C determines a C-basis,
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say dz=%dz, - dz,), for the vector space of holomorphic 1-forms on C such
that the corresponding period matrix becomes (z1,) with = in &,. We call such
a t a jacobian point corresponding to C; it is unique up to

a b
T —> 0-1':( )-r:(ar+b)(cr+d)",
¢ d

in which o is in I,(1)=Sp,,(Z). If we choose a point P, of C and compose the
holomorphic map C— C¢/4 defined by

P
P——>S dz mod A
Py

and the biholomorphic map C#¢/4— A, we get a function ¢ on C with values in
A; and (A, ¢) becomes the jacobian variety of C. Furthermore if we define a
subvariety W of A as before, we get @=W, for some ¢ satisfying ¢(f)--2¢=0.

We shall assume that C is a canonical curve of genus 4 such that F, in
Lemma 2 is smooth or, equivalently, no Thetanullwerte vanish at z. Let a denote
a positive divisor of C for which 2a is a canonical divisor and m the element of
M such that (z1,)m/2 is mapped to r=¢(a)+c; then 0,(z, 0)=0, hence m is odd.
Since the two sets under consideration have the same cardinality, the cor-
respondence m—a gives a bijection. If @ is a point of C not among the com-
ponents of a, the divisor of the meromorphic function

O(P)=0.(z, S:dz)

on the universal covering surface of C becomes the preimage of a+4@; this
follows froin Riemann’s vanishing theorem. On the other hand if m, n, ma, na
are odd elements of M and if a, 5, o/, b’ are the corresponding divisors of C,
there exists a rational function, say fu. ., on C with (a+a’)—(b-+b") as its divisor.

Furthermore we can normalize the constant factor in f, , so that we get the
following classical identity :

bz, |7 42) / 2ae,  d2)=FnPY i (@)

valid for every P, @ in C not among the components of a+a’+b-+b"; we observe
that fu. . is unique up to sign. Furthermore if my, my, m, are elements of M
such that m;, mya for 1=7/<3 are odd, we can take fi .fs 3 8S fi s

5. We shall rewrite Type 2# relation in a form suitable for our purpose:

for any given a+0 in M we can find a closed azygetic sequence {my, -, Mg}
in M such that m;, m;a for 1=/<7 are odd hence ms, mza are even. We can
then use my, -+, My, My Mg AS My, -+, me and mgm, as b in that relation; and

we get
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5

Do) Pens(t, 2)= 2 (18/1678)u pier(z) pilz, 2),

i=1

in which ¢ is an arbitrary point of &,. If now ¢ corresponds to a canonical
curve with smooth F,, by the classical identity we get

5

pe()= 2 (18/i678)a pisr(T)f s, 615(P)f s, 625(Q) -

i=1

Since P and @ are independent variable points of C, we can replace f; ¢:s(P)fs, 61s(Q)
above by fi es®cfi s Since no Thetanullwerte vanish at ¢, by the first part
of Lemma 1 we get

(*) dim¢ (C+ g Cfi_m)é'& ,

hence

i )\ifi,678:0

i=1

for some A, -+, 4, in C not all 0.

Actually (+) for a general g is an immediate consequence of the Riemann-
Roch theorem; cf. [12], p. 20. What is important is that the equality holds in
(#) if C is general ; in fact we shall later show that f; (s for 1</<3 are linearly
independent. We might mention that Schottky did not clarify this point by
simply saying in [13], p. 327 the following: “Wir nehmen an, dass nicht schon
zwischen drei dieser Gréssen eine lineare homogene Gleichung mit constanten
Coefficienten besteht; ---.” At any rate by the second part of Lemma 1 we get

2 (18/i678) g pisr() ' 23=0.

=1

By replacing fi e DY f1, 568 508 08 WE also have
4
izzlllifi,seFO-
On the other hand if we start from my, ---, m4, m, instead of my, -+, ms, we get

ps(f):i 24,7(1'8/1.568)&1)1556(7)][7;. 568 ®Cfi, 568 5

=17,

hence
33 (18,1568 prss(e) 210
In the same way we get

2, (18/i578) 0 pusi(v) ' Ai=0..

i=1

As Schottky showed in [13], pp. 332-333, the coefficient-matrix for the above



538 Jun-ichi Icusa

three linear equations in 43, ---, A2 has rank 3. In view of the following Type 3
relations

33 (18/1678)a Do 15 )E)= 2, (81568 Brss i )(0)

4
= ;1(2'8/1'578%(? ssePien)(@)=0,
therefore, we get

Ai=common factor-(pePistPie(T)

for 1=/=<4. In the same way we get

1=1§3, . ifi 65=0,
in which
#%:common faCtOI"(]ﬁuepiupie'z)(T)

for 7=1, 2, 3, 5. Therefore by using Lemma 1 again we get

3 3
El(2'8/i678)aﬁm(f)'lliyiz ?‘:’1 +(PprgchinDissDasr)(T)V?=0.

LEMMA 3. We choose an even azygetic triplet {mi, ms, ms} in M, a subgroup
Nof M of rank 3 such that the elements of miN, m.N, m;N are all even, and put

= II 0m
memyN
Jor 1=i<3; then »
J=rttalal—2msmst wemy - mams)

depends neither on the triplet {my, ms, ms} nor on N.

We refer to Schottky [13], pp. 345-348 for an elegant proof of this remark-
able fact. By putting these together we get the following theorem:

THEOREM 1. The Schottky invariant J vanishes at every jacobian point cor-
responding to a general curve of genus 4.

We refer to Mumford [7] for publications concerning the above theorem and
its generalizations.

6. We shall prove the existence of an azygetic triplet {my, m,, ms} and a+0
in M such that m;, m;a for 1=<7/<3 are odd and such that if a;, b; are the cor-
responding positive divisors of a general curve C of genus 4 and if f; for 1=/=3
are the rational functions on C satisfying (f,)=(a;+0,)—(a;-+b,), they are linearly
independent. Since we can embed {m,, m., ms} in a closed azygetic sequence
{my, -+, mg} in M such that m;, m;a are odd for 1=7=<7, that will settle a
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crucial point in the proof of Theorem 1.

By passing to a different projective model, we may assume that C has a
smooth hyperelliptic curve C’ as a specialization. We take 120 positive divisors
of C such that twice of each is a canonical divisor; then not only the set is
unique but also it has a unique specialization over C—C’. This follows from
Lemma 2 or rather from its proof. Furthermore if 2P, 2P, -, 2P, are the 10
hyperelliptic divisors of C’ of the form 2P, the specialized set consists of ( k)
=P;+P;+P, for distinct 7, j, £ among 0, 1, ---, 9; this can be proved, e.g., as
follows: since 2(7jk) is a canonical divisor and since the number of (ZjkYs is
120, in view of the proof of Lemma 2, we have only to show that {7jk)=1 for
every ¢, j, k. If this is not the case, a certain ({j%) is linearly equivalent to the
sum of a hyperelliptic divisor and a point, hence to 2P,+ P for some P; cf. [16],
p. 49. Then P;+P; is linearly equivalent to P+ P, P;+P;, hence P,+P, is a
hyperelliptic divisor, a contradiction.

We put aj=(123)4P,—P;, 0;=(123)+P,—P; for 1=</<3 and denote by a;, b;
the positive divisors of C which specialize to aj, ¥} over C—C’. Let (A4’, o)
denote the jacobian variety of C’; put r;=¢(a;)-¢, s;=@($;)+c and define 7}, s}
similarly for C’. Since A, specializes isomorphically to (A"), over C —C’ and
since r;+s; for 1=</<3 are equal, so are r;-s;. Therefore the odd elements of
M which correspond to aj, By, +-+, @, by can be written as mu, mea, -, s, Nsd.
We shall show that the triplet {m,, m., m,} is azygetic:

We observe that {my, m,, ms} is azygetic if and only if mm.m, is even.
Since (rl)mymems/2 is mapped to @(a;+a,+a;—)-+¢, therefore, the above condi-
tion is equivalent to a;+a,+a;—¥ not linearly equivalent to a positive divisor a
for which {(a)=1. Suppose that a,+a,--a,—? is linearly equivalent to such a
divisor ; then aj-Fa;+-a;—1, where ¥’ is a canonical divisor of C’, is linearly
equivalent to a similar divisor. This follows from what we have said and from
the invariance of linear equivalence under specialization ; cf., “Arithmetic genera
of normal varieties in an algebraic family,” Proc. Nat. Acad. Sci. 41 (1955), 34-
37. However ai--a;+a;—% is linearly equivalent to 3P, and [(3P)=2, a con-
tradiction.

Let fi for 1=<7/<3 denote rational functions on C’ such that (f})=(a}-+b%)
—(ai--b7) ; then they are linearly independent in view of (f§)=2(P,— P;) for 1=</<3.
This implies that the f; satisfying (f))=(a;+8,)—(a,+56,) for 1</<3 are linearly
independent, a fact which can easily be proved, e.g., by the method in op. cit.

7. We have presented Schottky’s theory for its own sake and also for
making preparations for the proof of the irreducibility of J=0. In the following
lemma the universal field is arbitrary:

LEMMA 4. Let (A, X) denote a principally polarized abelian variety ; suppose
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that X is rveducible. Then (A, X) is a product of principally polarized abelian
varieties (A, X1), (Aq, Xo), f.e., A is isomorphic to A,X A, under which X is
mapped to XiX A+ A X X,.

We have learned from G.R. Kempf a proof of this lemma depending on
Nishi’s observations in [9], pp. 6-7. Since we understand that the lemma is well
known, we pass to the next lemma:

LEMMA 5. Let © denote a point of &, where exactly 10 Thetanullwerte with
their characteristics forming a fundamental system vanish; then t is a hyperel-
liptic point, i.e., T is a jacobian point corresponding to a hyperelliptic curve.

This remarkable fact was proved by Pringsheim [11] in 1877, i.e., 11 years
earlier than Schottky’s classical paper. We might also mention that Mumford
has found a proof of a more general statement depending on Neumann’s dynam-
ical system; we understand that his proof will be included in Chap. III, § 10 of
his lecture note [8].

LEMMA 6. Let © denote an arbitrary point of ©, where three Thetanullwerte
01, 02, 05 with {my, my, mg} forming an azygetic triplet vanish; then either t is
reducible, i.e., v is I'j(1)-equivalent to

[T/ 0 }
0 z_//
for some v/ in &, and 7 in S,., where g'Zg" =1, or v is a hyperelliptic point.

PrROOF. We may assume that my, m,, m, are in M and we shall only use

characteristics in M. We choose m, so that m,, ---, m, form an even azygetic
quadruplet ; then by Type 3 relation we get 8,(c)=0 for at least one such m,.
We embed {m,, ---, m,} for that m, in an even fundamental system {m,, -+, my,

mie=mnle}. If we put
C=Mq """ My=My ** Myp,

up to a permutation we only have one alternative, which is {msc, -+, mec} in-
stead of {ms, ---, mi}. We take mym,ms as m; for 1=/=<5 and mym.c, m,ms as
a, b in Type 2% relation; in that way we get

Do) Deselz, )= 2 = i@ pan(®, ),

in which 5¢, 690, etc. stand for mgc, memganiye, ete. Since 8,(c)=0 for 1=i=<4, we
get p(r)=0 also for 1=7/=<4. Therefore the above relation becomes the follow-
ing simple relation:

(O5c0 ) T) O 6180 600)(T, 2)== H(0506)T)H5250500)(T, 2) .
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In the following we shall denote by A an abelian variety biholomorphic to
C*/ 4 for A=(c1,)Z* and by O the positive divisor of A defined by Oulz, 2)=0
for m=0. ‘ :

Suppose that (#;.0:)(z)#0 or, equivalently, (8,8..)(z)=0; let ¥1, 72, ¥3, ¥4 denote
the images of (zl)m/2 in A for m=memms, mememy,, Mmsmons, MMMy ; then
we get '

0,,+6,,=6,,+6,,.

Since 7y, -+, 74 are distinct, so are O,,, -, ©,,. Therefore O has to be reducible,
hence by Lemma 4 the principally polarized abelian variety (A4, @) becomes a
product, and hence z is reducible.

We shall pass to the case where both 6,0, and 6,6, vanish at z. Since
otherwise we will have the reducibility as above, we may actually assume that
(60:.0,)(7)=(0,0;)(z)=0 for every distinct 7, ; among 5, ---, 9, 0. We shall show
that either 05(z)=--- =84(r)=0 or s ()= - =0,(z)=0. We have only to show
that if, e. g., 85.(z)#0, then 6;z)=0 for j=5, -, 9, 0. Since (05.0))=0, we
get 0,(z)=0 for j=6, ---, 9,0, hence for all j%5; then Type 1 relation shows
that 6,z)=0 also for j=5. If no other Thetanullwert vanishes at ¢, it is a
hyperelliptic point by Lemma 5.

We shall show that if all §; and one more Thetanullwert vanish at ¢, then
z is reducible. We observe that the 126 Thetanullwerte other than 6,, - , Oy, Os
can be written as @;,..,,=0;,..;,, in which the 10 subscripts form a permutation
of 1,:-,9,0. We may assume that 8is5(zr)=0. Since not all Thetanullwerte
vanish at z, cf., e.g., Lemma 7 below, we have 0i,..:5(x)#0 for some 7y, -, 7.
By applying a permutation and also by passing to the complementary set of
subscripts we may assume that either 8155:6(t)#0 0T O1256:(z)#0. In the genuine
second case we have 0,55,,(r)=0 and 8,,;:;(c)#0, hence we are in the first case
after a permutation of the subscripts. Therefore we have only to consider the
case where 015545(0)=05.(c)=0 and 0 155:6(c)=0.(r)0. Since {ms, m, m,, msc, -+,
mc, My} is an even fundamental system and momamoanc=m,m,;, we see that

{my, ma, my, msc, Mmumgmec, -+, Mamsmioe, ms}

is also an even fundamental system with m,m; as the new ¢. Since f,(c)= -
=0:{0)=0, 04(z)#0, if = is not reducible, we get #150.(z)= --- =0150(c)=0 as
above. In the same way we get 056.(c)= -+ =80;50,{c)=0 also for i=2, 3,4. On
the other hand the even fundamental system {m., -, m, w1, -, me} gives rise
to the following even fundamental system:

{ma, ===, Myo, Mumsmec, -+ , Mangmec, Mee, Msch.

We have shown that except for 6, the corresponding Thetanullwerte vanish at
7 this contradicts Type 1 relation. ~Therefore = is reducible. g.e.d.
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We might mention that a statement similar to Lemma 6 was formulated,
although incorrectly, by M. Noether in [10], pp. 291-293. At any rate by using
Lemma 6 we shall reduce the global irreducibility of =0 to the irreducibility
of J at a particular point,

8. We recall that a holomorphic function f(z) on &, which satisfies f(¢-7)
=det (cz+d)*f(z) for some integer & and for every ¢ in I;(1) composed of a,
b, ¢, d and remains bounded or vanishes as Im({z,,)— oo is called a modular
form or a cusp form of weight % relative to I,(1). If f is not the constant 0,
it defines a positive divisor (f) on the quotient variety I';(1)\&,, which is quasi-
projective by Baily. On the other hand if I,(4, 8) denotes the subgroup of (1)
defined by o=1,, mod4, diag(a‘b)=diag(c'd)=0 mod 8, the canonical map &, —
I, (4, 8\, is locally biholomorphic. About this quotient variety we have the
following result in [6], which is more than enough for our purpose:

LeMMA 7. The correspondence

T (0m(7))meM,even

gives rise to a biholomorphic map of I'y(4, 8\&, to its image, say X, in the pro-
Jective space Py for d=281(2%+1)—1 and it extends to a bicontinuous morphism
of the standard compactification of I's(4, 8\, fo the closure Zof¥in Py In
particular bd(¥)=%\X is a Zariski closed subset of Z of codimension g.

We shall pass to the special case where g=4: we know that the invariance
_ property of J in Lemma 3 implies that J is a cusp form of weight 8 relative to
I(1); we have discussed this and the expression of J by “analytic class in-
variants” already in [5]; we are ready to prove the following theorem:

THEOREM 2. The positive divisor (J) is irreducible.

ProoF. For the sake of simplicity we put P=I,(1)\&,; we keep in mind
that the morphism «:¥—% is a covering, in fact a Galois covering. Let Y
denote an arbitrary component of (/) and Z a component of a"*(Y); then the
induced morphism Z—Y is a covering and in particular dim (¥)=dim(Z)=9.
We shall denote the homogeneous coordinates in the ambient space Piss of Z by
X, etc. in an obvious manner; then two distinct hyperplanes X,=X,=0 for
m=m,, m, intersect the closure 7 of Z at a non-empty closed set each com-
ponent of which is of dimension at least 9—2=7. Since bd(¥) is of dimension
6, no component is contained in bd (¥); hence every component is the closure in
% of a component of the intersection of Z and X;=X,=0. We choose m; so
that m,, m,, ms form an even azygetic triplet and then a subgroup N of M of
rank 3 such that the elements of #myN, m,N, m;N are all even; and we denote
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by z; the product of @, for all m in m,N as in Lemma 3.

We take a component, say Z,, of the intersection of Z and X,=X,=0, choose
an arbitrary point of Z;, and a point ¢ of &, which is mapped to that point.
By definition we have J(r)=6,(r)=60,(z)=0, hence 74(c)=0, and hence 8,(r)=0 if
ms is replaced by a suitable element of m,N. We know by Lemma 6 that ¢ is
either reducible or a hyperelliptic point. We shall restate this fact slightly
differently: let R, .- denote the image in %) of the set of reducible points in
Lemma 6, i.e., the image in 9 of &, X&,.; also let H denote the image in 9
of the set of hyperelliptic points. Then the image Y, of Z, under « is con-
tained in R:\UR.\UH.

We observe that Ry, R, are closed in 9 while the closure, say H*, of H in
9 is contained in R \UR:\UH and further

dim(Ry)=dim (H)=7, dim(R,)=6.

Since dim(Y;)=7, therefore, we either have Y;=—R,; or Y,=H*, hence Y con-
tains either R, or A* Since R, and A* both contain Ry, the image of (&)
in 9, so does Y. We recall that ¥ was an arbitrary component of (J).

We take a point 7, of (&))" with @, @, ws, @, as its diagonal coefficients
and denote by o the holomorphic local ring of &, at =,; it is enough to show
that J is irreducible in . We shall use

Ty~ (15iZ4), 2n/ =17y (I1=i<j=4)

as a minimal set of generators of the maximal ideal m of 0. We arrange
2m+/ =17 in the order (ij)=(12), (34), (13), (24), (14), (23) and call them x,, xs, -~ ,
xs; also we denote by ¢ the unique cusp form of weight 12 relative to I'(1)
normalized as d(w)=e(w)+ ---. Then Jis in m® and its image in m®/m® is given
by 2%.0(w;) -+ 0(w,)P(x), in which

P()=(xe—xex ) xex P~ 2Amaxat xor) - B k(B x)

We observe that P(x) is a quadratic polynomial in x, with relatively prime
coefficients and that its discriminant D=4(x,x,x,x,)*x? is not a square. There-
fore P(x) is irreducible in C[x], hence J is irreducible in o, and hence (J) is
irreducible. . q.e.d.

9. We shall conclude this paper by a few remarks. Firstly the closure Z*
of H in 9 can be made explicit: let H’ denote the image in 9 of the subset of
&,X®, defined by the condition that the &;-coordinate of its point is hyperel-
liptic ; then A*=HUH"\UR,,. This can be proved by incorporating [4], Lemma
11, p. 851. Secondly analogues of P(x) at various points r of &, can easily be
determined; for instance if r corresponds to a general point of H or Ry, it is
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a non-degenerate ternary quadratic form or the ternary quartic form defining
the canonical curve with ¢’ as its jacobian point. Thirdly we can describe the
classification or the decomposition of the space of moduli of 4-dimensional princi-
pally polarized abelian varieties in terms of modular forms:
We put
Aos™ II O, Xs4o:(Xss)8' > (@R
meM,even mEM, even

then we see that y, is a cusp form of weight k relative to I(1) for k=68, 540.
On the other hand by Hoyt [2] if a principally polarized abelian variety is a
specialization of a jacobian variety, it is either a jacobian variety or a product
of jacobian varieties. Therefore we can state the following corollary:

COROLLARY. Let t denote an arbitrary point of ©,; then it is not a jacobian
point if Jz)#0. It is a jacobian point of a canonical curve with smooth F, if
J@©)=0, %s:(x)#0 and with singular Fs if J©)=y3u(®)=0, xs0(r)#0. Furthermore
it is either a hyperelliptic point or a point corresponding to the product of jacobian
varieties if f(z‘):Xss(T):Xmo(T):O-
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