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Introduction.

In this paper, we shall prove functional equations and the existence of
analytic continuations of zeta functions attached to ternary zero forms (non-
degenerate rational ternary quadratic forms with non-trivial rational zeros) and
calculate the principal parts of the Laurent expansions at their poles.

Zeta functions of indefinite quadratic forms were introduced and closely
investigated by C.L. Siegel [7]. In order to explain our problem more precisely,
let us recall the definition of his zeta functions in a form slightly different from
the original one (cf. [5, p. 155]). Let Q(x) be a rational non-degenerate indef-
inite quadratic form on a @Q-vector space V and & be the matrix of Q(x) with
respect to a fixed basis of V. Denote by O(Q) the orthogonal group of Q. The
unit group of @ is denoted by I': I'=0(Q);. For any x in V4, put G,=
{g€0(Q); gx=x} and I,=I'NG,. If Q is not a ternary zero form, for an
x€Vgq such that Q(x)#0, a fundamental domain of I, in G, has a finite
volume p(x) with respect to a Haar measure on G,z Under a suitable nor-

malization of Haar measures on G,r (x&Vz, Q(x)+#0), the Siegel zeta functions
are defined by

(0-1) Cl®; )=3"pl0)/ Q1 (=1,2)

where x runs through all [~orbits in {xeV;; sgn Q(x)=(—1)"1}. However, if
Q is a ternary zero form, u(x) fails to be finite for any x in V4, which satisfies
the following condition :

0-2) —Q(x) det © is a square of some rational number.

This causes a serious difficulty in the study of zeta functions of ternary zero
forms. Because of this fact, Siegel restricted his consideration to {(&; s) such
that sgn (det @)=(—1)*"*, So it is a natural question to ask if it is possible to
define p(x) also for x in V, satisfying (0-2) and Q(x)+0 so that both of {,(&; s)
and {(&; s) defined by (0-1) have good analytic properties. The aim of the
present paper is to give an affirmative answer to this question. The first attack
in this direction was made by T. Shintani in [6] where he treated the special
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case Q(x)=x,x;—x% His success is based on his discovery that, for Q(x)=x.x,
—x3, £(S; s) can be regarded as residues of zeta functions in two variables
associated with certain prehomogeneous vector space. This is the case also in
the general setting and the method of partial Fourier transforms used in [4]®
enables us to generalize Shintani’s result to arbitrary ternary zero forms.

This paper consists of two sections. In §1, we shall present a definition
of zeta functions of ternary zero forms and formulate our main result (Theorem
1). The second section is devoted to an investigation of certain Dirichlet series
in two variables whose properties are summerized in Theorem 2. Theorem 1
will be easily derived from Theorem 2.

Notation. As usual we denote by C, R, @ and Z the field of complex num-
bers, the field of real numbers, the field of rational numbers and the ring of
rational integers, respectively. For any non-zero real number x, sgnx is x/|x].
For any complex number z, we put e[z]=exp2x+/—1 z. The Riemann zeta
function and the gamma function are denoted by {(s) and I'(s) respectively.
For any finite dimensional real vector space FE, S(F) is the space of all rapidly
decreasing functions on E.

§1. Zeta functions of ternary zero forms.

1.1. Let V Dbe the vector space of 2X2 (complex) symmetric matrices. Put
G=GL,C). Denote by p the rational representation of G on V defined by
p@)x=gx'g (g€G, x€V). We put

Gr=GLyR), Vp=VNMZ; R),
Ge=GLAQ), Vo=VNM2Z; Q).

In the following we identify V with its dual vector space via the symmetric
bilinear form

0 1
(1-1 $x, x¥y=tr (xJx*]), ]=(' 0) (x, x*€V).

Note that <x, xy=2det x.
Fix a lattice M in V4 and denote by M* the lattice dual to M with respect
to the inner product (1-1):

M*={x*eVy; &, x*HeZ for all xeM}.
Let I be the subgroup of SL,(Z) given by
I={yeSLZy; p(NM=M}={yeSLAZ); p(y)M*=M*}.

1) A summary of [4] is found in Proc. Japan Acad., 57A, 74-79, (1981).
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Then the index of I’ in SLy(Z) is finite. ,
Let G, be the connected component of the identity element of Gp: G,=
{g€GL(R); det g>0}. We normallize a Haar measure dg on G. by setting

dg=(det )~ II dgy  (g=(gu).

Set
Vi={x&Vg; sgn(det x)=(—1)%}, Vy=V:N\V, (=1,2),
V;Q: {Xe V1Q N '\/_det XQEQ}

and h={xeVyy; vV—det x=q}.

Notice that V, is an open G,-orbit in Vg and V, is a union of two open G,-
orbits in Vi, Let dx be the Euclidean measure normalized by dx=dx.dx.dx,

<x=(x1 x2>> Then e(x)=|det x| 32dx defines a G,-invariant measure on
Xe X3

V. and V,.
For an xeVp, put Gi,={geG.; plg)x=x} and I',=I'NG,.,. For an x
in VUV, we normalize a Haar measure d sz on G, by the formula

a2 SG+F(g)dg:S ) a)(p(g)x)SG+ Flghydus(h)  (FeLYG)).

GG

If x€Vig\UV,e, the volume

-3 pn={ dp.

Gizily

is finite. On the other hand, when x is in V%, since the integral (1-3) is diver-

gent, we have to modify the definition of /{x). An element x=<x1 x2> in Vg
2 8

is said to be primitive if xi, 2x,, x, are integers and (x, 2%, x5)=1. For any

x& Vi, express x as x=¢X where ¢ is a non-zero rational number and % is a

primitive element in V4. Set

(1-4) p(x)=2"log (4|det )  (x& V7).

It is clear that p(p()x)=p(x) for any xEV,\U V. and any yel.

Put M;=MNYV; and Mf=M*NV; (i=1, 2). The set M; and M¥ are p(I)-
stable. Denote by ['\M; and I'\M¥ the set of all p(I")-orbits in M, and M}
respectively. Set

(1-5) LM ; s)=21“izePE\M.p(x)/ldet x|*
(1-5)* C(M*; s)=2'"" X plx)/|detx|® (=1, 2).

2EMMY
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These Dirichlet series are absolutely convergent for Re s>3/2.

In order to describe the functional equations of &;(M; s) and L (M*;s), we
introduce some notations. An element 0_:<1cz 3) in G, acts on the upper half

plane $ and the Riemann sphere C\U {0} by means of the fractional linear
transformation z — oz=(dz—c)/(—bz+a). Since I has a finite index in SL,(Z),
the number of inequivalent cusps is finite. Let &y, -+, £, (£;SQ\U {c0}) be a
complete set of Ilinequivalent cusps. For each 7 (1</=<y), take a o0;€SLy(Z)

. 1
such that x;—¢;00 and set y‘“:‘o{l(o). Put
FO={el’; iy ®=y®}.

For an integer m, we set

1 0
(1-6) Pm(m)Z{( ); neZ} .
mn 1

Then there exists a positive integer §; such that '@ =0, .(6:)07%. Let 2;
(resp. A¥) the smallest positive rational number which is expressed as ‘y®xy®

for some x in M (resp. M*). Moreover we put v(F\@):Sr\@v”dudv (z=u-+1v).

Now we can state our main theorem.

THEOREM 1. (1) The functions {i(M; s) and L (M*; s) (i=1, 2) have analytic
continuations to meromorphic functions of s in C. They are holomorphic except
at s=1 and 3/2.

(2) They satisfy the following functional equations:
(C:(M*; 3/2—s)
Co(M*; 3/2—5)

sin zs 1 LM s)
o T o o
0 cos ws/\L(M ; s)
Fo(M)? B2 g3t (s 1/ (s)(2s—1)

x{ 3 o221 /,zi)zu—s)}((”%(ﬂ——ll:/-(s—l /2)) sin ns)

(2

):v(M)ZZ"“n‘”“”F(s—l/Z)F(s)

where v(M):S

VeiM
(3) The principal parts of the Laurent expansions of L.(M;s) and L(M;s)
at s=1 and s=3/2 are given in the following table:
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—2-3U<M>—1( ;1 aizi)(s—l)-ﬂ
Cl(M; s) .
s=1 —i—2'2v(M)‘1{ ;1 0:2; log (Zi/4zr)}(s—1)'1
LM s) —275mo(M) (02 )(s—1)
3 | LM s) 2=t (M)~ (T\D)(s—3/2)*
S=—
2 My s) 272 (M)~ u(I\D)(s—3/2)"!

REMARK. If M=V,N\M2; Z), then I'=SLy(Z), v=1, 2;=2¥=§,=1 and
v(M)=1. Moreover the zeta functions C(M*; s), Co{M*;s), &(M;s) and
C(M; s) coincide with 223-22.(s), 2%-2zf_(s), 2%°%%(s) and 22°-2z£X(s), respec-
tively, where £.(s) and £%(s) are the Dirichlet series studied by T. Shintani in
[6] and our result is consistent with his.

1.2. We shall briefly indicate the relation between our zeta functions and
the Siegel zeta functions of ternary zero forms. Take a Z-basis {x™®, x®, x®}
of the lattice M and let a be a positive rational number. Put

<7C(l>, x(1)> <X<1), x(2)> <X(1>, x(3)>
a
@—:5 <x(2), x(1)> <X(2), x(2)> <X(2), x(3)> .
<x(3), x(1)> <X(3), X(2>> <x(3)’ x(3)>

The ternary quadratic form defined by the matrix & is a zero form with signa-
ture (1, 2). Conversely every ternary zero form with signature (1, 2) can be
obtained in this manner. Identify V with C?® via the basis {x®, x®, x®}. We
may consider the group po(I")=I"/{=1} as a subgroup of GL«C). Then p(I)
is contained in the unit group O(S); of & and the index j of p(I") in O(©),
is finite. It is easy to check that, for any x&V,g, [ is a finite group and

T
‘u(m“ﬁzﬁf;' Hence we get

oM, s>=—2€— a*1ly(S; s)
and

oM s>=‘2ﬁ~<2/a>”m:1<@-1; $)

where {(&; s)(resp. {(&7?; s)) is the Siegel zeta function of the ternary zero
form with the matrix & (resp. &%) (cf. [7], D).
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§2. Certain Dirichlet series in two variables attached to the vector
space of 2 by 2 symmetric matrices.

2.1. We keep the notation in §1. Put W=C? We consider elements in
W as column vectors. Set V=V@W and G~=GL{C)XGL,C). Let p~ be
the representation of G~ on V"~ defined by

o~(g, x, y)=(gx'g, Lo iyt) (gEGLC), teGL(C), x€V, yeW).

Put ;
Px, y)=tyxy, Pfx, y)=Plx)=det x
and

S¥={x, y)eV~; Plx, y)Plx, )=0}.

Then the triple (G~, p~, V™) is a prehomogeneous vector space with the singular
set S~ and the polynomials P, and P, are irreducible relative invariants of
(G~, p~, V™) corresponding to the characters (g, H=y:()=t* and y(g, H=yx(g)
=det g* respectively.

We consider the standard @-structure on (G~, p~, V™)

Gi=GL{R)YXGL(R), Vi=Vr@®Wr=VrDR",
Gi=G L)X GLAQ), Vag=V DW=V DR*.
The identity component of G is denoted by G%:

Gy={(g, HeG%; det g>0, t>0}.
Set

Vi={(x, )€ Vz—Sx; sgn P(x)=(—1)%.
Let M and M* be as in §1. We define two lattices L and L* in Vg by L=
M®Z? and L*=M*PZ>. Put L,=LNV7 and Lf=L*NVy (=1, 2). These
sets are p~(I")-stable subsets in Vg where I™={(y, D€GT; rel'}. The zeta
functions associated with (G~, p~, V™) and L are defined by the formula

EAL; sy, 89=2"" X [Pix, I P02 (=1, 2)
(x, el ML
where we denote by I'™\L; the set of all p~(I"™)-orbits in L, (for the general
theory of zeta functions associated with prehomogeneous vector spaces, see 4.
The Dirichlet series &(L*; s, s5) (i=1, 2) are defined in the same manner.
For any p~(I")-stable subset A of L or L* and for an F in S(V3z), set

2-1) Z(F, A; sy, SZ):XG” F~X1(t)31x2(g)32(x’ > F(p~(g, t)Xx, y)dgd*t

YIEA-8™

where dg is the Haar measure on G, normalized asin §1 and d*t=t"'dt. We
normalize a Euclidean measure dx on Vg as in §1 and denote by dy the stand-
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ard Euclidean measure on Wyr=R2 For an FeS(V3) and for =1, 2, put
VAF; su so=| P, )1 o)l #F(x, y)dxdy .
vy

The integrals ¥(F; sy, s.) (i=1, 2) are absolutely convergent for Re s;, Re s,>0
and have analytic continuations to meromorphic functions of (81, S2) in C? (cf.[1D.
The next lemma can be easily proved and we omit the proof.

LEMMA 2.1. The integrals Z(F, L; s,, s2), Z(F, L*: s,, Sy) and the series
§L; s1, 82), Ei(L*; 81, 82) (=1, 2) are convergent absolutely for Res;, Res,>1
and the following identities hold :

Z(F, L; sy, 32)24“,222 §i(L; 51, s)WF; s:—1, s,—1),

Z(F, L*; sy, Sz):‘rlzz:fi(lz*; s1, S THF; s1—1, s,—1).
i=1

The analytic properties of &(L; s, s,) and E(L*; s,, s,) are given in the
following theorem, on which the proof of Theorem 1 is based.

THEOREM 2. (1) The functions (L ; sy, s,) and &;(L*; s1, So) (1=1, 2) have
analytic continuations to meromorphic functions of (si, ss) in C?® which satisfy
the following functional equations :

§1<L*§ S1, i_

2 31*52)

3 =v(M)2F S By =12t (s ) (s, 4+5,—1/2)
Ez(L*; S1, &

—S1—38»
(2-2) 2
( sin (s;+2s,)7/2  sinzs,/2 >< &L ; sy, $2) )
X ’
oS 78,/2 cos (S1+2s)m/2 J\ E(L ; 54, 59)
(&(L; 1—sy, s1F5.—1/2) )
&L ; 1—s5y, s1F5.—1/2)
2-3)

cos 7s,/2 0 E(L; 51, 89)
=277 21](s,)? cos nsl/Z( )( )

0 Sin 7TSI/2 EZ(L ; S1, 32)

(2) The functions
(81=1)(so=1)(s,+52—3/2)E(L ; 54, 52) (=1, 2)

are entire functions of (sy, Ss) and
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lirr} (se—DE(L; 54, sz)=slirr11 (s:—D)E(L ; 51, 52)
g~ 2=

2-4) ,
=v(M)7C(s1)0(Zs 1) gi 0.3,
Ei(L; sy, S2)
lim (31—4—32—3/2)( ):U(M)-ly—sln—slwz
2-5) samsure/E &L ; 51, 82)
v sin 7551/2
XF(SI—]-/Z)C(SI)C(ZSI"]-)< 2 51/1%1)( ) s
=1 coS 7s1/2
(EX(L y Sly 3—51/2))
lim (31"_1)2
S €2<L; S1, 5—31/2)
(2-6)

=oy-res—D( 2ot 200) (1) ).

Movreover the Dirichlet series C(M; s) and (M ; s) have analytic continuations
to meromorphic functions of s in C and the following formula holds:

5 { (51(L; S1, $—51/2) >}

lim (51— 1) :

s1-1 08y E(L; sy, 8*31/2)

20—log2
2

2-7)

_o| G(M; s)+ V(M)‘"”C(ZS—Déﬁili(l?/li)”“

LM s)

where C is the Euler constant.

REMARKS. (1) By replacing L, M, 2; and ¥ by L*, M*, A¥ and A, respec-
tively, we obtain the residue formulas for £(L*; s;, s2) (=1, 2).

(2) The first assertion of the theorem was proved in [4] §7 if ['=SLy(Z).

(3) In [6], Shintani treated the special case M=V NM@2; Z) by a method
somewhat different from ours and showed Theorem 2 except the assertion that

(s;—1)%(sy—1)(s,+5.,—3/2)E(L ; sy, s2) are entire founctions.

PROOF OF THEOREM 1. Since (s;—1)2(s—s1/2—1)(s+s,/2—3/2)XE(L; sy
s—s,/2) are entire functions of (s, s), the formula (2-7) implies that (s—1)?
(s—3/2)C(M; s) (1=1, 2) are entire functions of s in C. It follows from (2-4),
(2-6) and (2-7) that the residues of {;(M; s) and ,(M; s) at s==3/2 are equal
to (ﬁZ/IZ)U(M)‘lé d;. Since g 8, =[SLZ): I'] and v(I'\)=(x/)[SLZ): I'],
we get li?/l2 (s—3/2) (M ; )=(x/Hv(M)v{I\D). The formulas of the principal

§—
parts of the Laurent expansions of {,(M;s) and {,(M; s) at s=1 are immediate
consequences of (2-5), (2-6), (2-7) and I""(1/2)/1'(1/2)=—log4—C. By taking the
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residues at s;=1 of both sides of the equality obtained from (2-2) by substitut-
ing (s1, $2) by (s1, s—s1/2), we get the functional equation (1-7). g.e.d.

2.2. 'The rest of this paper is devoted to the proof of Theorem 2.

Let ZO(F, A; sy, sa), Z0(F, A; sy, so) and Z@(F, A sy, s,) be the integrals
obtained from Z(F, A; s;, $;) by restricting the domain of integration in (2-1)
to {(g, HeGY/I™; =1}, {(g, HeGH/T™; n=zx(e)} and {(g, DECGT/T™;
y2(g)=1}, respectively. Then the following lemma is an immediate consequence
of Lemma 2.1.

LEMMA 2.2. Let A be a p~(I'™)-stable subset of L or L* and F be a func-
tion in S(Vz).

(1) When Res,>1, ZO(F, A; sy, 82) is absolutely convergent.

(2) When Res;+Res,>1 and Res,>1, ZOF, A; sy, so) s absolutely con-
vergent.

(3) When Res,>1, ZP(F, A; sy, 85) is absolutely convergent.

Let B be the subgroup of G consisting of all non-degenerate lower trian-
gular matrices. The restriction of the representation p of G to B is also
denoted by the same symbol p. Then the triple (B, p, V) is a prehomogeneous
vector space with the singular set S={x<V; x,P.(x)=0}. This prehomogeneous
vector space was closely investigated by T. Shintani [6]. The next two in-
tegrals were introduced by him:

Ouf; 55 59 =\ Il 91 PLOVef()dx,

b
2(f; S>:SR2| als—1f(<: bz/a>)dadb (fesVp), i=1, 2).

The integral Y(f; s)(resp. @;(f; s1, S2)) converges absolutely for Re s>1 (resp.
Re s;, Re s,>0) and is continued to a meromorphic function of s (resp. (si, s»))
in C (resp. C%. Let B, be the connected component of the identity element of
Bp=BNGL,R). We normalize a right invariant measure db on B. by setting

tl 0
db=t1_27,‘2_1d7f1dt2du b: EB+ .
u ty

Take a positive integer d and let M be a p([.(d))-invariant lattice in Vg4 (for
the definition of I.(d), see (1-6)). Denote by M* the lattice dual to M with
respect to the inner product (1-1). Set

IG, W5 sy s0=,  gemoge 3 fpb)0db

BT 0(0)
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(feS(Vg), (51, $5)C?. This integral is absolutely convergent for Re sy, Re s,
>1(cf. Shintani [6], Lemma 3). Also set

Lf B s 59=] g 3 fpb)db.

BT o(d), t1tg21

Then I.(f, M; s, s,) defines a holomorphic function of (s, s;) in the domain
{(51, Sz)ECZ; Re 31>1}.
Put Me={x=M; x,#0, P(x)=0}. The set M, is p(lw(d))-stable. Denote
by IL.(0)\M, the set of all p(I(d))-orbits in M,. Set
CM; s)= 2 lxq] 75

el (M

It is easy to check that {,(M; s) converges absolutely for Re s>1 and coincides
with {(s)0(2s—1)/L(2s) up to an elementary factor expressed in terms of ex-
ponetial functions. Hence (M ; s) has an analytic continuation to a meromor-
phic function of s in C.

We define the Fourier transform f* of f&S(Vg) by the formula

=1, feoelcx, v ]ds

where the inner product ¢, > is given by (1-1).
Put

A=min{|x,]; xeM, x,+0}
and

AX=min{|x,| ; x=WM*, x,#0}.

The following lemma is a slight generalization of Lemma 4 of [6] and one
can prove it in the same manner as in [6].

LEMMA 2.3. If Resy, Res,>1, then
ICF, M sy, so=Lu(f, M; 51, s)HvIL(f*, M*; 51, 3/2—35:1—52)

()t . - ~ ___{_ - o
+mCo(9ﬁ*, s s;—1) 85, Lo sO(F; si—1)
()6, o o
+ml LD f; si—1, O)+@(f; s,—1, 0)}
0

'ml"“%(so{@l(f*; si—1, O)+@(f*; s,—1, 0)}.

Notice that any x& Vg of rank 1 is written uniquely as

v 0 cos @ sinf
x:kg tkg, k(;: (UERX, 0§0<TL‘)
0 0 —sin @ cos @
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Set
Q={(x, y)eVz; rank x=1, P(x, y)=0}
and

2~(F; S)=SplPl(x, WIF(x, y)dvdbdy  (FES(VR).
When Re s>0, the integral 2~(F; s) converges absolutely and has an analytic
continuation to a meromorphic function of s in C.

Define a partial Fourier transform F* of FeS(V3) with respect to Vg by
setting

FH(x*, y):S F(x, y)e[x, x]dx .
VR

LEMMA 24. - Let 2;, 2F and o; beasin §1. If Resy, Res,>1 and FeS(Vz),
then
Z(F, L; s1, s9=ZPF, L; sy, sa) oMY TZP(F*, L*; 55, 3/2—51—5)

v(M)C(2sy) {
8(s1+35:—3/2)

4@sy)
8s,

3 Culp(o ) M# ;5 s)FE(E*; 51—1)

i=

._|_

{Eelpto0 M5 s} 3~F; 5i-1)

o0 o
+m€(231)a31)<i§51}i ){LI/'I(F’ s;—1, 0)

L(2s:)C(s 1)
2(s1+s.—1/2)

XAU(E*; s:—1, 00+ T (F*; s;—1, O)}.

F U si—1, 0)) — (Z o)

PROOF. Since Z*— {0} = Ql {ntr-ty®; neZ, n>0, yel’/I'P}, we have

Z(F, L; s1, 59=((2s1) ZS O S (g, lx, 3y )dgdt
i=1 N/ oc;L x

G

where the summation is taken over all x in M such that Pi(x, y)Py(x)#0.
Put

2z cosd sind
Fi(x, »)=|"F(o(ko, 15, 10)d0, k0=< )

—sin @ cos @
Then

Z(F, L sy, 50=0@s) B] eI EG, ([ ) plod M5 51, s9d7.

It is easy to check that
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w0 t
[renz@ie, (o )i 5D t=3F; si=1)
and
Swtzsl@-(F(* (t)>- si—1, 0)d*t=VyF; s:—1, 0)
. FAC ARG 0 s 91 » FACHERES ’ .

Moreover the lattice dual to p(c;)"*M coincides with (o) *M* and (F¥)(x, »)
=(F)*(x, y). Now the lemma follows immediately from Lemma 2.3.
g.e.d.

REMARK. It can be proved that

PHACCHRED) Soar
] =2(sX(2s— /L)X
S Lulplo ) M*; ) S

Put Mi=MNVig, MI=MNV{e, Mij=M,, Li=(M{BZHNVT, LI=M1DZ*)
NV7 and Li=L, It is obvious that L, and L% are p~(I™)-stable subsets of
L. Set

LMy s)=2" 3 p(x)/[detx|®  (=1,2)

zel\MY;
and

LMY )= T px)/|det x°.

xelMMy

Then (M ; $)=0(M}; $)+C(MY; s) and LM ; 5)=Co(M3; 5). For an FES(VR),
let F be the partial Fourier transform of F with respect to W g=R? which is
defined by

Pz, yo= Fx, y)e <y, y1dy
where (v, y*¥>="tyJy* (for the definition of J, see (1-1)).
LEMMA 25. (1) When Res,>1 and Res;>3/2,
Z(F, LL: s1, s)=ZP(F, L}; 81, s+ ZPF, L 1=sy, sit3:—1/2)
1

gy LM s LDTLE; 0, 52 D)

LM ST 0, 50-3/2) G=1,D).
1
(2) The formula obtained by replacing F, F, s, and s, in the right hand

side of the equality above by F, F,1—s, and s,+s.—1/2, respectively, holds for
Re sy, Res;>1.
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Proor. We prove only the first assertion. Since Lj—S~=Li=M}x(Z*— {0}),
we have, by the Poisson summation formula,

S Flo~(g t)x, y)=tdetg X F(p~(g, (det g)/)(x, ¥))

(z, eEll (x,y)ELY
+itdetg X F(gx'g, 0)— X Flgx'g, 0).
TEMy TEM;
Hence

Z(F7 L;; S, SZ)ZZSPD(F’ L;,y S1, 52>+ZASI-D(F} L;y 1—311 31+32—1/2>

A 1
Zsgtl 3 2¢s1-1) %
+SG+/F(det gyt 3 Fgx'g, O)dggot 1= gy

reM;

1
—S (et g2 3 F(gx'g, 0) dgg g

G T zeM) 0
By (1-2) and (1-3), the last two terms of the right hand side of this equality
are rewritten as

1

W_DQ(M%; $e+1/2)@(F(x, 0); 0, s;—1)

and
L ClMz; s2)D(F(x, 0); 0, s.—3/2).
281

Therefore the first part of the lemma is an immediate consequence of the
formulas
UAF; 0, s:—1)=0(F(x, 0); 0, s,—1)
and
UAE; 0, 5,—3/2)=0(F(x, 0); 0, s,—3/2).
g.e.d

Next consider the integral Z(F, LY; s4, s;) (FeS (V). For a lattice N in
We=@? we introduce an integral J(f, N; s) (fe8 Wg), s€C) which plays an
important role in the proof of a formula for Z(F, L{; s, s;) analogous to that
given in Lemma 2.5. The integral J(f, N; s) is defined by

J(f, N; s):SOSO Juv| y;}v,f(uyl’ vy)d ud*v
where N'={yeN; y,y.#0}. This integral converges absolutely for Res>1.
Set

RN 9=l B fu, vyddtud.
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Then J.(f, N; s) is absolutely convergent for any s and represents an entire
function of s.

For an feS(Wpg), the Fourier transform f of f is defined by

f(y*)=SWRf<y)e [y, y81dy, Ly, y="y]y*.

Put
N={y*cW,; tyJy*cZ for all yeN}.
Set
p(N)=min{u=Q; u>0, (| )eN)
and

. 0
p(N)=min{uc@Q; u>0, (u)eN}.
We also define pl(N ) and pz(N ) similarly.

LEMMA 2.6. If Res>1 and f€S(Whr),

JU N3 9=, N3 9H) S, 5 1=+ 2 o L3

82

PO 70y tog (oM +2C) +Clog uv, £5]

—L010) tog (AN )+2C) +Clog v, 7]

where v(N):SW /Ndy, C is the Euler constant and
R

logluvl, f>=gSBXRx logluv|f(u, v)dudv.
PROOF. We have, by the Poisson summation formula,
T N5 Y=L f, N; $)+u(N) L], N5 1—)
+{§ st w, wdudy
where

S(f5 w =vNY ) B fy, vivd— B fuys, vye).

veh-f ven-
We shall calculate the last integral of the equality above by dividing it to the
following three integrals:
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]lzggku,vgf JZZSglgusv-f J3igglévgu—l :

For feS(Wp), put

FO 3= o, 3 e [y ¥y,
and

1 y9=\ s 30 e ra$ldys.

Then we get
S(f5 u,v)
=oW) )| 3 Fus om0+ A0, v puNym) 70}
- {u‘lpx(N)‘lmEZf(”(u‘lpl(N)‘lm, 0)
—i—v‘lpz(N) ! 2 [®(0, v po(N)™'m)—f(0)},
hence,
Jo= W >11 {ru 3 fupNym, 0)d*u

meZ-{

+va1‘8 S A0, vpuRymyd o}

mezZ -0}

——{pl(N) S =530 [P (upN)m, 0)d*u

mezZ-{0}

+oN) T S 00, v, (N m)d o)

o) 1
R

We can calculate J, and J; in the same manner, and obtain

O F O+ O

+

{oa(N) 2 (0) 4 po(N) 1 (0}

Jf, N $)=Jf, N; $)+o(N)"J(f, N; 1—s)+

p(N)!

+ s—1

{STEOJ?(O, ”Pz(N)m)dxv

+07 0 2 0Ny m, 0d v 0. (0}

o(N)™*

+ s—1

{I” = faofm, 0@
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+ Pl(N)-lgTuEOﬂn(O, uPI(N)‘lm)dxu——pl(N)‘lf(1>(0)}
L5750, pivmis
+ Pz(N)‘lgg:vmgof(z)(o, Upz(N)'lm)dxv— pz(N)‘lf(ZD (0)}
—%‘{Sjgof(upl(N)m, 0)d* u

+ o 3 7O, 00w pu N PO}

Here we use the relation v(N)=p,(N)/ pl(N)z 0:(N)/ pZ(N). Recall the follow-
ing formula which gives an analytic continuation of the Riemann zeta function :

2-8) o) uiipwadu

50 $©

_—:Slusgogzﬁ(um)dxu—’rglul‘sgogﬁ(um)dxu +ts—1 S

where Ss(u*)zgRgs(u)e[uu*]du ($=S(R)). We consider the integral S uje

R

-¢(u)du as a meromorphic function of s in C by analytic continuation. Then
it is known that the following functional equation holds for any dES(R):

TS

2-9) SRXluls'lé(u)du=2(2ﬂ)‘sf(s)cos : SRxlul”sgﬁ(u)du

(cf. [27, p. 359). It follows from (2-8) and (2-9) that
S‘j 3 70, vpulymd*v
+0:0 0 2 F2puRym, 00 v—pu ) (0)
:z%s[(hpm))—sr(sﬂ) cos B-t(] | tuls, Ddudv) |
Since Z(0)=—1/2, {’(0)=—Ilog 2x/2 and ["’(1)=—C, the right hand side is equal to

(log puM+CIF O+ loglulfu, vidudv.

The last three terms of the above expression of J(f, N; s) can be calculated
in the same manner and we get the lemma, qg.e.d.
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Set
p(M; )= X |detx|™*

z&l\M]

where I'\M{ stands for the set of all p(I)-orbits in M%. It is easy to check
the following lemma.

LEMMA 2.7. When Res>1, the series n(M; s) converges absolutely and
(M ; s)=2v(M)*~ 232;(23——1)25 ALAF[A)TE

LEMMA 28. (1) If Res;>1, Res.>3/2 and Fes(Vz),

Z(F, LY; s1, s)=ZP(F, L1; sy, s+ ZPEF, LY ; 1—ss, s1F5,—1/2)

gy 1M s L/DTE; 0, 51—

—3/2)

L , 20—log2 .
*2@;37H@<1’%+U%+ 1 1M set1/2)

+%7]’(M; 32—‘1‘1/2)} T(F; 0, s,—1)

M 51D

(F; 0, so— 1)]

oot so+ 225 2 s s

—%n’(M; 32)} U(F; 0, 55—3/2)

allfl

47;(M 32>{ (F 0, 5,—3/2)— 5 (R 0, 5, 3/2)}]

(2) The formula obtained by replacing F, F, s, and s, in the right hand
side of the equality above by F', F, 1—s; and s;-+s,—1/2, respectively, holds for
Re s;, Res;>1.

PrOOF. For each xe MY, take a positive rational number ¢ such that x=¢%

where X is a primitive element in Vy. Let U :(j (Zi)> be an integral matrix
such that
0 172
f:UxotU, Xo= 5 detU>0
172 0
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and (a, ¢)=(b, dy=1. Denote by N, the lattice in We=@Q* given by N,=
{{Uy; y=Z%. Since G+Io:{<g 2_1>; aER*} and the Haar measure dy.,

on G, normalized by (1-2) is equal to 47'd"a, Z(F, L7; s, s5) is written as

270 werolp@eo| aa ]t s oo ( e 0y

,rEI’\M; SG+/G+IO 0 at

where Fy (x, v)=F(p~(Ug, 1)(x, ¥)) and the summation with respect to y is

taken over all y=%v,, y,)&€N, such that y,y,+0. Hence, applying Lemma 2.6
to the integral

[ aralessm(ex () 0 9)ar=KFustaxe, ), Nes 50,
we have

Z(F, LT sy, s9=ZP(F, LT; sy, Sz)+2“’(p LY; 1=sy, sits.—1/2)

+(2;1>27](M 52+1/2)W1(F 0 Se

(F'; 0, s:—3/2)

o,

1
+K—{¢1(32+1/2)W1(F 0, s.— l)+ 77(M $e4+1/2)——— 35, (F; 0, 32__1)}

—zisl[gzsz(sz) T(F; 0, 5,—3/2)

1 . awl i awl
M5 s G5 0, 51=3/2= G (F 0, 50— 3/2) |
where
C 1 -~ -~ s
gu(s)=—o-n(M; )+ 2 log (p1(N3)ps(No)/g) | det x|
re\M,
and

C 1

u(s)=—n(M; )+ 3 log(geN.)p(Nz)/4)|det x|~°.
2 4 er’\MI

Now the first part of the lemma follows immediately from the formulas pi(N;)

=p(N)=det U and py(N.,)=py(N,)=1. We omit the similar proof of the
second part. q.e.d.

LEMMA 2.9. The functions Ui (F; sy, s2) =1, 2) satisfy the following func-
tional equations for any FeS(Vy):
Y(F*; 51, So)

(2-10) (
UA(F*; sy, S9)

>=F(sz+I)F(sl+32+3/2)2'31’232‘27r‘5’2“31'232
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—cos (s1+2s,)/2 —sin 7s,/2 UAF; s, —3/2—5,—55)
x( coswsy/2  sin (s +2s)7/2 )( UyF; 51, —3/2—s5,—55) >
U(F; s1, 82)
UAF; 51, 89)
2 sin%(7s;/2) 0 T(F; —s;—1, s;+s,+1/2)
X( >< UF; —s—1, s,Fs0+1/2) )

2-11) ( ):ﬁ”‘Z“l*“F(sl—}—l)z

0 —sin 7s;

Proor (cf. [4], §7). The functional equation (2-10) follows immediately
from Lemma 1 (i) of [6]. We can easily reduce the functional equation (2-11)
to the formulas for the Fourier transforms of |x2+y2%|® ([2], Chap. III 2.6.).

g.e.d.

Now we are ready to prove Theorem 2.

PROOF OF THEOREM 2. Lemma 2.1, Lemma 2.2 (3), Lemma 2.4 and the
formula (2-10) of the above lemma imply that (s,—1)(s;+s5,—3/2)8(L ; 51, So)
(=1, 2) are extended to holomorphic functions of (s;, s,) in D;={(s;, s,)=C?;
Res;>1}. Lemma 2.1, Lemma 2.2 (1), (2), Lemma 2.5 (1), Lemma 2.8 (1) and
the formula (2-11) show that (s;—1)26(L ; sy, s,) (=1, 2) have analytic continua-
tions to holomorphic functions of (sy, s;) in D,={(s;, s,)€€?; Res,+Res,>3/2,
Res;>3/2}. Hence (s;—1)%(so—1)(s1+5:—3/2)6{L ; s1, s2) (=1, 2) can be con-
tinued analytically to holomorphic functions in the tube domain D,\UD, It is
obvious that the convex hull of D,\UD, coincides with C% Therefore the func-
tions ($;—1)%(s;—1)(s1-+5.—3/2)6(L ; 51, s5) (G=1, 2) have analytic continuations
to entire functions of (s4, s,) (cf. [3], Theorem 2.5.10). The functional equation

(2-12) Z(F, L; sy, so)=v(M)TZ(F*, L*; 51, 3/2—51—55)
follows from Lemma 2.4. Moreover we have, by Lemma 2.5 and Lemma 2.8,
2-13) Z(F, L; sy, s)=2Z(F, L; 1—s,, s;+5,—1/2).

The functional equation (2-2) (resp. (2-3)) is an immediate consequence of Lemma
2.1, (2-10) (resp. (2-11)), and (2-12) (resp. (2-13)). The residue formula (2-4) is
obtained from Lemma 2.4, The formula (2-5) follows from (2-3) and (2-4).
Finally we easily derive (2-6) and (2-7) from Lemma 2.5, Lemma 2.7 and
Lemma 2. 8. g.e.d.
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