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§0. Introduction.

In his paper [5], T. Shintani gave a method to compute values at non-
positive integers of zeta functions arising from totally real algebraic number
fields of finite degree, generalizing the method to express the values at non-
positive integers of the Riemann zeta function by the Bernoulli numbers by
using the contour integral of Hankel’s type (cf. Whittaker-Watson [7], p. 266).

Let Q(x) be a rational coefficient quadratic form of n variables with signa-
ture (1, n—1) such that @Q(x) does not express zero nontrivially in @*. Hence
n=4. For a lattice M in @, by Siegel [6], one can attach the zeta function
{(s; @, M) to the cone defined by Q(x)>0. In this paper, by a point of view
similar to that of Shintani [5], we present a method to compute the values of
the Siegel zeta function {(s; @, M) at non-positive integers.

We can assume that Q(x) is diagonal,

Qx)=a:xi—ax3— - —anx}y  (a:€8Q, a;>0).

Let 2 be the cone in R” defined by Q(x)>0 and x,>0. For linearly independ-
ent vectors vy, -+, v; in £ and positive numbers &, -, &, we put

0. sson o vio s é0= B (F Gtmon)

We put [={yeGL.(Q); 72=8, yM=M}. Then, by reduction theory (cf. Ash
et al. [1], Chap. II and Satake [3a]l), there exists a [~equivariant decomposition
of £ by rational open simplicial cones, and {(s: @, M) can be expressed as a
Q-linear sum of finitely many functions of the form (0.1) such that v;€M,
£:,€Q and 0<£;=1. In §1, we shall show that the Dirichlet series (0.1) is
absolutely convergent if Res>//2 and has an analytic continuation to a mero-
morphic function in the whole complex plane and the value {(1—m; vy, =, v,
&, -+, &) for a positive integer m is equal to
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k1 hyzo Byl k!
Eydek kp=2m -2+

XNA—m; ky, -+, by vy, o, v

Here ¢, denotes the k-th Bernoulli polynomial and N(s; by, -+, by vy, =, 1) IS
an entire function of s given by
N(S ; kl) tty kl;le Tt vl)

. ,\/al .. aﬂ
T (s—n/2+1)

B(Ul, x>k1—1 ...B(vl’ x)kl~1Q(x)s—n/2dx2 dx,,

Sa1>azx%+-v-+an12n

(Res>n/2-1),

where B is the bilinear form associated with Q(x) and formally we put x,=1.

In §2, we shall prepare certain formulas for the calculation of
NA—m; ky, -, ki ve, -+, v). In §3, we shall show that, by those formulas,
one can calculate explicitly the values N(1—m; ky, ==+, By vy, =+, 1) inductively
on [. Assuming vy, -+, v,€M, the value N(1—m; by, -, ky; vy, ~+, v,) turns
out to be a Q-linear combination of 1 and

©0.2) - 1 log B(v,, vj)+«/rB(vir,ﬂvj)?—Q(vi)Q(vj)

\/B(Ui, vj)Z_Q(Ui)Q(Uj) B(v,, Uj)‘\/B(Ui, Uj)Z—Q(Ui)Q(UJ)
for 7 and j such that 1=/<j=/ and k,=%k;=0. Hence, the value N(1—m; &y,
<o, ky;vy, oo, v) 18 not necessarily a rational number. However, we shall
conclude that {(1—m; @, M) is rational for n=<3, by using a property of ¢,.
The author does not know whether the value {(1—m; Q, M) is rational for all
positive integers m and for all @ and M as above with n=4.

In §4, for a special quadratic form Q(x)=x!—7x5—7x:—7x% and M=2Z*, by
using different two decompositions of £ by rational open simplicial cones, we
shall show that the values {(1—m; Q, M) are rational numbers for al/ positive
integers m. Here the use of the theorem of Baker ([2], Theorem 2.1) is effective.

A similar result was also obtained by Satake [3b] for zeta functions asso-
ciated with self-dual cones, whose talk on this subject at Hokkaido University
in August, 1979 was helpful to the author. The author also takes this oppor-

tunity to thank Professor I. Satake for sending a copy of his notes to the
author.

Notation. For a matrix A, we denote by A’ the transposed matrix of A.
For a finite set X, we denote by Card X the cardinality of X.



Zeta functions of Q-anisotropic quadratic forms 569

§1. Analogue of Shintani’s method.

1. Let Q(x) be a rational coefficient quadratic form of n variables x,, --- y Xn
such that n=2 and the signature of Q(x) is (1, n—1). We assume that Q(x)
does not express zero nontrivially in @*. Hence n=<4. We regard the variable
" x=(x1, -+, %,) as a column vector. Let M be a lattice in Q~.

After Siegel [6], we define the zeta function &(s; Q, M) associated with Q

and M as follows. The set {xeR"™; Q(x)>0} is a disjoint union of two open
convex cones £ and —£2. We put

G={geGL.R); gQ=%},
I'={reG;rM=M}.

Then, for g&G, we have Q(gx)=u(g)Q(x) for a positive number v(g). For
rel;, we have v(y)=1. For every x=Q2NM, we put I,.={rer; yx=x}. Then,
I'; is a finite group. We put u(x)=(Card I';)".. We put

1D s;Q, My= 2 p0)Q(x)?,

zel\2nM>

where x runs over all [~equivalence classes in @N\M. Then, the Dirichlet series
(L.1) is absolutely convergent if Re s>n/2 and has an analytic continuation to a
meromorphic function in the whole complex s-plane. When M=Z7, if one puts
Qx)=x'Sx with a rational symmetric matrix &, the relation between our
notation and that employed by Siegel [6] is given by

2(s; Q, ZM=L(S, s)

for n=3.

The purpose of this paper is to evaluate the values of {(s; @, M) at s=1—m
(m=1, 2, ---) by a method analogous to Shintani [5]. In fact, if n=2, the calcu-
lation of {(1—m; @, M) is contained in the result of Shintani [5], corresponding
to the real quadratic field case.

We remark that, for heGL,(Q), we have

&s; Qx), M)=L(s; Q(h™*x), hM).
Hence, for our purpose, we can assume that Q(x) is a diagonal quadratic form,
Qx)=a;xi—asxf— - —aqx%,
where a; is a positive rational number. Furthermore, we put

={xeRBR"; Q(x)>0, x,>0}.

2. It is known that there exists a [-equivariant decomposition of £ by
rational open simplicial cones. Such a decomposition can be obtained by using
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the Hariko of Satake [3a] as follows. Let X be the boundary of the convex
closure of 2N\M in R™ Then, 2 is called a Hariko and can be regarded as a
locally finite cell complex such that each cell is a convex polygon. By taking
a suitable subdivision of X, we can obtain a Iequivariant decomposition of £
by rational open simplicial cones (cf. also Ash et al. [1], Chap. II).

We fix a Irequivariant decomposition of £ by rational open simplicial cones
once and for all. Then, the cardinality of I‘equivalence classes in the set of
all open simplicial cones in that decomposition is finite. We take a representa-
tive system C®, ..., C® for that I‘equivalence classes. We remark that
CO -« \JC™ is not necessarily a fundamental domain of I'\{2. We define
pC9) by p(CP)'=Card{yel’; yfCP=CP}. We put
(1.2) ;)= 2 Q).

zec Py
Then, the Dirichlet series (1.2) is absolutely convergent if Res>n/2, and we
have

3 Us; Q, My= 3 pCP(s; C9).

b=
Let vi?, ---, v§f), be generators of the closure of C. We assume v>’M. We
put

E(j):{ 5{{) TN E ))CQZU) 0<£<])<1 Z 5(]>U(]>EM}

Then, &£ is a finite set. We put

o un s
(L) Lsso, o, oy &2, 8= 8 Q(Z @)
--,ml(j)=0 i=
Then, we have
1.5) Ls; CP)= Z Uss v, o vfy; 89, -, &)
GRENONE-1c)

By (1.3) and (1.5), to evaluate the value of {(s; @, M) at s=1-—m for positive
integers m, it is sufficient to evaluate the value of (1 4) at s=1-—m for all
]"#1, , v and (9, -, E@y)eEP. We fix j and (E‘” o, EfDy), and we denote
by I, vy, -+, v, and &, ---, & instead of I(}), v, - v{{}; and &, .-, ED.
shall evaluate the value of {(s; vy, -+, vi; &, ,El) at s=1—m. :

3. The following formula (1.6) is well known (cf. Whittaker-Watson [7],
p. 258) and convenient to us. Let R be a positive number, f a continuous

function on the open interval (0, R?) and «y, -+, a, complex numbers such that
Re o;>0. Then we have
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(1.6) lyalate [y [ 5 (i - +yDdys - dy

Sy%%—--~+z/,23<1?€2

_ I(a/2) -'-HF(akLZ)fSR
I'((as+ - +an)/2)

Zf(l‘z)ta1+"'+ak -1 4¢ ,

0

where I'(s) denotes the gamma function. Here (1.6) means that, if at least one
integral of the two integrals in (1.6) is absolutely convergent, then so is the
other integral and the equality (1.6) holds.

We define the gamma function I'(s) of 2 by

Tols)= Vﬁn”””Z“‘lF(s)T(s—n /2-1).

Let B(x, y) be the bilinear form on R™ given by

2B(x, y)=Q(x+y)—0Q(x)—Q(y).

The following lemma is the Hilfssatz 1 of Siegel [6] (cf. also Satake [3b],
Lemma 1).

LEMMA 1. For x=£2, we have
@ Lo)Q() =] e 2 0Quy-rrrdt, - dt,
if Res>n/2—1, where we put t=(t,, -, t,).

ProoF. The volume element Q@) »/2dt, - dt, on £ is G-invariant. Take
g€G such that v(g)=1, x=gx, and x,=(u, 0, ---, 0), where a,u*’=Q(x). By

the substitution +/a;t;=py; ((=1, ---, n) and y,=1, we see, by (1.6);

SQe—alutlQ(t)s—nlzdtl dfn

1 ® -Jvaju 25-1 2 .. o m23\S-n/2
=V T (ke =yl e dy,
1 . Q20 Is—n/24+D0(n—1)/2)
=V —a, Q) e T g T(s+1/2)

—Iy($)0(x)"" . : g.ed

We denote by 4 the subset of R*™! given by a,=a,y3+ - +a,yi. For a
function f=f(y)=f(ys, -+, y») on 4, we put

e Va1 an sonse
) 155 Y= iy g Ty haT DRV s dy,
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where formally we put y,=1. If the function f is continuous on 4, by (1.6),
we see that the integral of (1.8) is absolutely convergent if Res>n/2—1. If
the function f is of the form f=jf(x, ») for some other variable g, we often
denote by I(s; f(y, -)) instead of I(s; f).

By (1.7), by the substitution t;=py; (=1, -+, n) and y,=1, we have if
Res>n/2,

FQ(S>C(S; Vi, =t Vi Ely B Sl)
{8 exp|—B(Z onegovs 1) Qs - d
g-§iBwi B

!
:SQ gm@(t)“"”dtl e dt,

Z es—l-1 /,zg'#eiEwi,y) e
:SO# d#SA - imar s QU dys - dya.

Hence, if we put

#e"ﬂ&;B(UL ]

Py, y)= 11

11— #BuLy?

we have

(1.9) 285 (Ye(s 5 vay o, v Eay e, Ez)zgjyzs‘l‘lf(s  Fp, Ndp,

if Re s>n/2.
Now we need the following

LEMMA 2. Let D be an open subset of C and 4 an open subset of R™ !
containing 4. Let f=f(p, ) be a function of (y, y)EDXZ such that

(i) flg, v)is a C° function on Dx 4, and
(i) flp, ¥) s a holomorphic function of p on D for every fixed value yed.

Then, the function I(s; f(y, ) defined by (1.8) has an analytic continuation

to a holomorphic function of (s, ) on CXD. Furthermore, for i 2<iZn), we
have

L 0fN\_ .
(1.10) I(s+1; a—yj)—z‘“[(s S yif)

ProoF. By (1.6), the integral of (1.8) for f(g, y) is absolutely convergent if
Res>n/2—1. Hence, I(s;f(g, +)) is a holomorphic function on {seC;
Res>n/2—1} xD. If Res>n/2, by the theorem of Stokes, we have
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AUy 2a s —n/2+ )y QU dyan - ndy

I

J
de<< DIfQy) ™ d A Ady A+ Ady,)
S

DRI TGN - Adyi A Ady,

=0,

where 94 denotes the boundary of 4 and dy; means the cancellation of d Vi
By multiplying this with «/a, -+ a,/x"**'I'(s—n/2+2), we obtain (1.10).

Now we shall prove that I(s; f(z, -)) has an analytic continuation, by the
induction on n. First, we remark that, if we put

Y= S 3oy 9= f (e Yo 5 Y1, 0)

(L.11) gt ¥a, vy y p

then g(g, v,, -+, ¥,) can be uniquely extended to a function on Dx 4 satisfying
(i) and (ii). By (1.10), we have,

(L12) I(s 5 fQp, N=1(s; f(ety y2, =+, Y1,

)

Assume n=2. Then, by (1.6), we have

Val

(1.13) IG5 f, D=Fts O oy oy

which is a holomorphic function on CxXD. By repeating (1.12), we see that
I(s; f(g, +)) has an analytic continuation to a holomorphic function of (s, pe
CXD. Next, assume n>2. Then, by integrating with v,, we have .

(1‘14) I(S ; f(/’e! Yoy 0ty Va1, 0))

. '\/(11 *Qp-
= G 2D, e , Sy yan, 0

212apYpttay 1V

X(@1=a2y5—  —Qn_1y21) D2 yy o dy oy

This is of the form I(s; f(y, -)) for lower n. Hence, by the induction assump-
tion, I(s; (¢, ¥2 **, ¥u-1, 0)) is a holomorphic function on CXD. Hence,
repeating (1.12), I(s; f(x, -)) is a holomorphic function on C xD. q.e. d.

For a positive number §, we put D(0)={++/—1y=C; |5|<d}. The value
of B(vi, y) with y,=1 is positive on 4 for all 7=1, ---, /. Hence, there exist a
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positive number & and an open neighborhood 4 of 4 such that the conditions
(i) and (i) in Lemma 2 hold for F(g, y) and D(6)x 4. Then Lemma 2 implies
that I(s; F(yg, +)) is a holomorphic function of (s, ©)eCxD(). For a positive
number ¢<8, we denote by C(e) the integral path in C consisting of the interval
[e, +oo) taken in the opposite direction, counterclockwise circle of radius e
around the origin and of the interval [¢, 4-0). Then, by the same argument
as Shintani [5] (cf. also Whittaker-Watson [7], p. 266), (1.9) is equal to

1 s=1- .
e<2s-L—1)m/—1_e—(25—L-n:r\/—igc(s)(—l'“‘)2 ! (s ; F(‘UJ '))d‘“:

(1.15)

where (—g)*-!-! takes the principal branch when g is real and p<0.
Now we need the following

LEMMA 3. Let D, 4 and f(y, y) be as in Lemma 2, assuming (1) and (i)
We assume that [0, +co)CD and (iil) for every multi-index b=(ks, -, kp) with
k=0 (2Li<n), there exists a real valued continuous Function ¢i(g) on [0, ~+00)
such that ¢u(p) is a C* function on an open interval (r, +o0) for some r>0,
rapidly decreasing when p—--oo (rapidly decreasing at -+, in short) and

0" If (s y)’_ k(g0

holds for pel0, +o0) and y<d, where [k|=kyt - +ky, and 0yt=0y% Oyt
Then, for every compact subset K of C, there exists a veal valued continuous
Sfunction ¢(gg) on [0, 4o0) rapidly decreasing at +o such that

(s 5 flp, DI=P(e0)
holds for p=[0, +o0) and s€K.

PrOOF. We define g(y, ») by (1.11). Then, g(g, ») satisfies (iii). Actually,
we have

alkl
O E | S e

for [0, +o0) and ye4, where we put k'=(ky, -+, Bp-1, kot+1).

If K is contained in {s=C; Res>n/2—1}, the assertion is immediate by
(18). We shall prove the assertion by the induction on 7. Assume n=2.
Then, by (1.13), repeating (1.12) we have the assertion. Next, assume 7 >2.
Then, the function f(g, ys, =+, ¥n-1, 0) satisfles (iii) for lower n. Hence, by
(1.14), repeating (1.12) we have the assertion. g.e.d.

It is immediate to see that F(g, y) and D(0) satisfy the condition (iii) in
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Lemma 3 with a suitable 4. Hence, the integral in (1.15) is an entire function
of s. Hence, by (1.9), {(s; vy, -, vy &, -+, &) is a meromorphic function of s
in the whole complex plane.

We define the Bernoulli polynomial ¢,(&) (£=0, 1, ---) by

(1.16) /"e_e_ — i ¢k(5) #k.

Then, the Taylor expansion of I(s; F(y, +) at p=0 is given by
3 ¢k1(51) ¢kl(5)

ki, k=0 k1

I(s; B(vs, y)t171 o B(uy, y)Hi-typhur+he

where, by Lemma 2, I(s; B(vy, y)*171--- By, v)*¢"%) is an entire function of s.
We put s=1—m in (1.9) and (1.15). Then, since (—p)® 2 for s=1—m is a
single valued function, the integral along C(¢) can be replaced by the integral
along the counterclockwise circle of radius e. Hence, by calculating the residue
of (—p)*@=m=t=3[(1—m; F(y, -)) at pu=0, if we put

N(s; Ry ooy ko vy oo, v)=I(s; Blvy, )17+ By, y)kiYy,

i.e,

Vay - a, 23

(1'17> N(S; kl: Tty kl; Uy, =y vl): RS IF(S_H/Z—l—l)

XS B(vy, y)*171... B(y,, PEIQ(YY M d yy - d oy,

ﬂ.1>a2yg+-~+any%
(Res>n/2-1),
we have obtained

THEOREM 1. The Dirichlet series {(s; vy, =, vy} &1, oo, &) defined by (1.4)
is absolutely convergent if Re s>1/2 and has an analytic continuation to a mero-
morphic function in the whole complex plane, and the value at s=1—m for a
positive integer m is given by

__. m;l 2m =2 1)1 ¢k1<51)"'¢kl(&)
(=Dm2em=*on—1)1 By k2o PR

kbt bp=2m-2+1

Nd—m; by, -, By vy, o, 00,

where @.(§) is the Bernoulli polynomial given by (1.16) and N(s: k., e, by
vy, o+, 1) 1S the entire function of s given by (1.17).

In the following two sections, we shall be concerned with the calculation
of the value N(l—m; ky, -, by vy, ==, v0)
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§2. Formulas for the calculation of N(1—m; ky, =+, ky; vy, =, V0)-

In this section, we shall prove some formulas, by which we shall be able
to calculate the value of N(s; by, -, ki; vy, -+, v)) at s=1—m for positive
integers m. We fix vy, ---, v; of §1 throughout this section.

LEMMA 4. Let ky, -+, ky be arbitrary integers and g an element of G. We
put vo=(1/ay, 0, -+, 0. Then we have

(2.1 N(s; kg, -y ke vy, -0, 00)

=v(g)*N(s ; [+1—25—(ky+ - -+ky), by, -, ki gUo, gU1, 5 VL) -
Especially, if we define m by ki+-+4k=2m—2+(, we have
(2.2)  N(l—m; by, =, kyyvy, o, v)=v(@ " NQ—m; ky, -, ks gos, -+, gV0).

PrOOF. For y=(y,, -+, ya)’ €4, we put §=(, ys, -+, yz)’&&. The group
G acts on 4 by g5=J(g, )%, where the action is denoted by g: y—x and we
put g=(g:)€GCGL,(R) and J(g, ¥)=gu+guyst - +gunya. We have

_ et .
1= (g, yyr 402 A

Hence, by J(g™", n)=w(g) 'B(gv,, 7), We see

dps - d

SAB(UI’ y)k1—1 B(vl, y)kl‘lQ(y)s""’ZdyZ dyn
:de(g—l’ DBy, g tp)t - Blug, g ) Qg ) R det(g ™D d e - d 7

=v(g)sSAB(gvo, ) Blgvy, )it Blguy, D) 'Q(n) " 2dns - d7a,

where we put g=[—2s—(k;+ - 4-k;). By multiplying these with Va, - a,
Jart [ (s—n/2-+1), we obtain (2.1). If ky+--+Fk=2m—2+] and s=1—m, we
have x=0. Hence we obtain (2.2). g.e.d.

We put v:=s, ==+, Vi) for 1500
LEMMA 5. We assume v;,;=0 for 1=i=l and |<j=n. Then we have
(2'3) N(S, kl: ) kl: 3% "',U;)

B N, a;
TR (s—1/2+1)

B(vy, y)8171 .- By, y)Ht

Sa1>a2y§+~-+al'y%

X(@y—asyi— - —a D Hidy. - dyy,
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i.e, in (1.17), n can be replaced formally by I. When (=1, the above integral is
regarded as (a,vy)*1-1as-1/2,

PrROOF. The formula (2.3) is obtained from (1.17) by integrating with
Vi1, 5 Yo DY using (1.6). q.e.d.

Fix an index j (1=<j<[). Then, since v, -:-, v; are linearly independent
over R and the bilinear form B is non-degenerate, there exist unique rational
numbers Cj, -+, Cj-y, Cjs1, -+, C; and a unique vector v¥€@Q" such that

v;=Cv+ - 0101t +Charvjin+ - +Covs,

and B@¥, v)=0 for 1=i=</, i#j. When /=1, we regard as »,=v%

PROPOSITION 6. Let ky, -+, ky, be arbitrary integers such that ky+ - -k, =/
(mod 2) and k;z1 for a fixed index j 1=j<0). Let Cy, -+, Cy_y, Ciry, -, Gy
and v¥ be as above. We define m by ky+ - +k,=2m—2-+1. Then we have

(2.4) NQ—m; Ry, =+, kys ve, -, v1)

(b, —1)! Qg—1)1!
pl‘p,_l‘(Zq)'pJﬂ'pl’ 21

XNQ—m-+q; kitpr, =, kjort+pioy, byt pien, o, Bitpy;

=3 CPt - CHP(— Qu)iCH - It

Uy, v, Vyo1, Ujeg, 0, VL),
where the summation is taken for non-negative integers py, -, pj-1, g, Dis1, 0y Do
such that
(2.5) Pt Pt gt piact o Fpe=hs—1

When (=1, we regard Nl—m—+q; ) as 1.

ProoF. By Lemma 4, we can assume v;,=0 for 1=i=<l, i#7, [£k=n and
v;p=0 for [<k=n. Then we have v¥=0 for 1<k=<n, k=/[ First we assume
{=2. Then we have B(v}f, y)=—a, vy, and

(k;—1)!
e pj_llr!pjﬂl Py

B(v;, y)ti-i=
(vj, P I=3 ’

P Dji—1Pj+1 p
'C11...Cj_Jlle_}J_l - Gt

X By, 371+ B;-1, ¥)75-1B@f, 3) Bvje1, ¥)Pi+1 - Bluy, )7,

where the summation is taken for non-negative integers D1y Dicty ¥y Diras
, pu such that the sum of these is k,—1. In (2.3) for this case, we can

integrate with y, by using (1.6), and the terms with odd » vanish. Replacing
r by 2¢, we obtain (2.4).
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The case [=1 is immediate by (1.6). q.e.d.

PROPOSITION 7. If [=2, we have
(2.6) N(;0,0; vy, v2)
1 By, v2)4+/ By, v~ Q) Qws)

= VB, 02— Q) Q) log g (01, v2)—~ Bvy, v2)"—Q)Q(ws)

PRrROOF. By Lemma 4, we can assume v;—(vyq, 0, ==+, 0)' and ve=(va1, Vs, 0,
.-, 0Y. The integral of (2.3) for this case is absolutely convergent if Res>0.
The formula (2.6) is obtained by integrating with y, from (2.3). qg.e. d.

In the next section, we shall show that one can calculate the value
CAd—m; vy, -, vy &y, -, &) explicitly by making use of Propositions 6 and 7.

§3. The values N(1—m; ki, ==, by vy, -+, vy) and {(1—m; Q, M).
In this section, at first, we shall give a method to calculate
3.1 Nl—m; kqy -, ks vy o, v0)
for m=1 and ky, ---, £;=0 such that ky+ - +k,=2m—2+1,

by the induction on /, by using only Propositions 6 and 7.

Assume [=1. Then the value (3.1) is given by Proposition 6, which is a
rational number.

Next, assume /=2. Then there exists an index j (1=j=/) such that k;=1.
We apply Proposition 6 to this j. Then N(1—m+gq; ) in (24) is of the form
(3.1) if and only if m—¢g=1. When (=2, the condition m—¢g=1 holds by (2.5).
Hence, when /=2, the value (3.1) can be calculated by (2.4), which is a rational
number. Assume /=3. Then the condition m-—g=1 breaks when and only
when

k;=2m4+1, k=0 (1=/=3, i#)),

and we have N(l—m+q; - )=N{1;0,0;v,, vs,), Where we put {iy, o, jj=
{1, 2, 3}. This term is calculated by Proposition 7. Hence, when [=3, the
value (3.1) can be calculated by (2.4) and (2.6). The value (3.1) for /=3 is a
rational number except the case k;=2m-+1 for some 1= =3. In the case
k;=2m--1, we have

(3.2) N —m; ki, ke, ky; v1, vs, v3)

= QuINS 0, 05, v (mod Q)
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where {7y, 7, 71={1, 2, 3} and k;=k;,=0.

Next assume [=4. We can assume that k; is minimal among positive
integers in {k, ks, ks, k. Then the condition m—g=1 breaks when and only
when

q=—=m,
pi,=1 for some ¢;#j (1=i,=4),
p:=0 (1=i=4, i+#], i),
and we have
N(—m-+q; - Y=N1; piy, Dig Diys Vigp Vig Vig)
=N(1;0,0; vy, vs),

where we put {7y, 45, 75, j} =11, 2, 3, 4}.
Thus we have obtained

THEOREM 2. The value (3.1) can be calculated explicitly by making use of
(2.4) and (2.6) inductively on I. We put p=Card{1=i=I; k;=0}. Then, if p=I,
the value (3.1) is a rational number, and if p=2, the value (3.1) is a Q-linear
combination of 1 and N(1;0, 0; vy, vi,), wheve iy and iy vun so that ki =k, =0
(1=4,<i=D).

By Theorem 1, we have
COROLLARY TO THEOREM 2. The wvalue of {(s; v, =, vi; &, =+, &) at
s=1—m for a positive integer m is a rational number when [=2, and is a

Q-linear combination of 1 and N(1;0, 0; vs,, vs,) when =3, where i, and 7, run
so that 151, <4, =1

We put C=CY, where C is one of the cones C¥, .-, C™ of §1, 2. Let
l, vy, -, v, and 5 stand for (), vi?, -, v and 9.

PROPOSITION 8. When [<3, the value of {(s; C) defined by (1.2) at s=1—m
for a positive integer m is a rational number.

PrOOF. We can assume [=3. For (&, &, &) 5, by (3.2), we have

El—m; vy, Vg, Vs &1y sy Ea)

(—Dmt

= m ;1 ¢2m+1(€i)(—Q(U§<))mN(1 ;0,05 Vi Viz) (mod &),

where we put {7, &1, 72} ={1, 2, 3} and v¥ (=1, 2, 3) is as in Proposition 6. Hence,
it is sufficient to show
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2 ’_¢2m+1('§i):0 s

€1.82,630EE

for every i=1, 2, 3. This follows from

¢zm+1(l)=0 and ¢2m+1(€)+¢2m+1(1_5)=0;

which are derived from (1.16). g.e.d.

Thus we have

| C—ms v v E a8 | CA-ms O)
=1 l rational \ rational
=2 \ ratjonal . rational
=3 \ non-rational \ rational
[=4 . non-rational s non-rational |,

where non-rational means that the value is non-rational for some examples. An
example with /=4 is given at the end of §4.

Let {(s; Q, M) be the Dirichlet series in §1, and also C°, -+, C” and
@, o, v, (=1, -, 7) be as in §1. Then we have proved the following

THEOREM 3. The value of {(s; Q, M) at s=1—m (m=1, 2, --+) is a rational
number when n<3, and is a Q-linear combination of 1 and N(1;0, 0; v, v§?)

given by (2.6) for j=l, ---, r such that (=2 when n=4.

We remark that, by the functional equation of Siegel [6], when n=3, we
have {(1—m; Q, M)=0 for m=2, 3, 4, --- and {(0; Q, M)>0, where {(0; Q, M)
expresses a volume of a certain discontinuous group, and when n=4, we have
Ld—m; Q, MY<O for m=2,4,6, --.

We also remark that, when n=4, Theorem 3 does not assert that
ZQ—m; Q, M) is not a rational number. In fact, in the next section, for a
special quadratic form Q and a lattice M with n=4, we shall show that the
value £1—m; @, M) is a rational number for g/l positive integers m by making
use of the theorem of Baker [2].

8§4. An example of rationality with n=4.

Let a be a square-free positive integer. Then, it is well known that the
quadratic form xi—ax3—axi—ax? does not express zero nontrivially in @* if
and only if a=7 mod 8 (cf. Serre [4], Appendix of Chap. IV). The purpose of
this section is to prove the following
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THEOREM 4. For the quadratic form QU)=xi—Tx5—T7x3—T7x% and M=2Z*,
the value {(1—m; Q, M) is a rational number for all m (m=1, 2, 3, ---).

In the following, all vectors are column vectors. But we write them as
row vectors. We put

M'={(x1, %2, x5, x)EM; 2,=0 mod 7}.

Then, since for y=(7ii<s ;4€1, We have 71,=71:=7=0 mod 7, the lattice M’
is invariant under the action of IT Let ¥ and 3’ be the boundaries of the
convex closures of 2N\M and 2N\M’ respectively. Then, X and 3’ are regarded
as locally finite cell complices such that each cell is a convex polygon. Put

6 —14 —7 0 8 —21 0 0 8 —14 —14 —7
2 -5 —2 0 3 -8 0 0 9 4 —3 —2
B R S A I T S T o I R
o 0 0 1 0 0 1 1 —2 -2 ¢

Then we have 74, 72, 7s€1. Hence, every point in 2 is Ilconjugate to a point
in the polyhedral cone in £ given by

XeZX3= %420,
Sxi—14x,—7x,=0,
x;—3x,=0,
X1—2%x,—2%3—x,20.

By this, we can conclude that every 3-dimensional cell of Y is Iconjugate to
the cell ¢ of 2 given as follows:

(134,2,2)

(7

10,3,2,1)

(6,2,1,0)

{4,101

{4,1,1,0)

(1,0,0,0)
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Similarly, we can conclude that every 3-dimensional cell of ¥/ is I"-conjugate
to one of the three cells 7, 7, and 7, of 2’ given as follows:

o (14,5,—-1,—1) (14,5,—1,1)
(14,51,—1)
(14,51,1)
(7,2,—1,-1) e J @2,-11)
//
//
//
n21,-1) (7211
T2t //// \\\ R\
Z e ———
P 1)
L~ !
g )
i | t |
i | !
i J !
: | |
LA
N / /
e \ / /
7 N >L/ 7
//, -
//
75t 7,2,1,1) (14,3,3,3)
(7,1,2,1) (7,1,1,2)

Here 24 points in 7, are (7, 42, +1, 1), (7, =1, &2, +£1) and (7, £1, 1, £2).
For an irrational totally positive number f contained in a real quadratic
field, we put

1 B
UP)y=—F—Fprlog—7,
D=5
where 8’ denotes the conjugate of 8 over @.
We take a simplicial decomposition of ¢ as follows. Each 2-dimensional

cell o; of ¢ is spanned by 4 points vy, vs, vs, v, and we can assume that v; and
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vy are the points which are contained in three 2-dimensional closed cells of o.
We take the subdivision of the boundary d¢ of ¢ by adding 1-dimensional sim-
plices spanned by v, and v, as above for all ¢;. Next, we take the cone of d¢
over the barycenter (7, 2, 1, 1) of ¢. Thus we obtain a simplicial decomposition
of ¢. Then, Theorem 3 implies that the value {(1—m; Q, M) is a @-linear
combination of 1 and

4.1) IB+T), I4+~14), IG+2D), KT++/21), I(T+4/35), [(T++/4D),

for every positive integer m.

We take simplicial decompositions of ¢, and 7, as follows. For 7,, first we
take a simplicial decomposition of the boundary odr, of z; by adding any diagonal
line for every 2-dimensional cell of z;,. Next, we take the cone of dz; over the
point (21/2, 7/2, 1/2, 0), which is not the barycenter of z,. For z,, first we take
a simplicial decomposition of the boundary dr, of 7, by adding any diagonal line
for every 2-dimensional cell of 7, which is a tetragon. Next, we take the cone
of 0r, over the point (7, 1, 0, 0), which is not the barycenter of z,. Then, though
such simplicial decompositions of z; and z, are not compatible with the action
of I, by an argument as in §1.2 and Proposition 8, we can conclude that the
value {(1—m; @, M) is a @Q-linear combination of 1 and

(4.2) 13424/ 2), 12++'3), 19+543), I5+2v6), I4++/15),
I(54++/19), U(6-4+/23), (6-+/30), [(B-+/5D), IB++58),

for every positive integer m.

Thus, the value {(1—m; Q, M) is expressed in two ways. Hence, by the
theorem of Baker ([2], Theorem 2.1), the value {(1—m; @, M) is a rational
number for all m. This completes the proof of Theorem 4.

REMARK. Let C be the open simplicial cone of 7, over the origin. Then,
by an explicit calculation, we have

449 -
£O; C):—-b;gml(Z—l-\/B) (mod @),
which is not a rational number.
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