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Introduction. Let A be an abelian variety of dimension # defined over C,
C be a polarization of A and K be a CM-field of degree 2n. We assume that
there exists an isomorphism # of K into the endomorphism algebra End(A)®Q
of A, Let (K, ®) be the CM-type determined by (4, 8) and (K’, @) be the
reflex of (K, @). For every subfield D of K, we put 8,=0|D and consider
the structure (A4, ¢, 0) of the polarized abelian variety with endomorphisms
O(D) taken into account. Let M, be the field of moduli of (4, ¢, ) and let
ko, be a finite algebraic number field which contains M, We set h=Fk, K’

When K is cyclic over D, G. Shimura [7], [10] proved some criterions by
which the existence of a model of (4, ¢, 6p) over k, becomes équivalent to the
existence of a Hecke character of k5 which satisfies a few simple conditions.
Here %} denotes the idéle group of k. For applications obtained from these
criterions, we should refer the reader to [7], §5 and [107, §3.

In the first half of this paper (§ 1~§3), we shall try to generalize Shimura’s
criterions for an arbitrary subfleld D of K, under the assumption that A is
simple and that End(A) contains the maximal order of K. By virtue of the
results on the zeta function of A given in [7], [10], we obtain basic necessary
conditions which the Hecke character ¢ of kj should satisfy for the existence
of a model of (4, ¢, 0p) over ko, Also, as is explained in [7] (see §1 of this
paper), we shall lose no generality by assuming that K is normal over D.
Under these conditions and the existence of ¢, the obstruction for the existence
of a model over %, can be described by a cohomology class & in H(Gal(K/D), Z x).
Here Zx denotes the group of all roots of unity in K. We can give a condi-
tion, in terms of ¢, which guarantees that & splits locally at every place of K
(Theorem 1). Then this condition leads to a certain descent data in which
isomorphisms are replaced by isogenies. In our case, we can prove that this
actually leads to the descent so that there exists a structure (A, 43) which is
rational over %, and is 7sogenous to (A4, p) (Theorem 2). This result can be
regarded as an affirmative answer, though only up to isogeny, to the problem
of generalization of Shimura’s criterions, in the case A is simple.
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In §4, we shall prove that (4, ) has a model over its field of moduli in
certain special cases by applying Shimura’s criterion for the case D=F, where
F denotes the maximal real subfield of K. On the other hand, in §5, we shall
present examples of (A4, ¢) which have no models over their fields of moduli®.
Our results seem to suggest that the existence of a model of (4, C, fr) over
My depends delicately on the ramification of 2 in K and Mk.

Notation and terminology.

By an algebraic number field, we understand an algebraic extension of @
in C. We denote by p the complex conjugation in C. Let F be an algebraic
number field of finite degree. The maximal order, the unit group, the group
of principal ideals, the ideal group and the ideal class group of F are denoted by
Op, Er, Pr, I» and Cp respectively. For relp N(r) denotes the absolute norm
of r. The maximal abelian extension of F in € is denoted by F,,. By Fj and
F%, we denote the idéle group of F and the archimedean part of F respec-
tively. Let x=F% The element of Gal(F,,/F), which is the image of x under
the Artin map, is denoted by [x, F]. By x. (resp. xw), wWe denote the image
of x under the projection to FZ (resp. to the first archimedean component of
Fx which corresponds to the identical injection of F into C). We denote by
x|z (resp. |xl,) the idéle norm of x (resp. of the finite part of x). By div(x)
elr, we denote the divisor of x which is canonically obtained. Let v be a
place of F. Then F, and (D), stand for the completions of F and Op at v
respectively. If o is a quasicharacter of Fi, w, denotes the quasicharacter of
Fy obtained from w. If K is a finite extension of F, dx/r, D(K/F) and Ng,r
denote the relative different, the relative discriminant and the norm map from
K to F respectively. As to the terminology concerning abelian varieties of
CM-type, we shall follow that in [7] and [11].

§1. Review of known results.

We use the same notation as in the introduction. Throughout the paper,
for the sake of simplicity, we assume

(L.1) End(A)=0(0%) .

This implies End(4A)®Q=K ; hence A is absolutely simple. Let @ be the rep-
resentation of K by nxn complex matrices which is realized on the tangent
space of A at the origin through 6. Let (K’, @) be the reflex of (K, ). We
shall recall briefly several basic results given in [7]. Let ¢ be any polarization

1) For the generic case, see [6].
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of A and M be the field of moduli of (A4, ¢). Then Mx=MK’' and K’ is normal
over K'MM. Therefore we have GaliMz/M)=Gal(K'/K'N\M). If c=Aut(C/M),
there is an isomorphism g, of (4, C) to (A% ¢°). Then, for every a=Qyx, we
have p;'0(a)°u,=0(b) with b=Dx. We see easily that » does not depend on
the choice of g,. The map a—b defines a ring automorphism of Dy and it
extends to the field automorphism z(s) of K. Thus we get

1.2) 110(a) pe=0(a"), a=Dy.

Clearly we have rn(s)=1 if and only if ¢ induces the identity on M. Let D,
be the fixed field of m(Gal{Mg/M)). Then we have

(1.3) Gal(K/Dy)=Gal(MK'"/M)=Gal(K'/K'N\M).

The following lemma is now easy to prove (cf. [9], Prop. 2):

LEMMA 1. The field of moduli M of (A, C) coincides with the field of moduli
MDO Of (A, C, HDO)‘

LEMMA 2. We have det(@'(x°)=(det ®'(x))* and trace(d’ (x°)=
(trace(D'(x))*¢? for xeK', o =Gal(MK’/M).

Proor. Take ccAut(C/M) and let p, be an isomorphism of (A4, €) to
(A7, ¢%). Let 9(A) and D(A°) denote the space of invariant differential 1-forms
on A and on AY respectively. By (1.2), we have

(1.4) trace(@(a™ )| D(A)=trace(6(a)’ | D(AY)), aceQg.

Suppose that @ is equivalent to Zn) ¢; with the isomorphisms ¢,’s of K into C.
i=1
Then, by (14), we get

a5 S @s@ei= 3 g0 for geK.
i=1 i=1

A theorem of Artin on the linear independence of isomorphisms implies that
a(o)o;=0 ;0 as isomorphisms of K into € for every 7, where the map i—j{)
is a permutation on n-letters.

Let L be a finite Galois extension of @ which contains K and M. Let S
be the set of all extensions of ¢,'s to elements of Gal(L/@Q). Put S’=S-! and
H'={yeGal(L/@)|yS’=S’}. Then K’ is the subfield of L which corresponds
to H’ and @’ consists of all the different restrictions of the elements of S’ to
K’ (cf. [5], p. 126). Clearly we may assume that ¢=Gal(L/M). Let 7’1(\03
denote an extension of n(s)=Gal(K/D,) to an element of Gal(L/@Q). From (1.5),
we get ;r-(\o‘SS:Sa. Therefore we have
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(1.6) S'z(0)=0S",
for every o =Gal(L/M) and every extension 77:(\0/) of wn(s). Suppose that @’ is

14 .
equivalent to >} r; with isomorphisms ¢;’s of K’ into C. We may consider t;
i=1

as an element of Gal(L/@). Then (1.6) implies that azj:z-i(ﬁ;r—(\(;) on K’ with
some 7. for every j. Therefore we obtain

7 (o)

t ¢ ~ t
1I x°%= I ij"("):<H xfj) for xe€K’,
=1 =1 =1

and the latter equality in the same way. This completes the proof.

Now assume that (4, ¢) is defined over a finite algebraic number field k.
We put =4k K’. Since £,2M, we have Gal(k/ko)=Gal(Mg/ki\Mg)SEGal(My/M).
For the homomorphism of Gal(k/k,) into Aut(K) which is canonically obtained
from =, we use the same letter 7. Let ¢ be the Hecke character of % deter-
mined by (4, §) over k2. Define a homomorphism g of k% into Ki by g=
det @'N;/k.. Then ¢ satisfies the following properties (cf. [77, (1.12), (1.13)).

(A)Y Px)=1/g(x)ey for x€k&.

(B) If xekj and x.=1, then (x)=K*, (x)(x)*=|x|5" and $(x)Ox=g(x)Ox.
(C) x)=¢(x)* for every ceGal(k/k,) if xekji, xo=1.

(For (C), see (6.9) and (6.10) of [7] or [10], §2).

Furthermore, assume that (A, C, 6z) is rational over i and that A2 K’. Then
¢ satisfies (cf. [10], Theorem 1)

(D) Px)=x(x)| x|z for xehj,
where y is the character of h} which corresponds to the quadratic extension
k=hK' of h.

The following converse theorems are obtained by Shimura and Casselman®.
Let (4, 6) be a structure of type (K, @) and C be a polarization of A.

THEOREM I ([7], Theorem 6). Let k be an algebraic number field which
contains K’ and assume that therve exisis a Hecke character ¢ of k4 which satisfies
(A) and (B). Then there exists a structure (A’, 87) which is rational over k, is
isomorphic to (A, 0) and determines ¢ over k.

THEOREM II ([10], Theorem 2). Let h be an algebraic number field such
that h2Mp, h2K'. Put k=hK’ and assume that there exists a Hecke character
¢ of k% which satisfies (A), (B) and (D). Then the structure (A’, 6") in Theorem 1
can be taken so as to satisfy one more condition that (A’, 6F) is rational over h.

2) For this terminology, we refer to [7], p. 510.
3) Here we state their results under the restrictive condition (1.1).
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In Theorem I (resp. II), we note that any polarization ¢’ of A’ is rational
over k (resp. h) (cf. [7], Prop. 4).

§2. Formulation ¢f problems.

One of our purposes in this paper is to generalize Theorems I and II. First
we shall explain precise formulation of the problem. Let (4, @) be a structure
of type (X, @) and k, be an algebraic number field of finite degree. We take
any polarization € of A and assume that

(E) £k, contains M.

Here M denotes the field of moduli of (A4, €) as before. Put k=Ek,K’. As is
explained in §1, we have an injective homomorphism 7 of Gal(k/k,) into Aut(K)
such that

2.1) ta'0(a) po,=0(a™”),  aeDg

holds for any o<=Gal(k/ko) and for any isomorphism p, of (A4, €) to (47, C°).
Let D denote the fixed field of =(Gal(k/k,). Then z gives the isomorphism
Gal(k/ky)=Gal(K/D). We assume that there is given a Hecke character ¢ of
k% which satisfies (A), (B) and (C). Now let us consider the following problem.

(P) Give a criterion, in terms of ¢, which guarantees the existence of a model
(A’, 0’) satisfying the following conditions.

(P1) (A’, 0y is isomorphic to (A4, 8).
(P2) (A4’, 6) is rational over Z,.
(P3) (4’, §") determines ¢ over k.

We note that ¢ depends only on the k-isogeny class of (4, ). Therefore,
it may be too optimistic to expect an affirmative solution, which controls the
descent only by ¢, of this problem in the general case. Thus we formulate
also a weaker version (P’) of this problem replacing (P1) by the following con-
dition.

(P'L)y (A, 8" is isogenous to (A4, ).

In this and the following sections, we shall be concerned with these prob-
lems. First, by Theorem I stated in §1, we may assume that (4, ¢, 0) is
rational over k.

REMARK 1. Suppose that there exists a structure (4’, ') which satisfies
(P1) (resp. (P1)), (P2), (P3). By T[11], p. 74, Prop. 30 and (P2), (A4’, ") is
rational over k. Then (P1) (resp. (P'1)) and (P3) imply that (A, §") is isomor-

4) To see this, it is sufficient, for example, to trace back the proof of [7], Theorem 5.
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phic (resp. isogenous) to (4, §) over & (cf. [7], Theorem 5).

LEMMA 3. For c<Gal(k/ky), let p, be an isomorphism of (A, C) to (A°, C%).
Then p, is defined over k.

PROOF. Put @%(a)=®(a* )7 and #*(a)=0(a"¢"")° for acK. Applying
Prop. 1 of [7], we see that (A°, 8%) is of type (K, @%). Let ¢’ be the Hecke
character of k% determined by (A°, 6%) over k. By (1.5), we see that * is
equivalent to @. Using Prop. 1 of [7] and assumption (C), we have ¢/(x)=¢(x)
if x=k% and x.=1. Hence we have ¢’=¢. On the other hand, we have
te0%(a)=0(a)p, for acK. Therefore, by Theorem 5 of [7], pe is rational
over k.

Let Zx denote the group of all roots of unity in K. Since we have
Aut{(A, OH=6(Z %) (cf. [11], p. 117), we get potpsn.~0{s.o) with £, .€Zx for
any o, t=Gal(k/k,). For a, feGal(K/D), we put &a, s=Lr-1¢a2, =16

ProrOSITION 1. The map (a, B)—E€a. p of Gal(K/D)yx Gal(K/D) to Zx defines
a 2-cocycle. The cohomology class & of {£a. s} in H¥Gal(K/D), Zx) does not
depend on the choice of isomorphisms p,. Let @ be the canonical homomorphism
of HXGal(K/D), Zg) to H¥Gal(X/D), Ex). There exisls a model (A’, 8") such
that A’ is rational over ke and that (A’, 8" is isomorphic to (A, 6) over & if
and only if @&)=1. Furthermore, if this is the case, (A’, 8") can be taken so
that (A’, 0p) is rational over k.

Proor. Note that Gal(K/D) acts on Zx on the right. The cocycle condi-
tion is written as

(2.2) Eop &l 5=Ea pifsr  for «, B, rEGal(K/D).

We can verify (2.2) by a direct computation using (2.1). It is also immediate to
verify that the cohomology class of &., 5 does not depend on the choice of {¢.}.
Suppose that ¢(&)=1. Then we can find a l-cochain {a.}, a.€Ex so that
Ea,ﬂzagjgaﬁaﬁ for any @, f=Gal(X/D). Define an isomorphism 7, of A to A
by pe=p.0(azt) for any oc=Gal(k/ky). Then we get

Nadnsne=0(0 o) tha? 150(a700) )V = 0(a% 1)
=0(a o) o 5 p-0(a 2 B) M a7t)=1

for any ¢, 7=Gal(k/k,). Therefore, by Weil's criterion of descent, we can find
an abelian variety A’ rational over k, which is isomorphic to A over k. Let 3
be this isomorphism from A’ to A and set 6'(a)y=n"'0(a)y, ackK. Put p,=
p%eon~! for 0 =Gal(k/ky). Then p, is an isomorphism of A to A? and (2.1) also
holds for this p,. Then we get 76'(a)’ 7y '=60(a"™”); hence 0'(a)’=6"(a) if
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aeD. Therefore (A’, 03) is rational over k, Conversely, if there exists a
model A’ rational over %, which is isomorphic to A over k, we can get o&)=1
by a direct computation. This completes the proof.

REMARK 2. By Prop. 1, we see that the problem (P) has an affirmative
solution if and only if (§)=L.

§3. A solution of the problem in the sense of isogeny.
In this section, let us abbreviate O to © and set U,=T[ L}, where w runs
w

over all finite places of K. For c=Gal(k/k,), let  be an extension of ¢ to an
element of Gal(k,/k,). For any o, z=Gal(k/k,), we have (g7)167=Gal(k,/ k).
Take yeki so that [y, k]1=(6%)"'6%, y.=1. Since ¢(»)Or=g(y)Ox by (B),
we get P(y)g(y)*el, We put d,.=¢(y)g(y)"*. By Theorem 2, (ii) of [7],
we see easily that d, . does not depend on the choice of y, though it depends
on the choice of ¢ and 7. For «, f=Gal(K/D), set Ne, =07 -1¢a), n=1¢f)-

LEMMA 4. The map (@, B)—na,p from Gal(K/D)XGal(K/D) to U, defines a
2-cocycle. The cohomology class of 7. 5 does not depend on the choice of {5}.

ProoF, It is sufficient to show
3D Ooe 08P =04 cy0z, for o, 7, veGal(k/k,).

By Lemma 2, we can easily see that g(x°)=g(x)*® for s =Gal(k/k,). Then
we can verify (3.1) by a direct computation using (C). The second assertion
can be verified in a straightforward way.

Let » denote the cohomology class of {na st iIn H¥Gal(K/D), U,). Roughly
speaking, » is the image of the cohomology class which defines the extension
1-Gal(% o5/ k)—Gal(k g5/ ko)—Gal(k/ke)—1 by ¢g

PROPOSITION 2. Let ¢, denote the canonical homomorphism H¥Gal{K/D), Z &)
—H%Gal(K/D), Uy) which is obtained from the injection Zxz—U, Then we have
w&)=1n.

PROOF. Define an onto map w of KQeR to A as in [7], p. 508~9. Since
End(A)=0(D), @ induces an isomorphism KRR /U= A with a fractional ideal
A of K. Hence we can write A=sD with s K% Take any o<Gal(k/k,) and
put 7,=s/s7">  We set

(3.2) go(v)za)"(/x,;l(w(ravr("_1))‘;)) for veK/U.

Then ¢ induces an O-linear automorphism of K/9. Therefore there exists an
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e;=U, such that

3.3) p)=ezv for ve K/

By a direct computation using (3.3), we get

Bd) e e 0= 0 (e ) e )y TR T

for veK/%U. Take xekj so that x.=1, [x, k]=46%(g7)"". By Theorem 2, (i)
and (1.11) of [7], we have

(3.5) W) F=aw(p(x)g(x)'v) for veK/U.
Using (3.4) and (3.5), we obtain

(3.6 patpsp o) =0(@(x)g(x) ) “Vem(ez ) Vezv),  veK/U.

We have ((/)(x)g(x)‘l)”('”)Zg[)(x‘”)g(x‘”)“ and [x°7, k]=(G%)"'67. Therefore we
obtain

3.7 toEa, §)="7a, sda, p(d8) dF for «, f=Gal(K/D),

where d,=e¢ ;. This completes the proof.
By Shapiro’s lemma, we have

(3.8) H¥Gal(K/ D), Uo)=BHGal(Kw/Dy), 0) 5

where v extends over all finite places of D and w denotes a place lying over .
Thus the condition

implies that the image of & in H*Gal(¥,/D,), 27) is trivial for every finite
place w of K. On the other hand, Shimura’s Theorem II quoted in §1 can be

interpreted as giving the condition for the splitting of & at the archimedean
places of K.

PROPOSITION 3. With the notation as above, we assume DEF. Let ¢y denote
the homomorphism H¥Gal(K/D), Z x)—H*Gal(C/R), C*) associated with an iso-

morphism ¢ of K into C. Then cy(&)=1 if and only if ¢ satisfies (D) for the
subfield h of k which corresponds to =~ Gal(K/F)).

Proor. Let Res denote the restriction map of HXGal(K/D), Zg) to
H¥Gal(K/F), Zx). By virtue of the above quoted result of Shimura and Prop. 1,
we see that Res(§)=1 if and only if ¢ satisfies (D). The isomorphism ¢ of K
into € induces a homomorphism ¢ : HAGal(K/F), Z x)—H*Gal(C/R), C*). Our
assertion would follow immediately if we could show that ¢ is an isomorphism.
By taking a cyclic factor set as a representative for every cohomology class,
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we get H*(Gal(K/F), Zx)={x1}, H*Gal(C/R), C*)= R*/R} and ¢4(—1)=
—1mod R;i. This completes the proof.
Summing up these considerations, we obtain the following Theorem.

THEOREM 1. Let the notation be as above. We assume that k, satisfies (E)
and k3 has a Hecke character ¢ which salisfies (A), (B), (C), where k=k,K’.
Define a subgroup U of Kj by U=U,X K% and let ¢ be the canonical homomor-
phism of HXGal(K/D), Zg) to H¥Gal(K/D), U). Then we have «(&)=1 if and
only if ¢ satisfies (F') and also (D) in the case DEF.

Thus we have obtained necessary and sufficient conditions (A)~(F) for &
(or for @(§)) to be “everywhere locally trivial”, in terms of ¢. The naturality
of our arguments seems to suggest that this would be the best information
about & which could be obtained from ¢.

Suppose that (&)=1. Then, by the Hasse principle, there exists a 1-cochain
{ast, aa€K* such that £, ,=azhabas for every a, feGal(X/D). Put ul=
toe0(azly), which can be considered as an element of Hom(A4, A9)Y®Q. Then
we have

3.9 ple=pi for every o, c=Gal{k/ky),

where the equality is understood in the category of abelian varieties whose
morphisms are extended from Hom(A, B) to Hom(A4, B)®Q. The formula (3.9)
can be interpreted as “ descent data in the sense of isogeny ”.

THEOREM 2. Let the notation and the assumptions be the same as in Theo-
rem 1. We assume «(§)=1. Then there exists a structure (A’, 8’ of type (K, @)
which satisfies (P'1), (P2) and (P3).

Proor. We take two exact sequences and shall make similar considerations
as in Iwasawa [3].

(3.10) l—Ex—U—U/Egx —>1.

(3.11) 11— KU/K* — K3i/K* — Kj/K*U —> 1.

We abbreviate Gal(K/D) to G, and H¥G, B) to H¥(B) for any G-module B. By
B, we denote the module of G-invariants of B. Note that K*U/K*=U/Ex
as G-modules. Then we get long exact sequences of cohomology groups:

01
(.12 o —> HY(U) — HU/Ex) —> H¥(Ex) N HYU) —> -

0
(3.13) - — HU(K 3/ K*U) —i>H1(U/EK)———>1——>-~-
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Since ¢(p&)=1, we have @(£§)=0:(0:(c)) for some ccHYK3/K*U). It is well
known that K3/K*U=Cg and HY(Cr)=Cx/Ngo(Cx). Let $=6Cy be an element
which represents ¢™'. Take b€y and b=Kj so that bmod Pr="0, div(h)=".
We get

(3.14) be=baofe, a=G,

with a.,=K* and f.,=U. Then, by definition, f, mod Ex defines a l-cocycle
taking values in U/Ex. We may assume

(3.15) ea s=(fasfofe)", a, G,
where ¢, is a suitable 2-cocycle which represents ¢(&). Then we have
(3.16) € g=aasalag, a, BEG.

Clearly we may assume that b is an integral ideal of K. We may also assume
that an isomorphism g, of A to A’ is chosen for every occGal(k/k,y) so as to
satisfy prlpsp.=60(ezcor. zy). Let @ be the group of b-section points of (A4, ).
Define an abelian variety A* by A*=A/® and let 5 be the canonical isogeny
from A to A* with the kernel . Since ® is rational over k2, A* and y can
be defined over k. Take t=Z so that taz'eDx for every a=G. Put b.=tai’
and define an isogeny of A to A° by pi=p,°0(b. ). The kernel of the isogeny
n0(t) coincides with the group of (¢)b-section points of (4, 0). We have

@17 Ker(y?e )= {x € A|0(b:(o>)x E " (G}

Clearly & is the group of H-section points of (47, 7). Hence, using (2.1), we
see that g;(®°) is contained in the group of 67¢“_gection points of (4, ).
Comparing their orders (cf. [11], p. 61), we see that they coincide. Since
(Breoy)67 @ =()0 by (3.14), we obtain Ker(yn®-p,)=Ker(5d({)). Therefore there
exists an isomorphism ¢, rational over & of A* to (A*)” which makes the
following diagram commutative.

70(t)
(3.18) 2 | ¢
A (A%)°
77(7'

Then we can verify in a straightforward manner that ¢,.=¢s¢. for every
o, r=Gal(k/k,). Hence there exists an abelian variety A’ defined over 2, which
is isomorphic to A* over k. We can define an isomorphism 6* of K into
End(A*)®Q so that n-0(a)=0*(a)-y for a= K and that 0*(Dx)=End(A*) (cf.
[117, §7, Prop. 7 and 8). Then (A%, %) is of type (K, @) and we can verify
07107 (a)p,=0%(a"), a€K. Therefore we can define an isomorphism &’ of
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K into End(4)XRQ so that (A4’, §7) is isomorphic to (A%, 6*) and that (4’, 0%)
is rational over k,. Thus (P’1) and (P2) are satisfied for (A’, §’). Since (4’, 8’)
is isogenous to (4, #) over &, (P3) is also satisfied. This completes the proof.

COROLLARY. We fix a structure (A, C, 8) as above. Let ko be an algebraic
number fleld which contains M. Then, in the isogeny class of (A, ), there exists
a structure (A7, 8") such that (A’, 05) is rational over ky and that End(A")=0'(Dg)
if and only if there exists a Hecke character ¢ of kj which satisfies (A), (B), (C),
F) and also (D) in the case DSF.

ProoF. It is enough to prove the “only if” part. Let (A’, §’) be the
structure as in the statement and » be an isogeny from (4’, §") to (4, §). For
g Aut(C/k,), we have 5°=p,0(a,)p with some a,=K. Also we have »6'(a)
=0(a)y. From these relations, we obtain 6’(a)’=0"(a**”) immediately. This
shows that the Hecke character ¢ of k) determined by (A’, §”) over % satisfies
&), B), (C), (D), (F).

REMARK 3. In a similar way as in the above proof, we can prove ¢(£)=1,
if the order of the group of ambiguous ideal classes of K modulo the ideal
classes which can be represented by an ambiguous ideal of K is relatively
prime to | Zg]|.

REMARK 4. Suppose that DS F. Since p belongs to the center of Gal(K/D),
we have HY(Gal(K/D), Z)=(Z/2Z)% for i>0 with some non-negative integer
t;, by [2], p. 113, Cor. In this case, we see easily that assumptions (A), (B),
(C), (D), (E) imply &=1 if a 2-Sylow subgroup of Gal(K/D) is cyclic.

§4. Construction of certain Hecke characters of M.

In this section, we shall examine the possibility of the construction of a
Hecke character ¢ of Mg which satisfies (A), (B) and (D). To do so, we must
of course assume that

4.1 Me2K".

We note that assumption (1.1) is still in force throughout the following. Put
k=My and h=Mp. Then [k:h]=2 by (4.1). Let F’ be the maximal real
subfield of K’ and let ¥, be the conductor of K’ as a class field over F’. Let
w be the character of F)* which corresponds to K’. We have

4.2) w(x)= p]x;Io @ %) SN KXoy} -+ 8EN (X er) ,

if xeFy and x,€0f, for every finite place v of F’ which does mnot divide To-
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Here sgn denotes the signature function on R*.
To construct ¢, we first impose the following assumptions.

(1) Every prime ideal of F’ which divides (2) is unramified in K’.
() Ex=Ep

(1) Ex.=Eg.

() Px-N\Ip=Pp.

Hereafter we shall abbreviate Oz, to ©’. Let p be a prime ideal of F’
which divides §, and let P be the prime divisor of p in K’. By (D), a)plD;mp
coincides with the quadratic residue symbol modyp in @;;} and it extends to the
quadratic residue symbol mod B in ©F, which we shall denote by @y. Put

T:;‘BHT PB. We first define a quasicharacter ¢, of K’ I DKL by
ifo w

(4.3) gbo(xyz):g@w(yw)(f(z));} for xe Kz, yeg O, zeK’~

Here f denotes the map det @ from K7* to Ki By (4.2) and (II’), we get
Hfmw(s)(f(a));}z %wv(e)Np,,Q(e):w(s):l if eeEg.. Hence we see that (4.3) is
well-defined. We set

4.4) dolx)=aw(x) x50 for xeFy.

Put T=Fy K’ l;IQ'JKéf and V=FyNK"* l"w[D;,*K;X. To see that ¢, extends

to a quasicharacter of T, it is sufficient to verify that (4.3) and (4.4) are con-
sistent on V. Take x€V. Since div(z)elzsNPg.=Pr, we have div(x)=(a)
with aeF’*. Then we have a 'x€FyNII Oy Kr=TI (O )y X FX. Put y=
a *x. It is enough to show v ’

(4.5) Hauly X fei=anylF .

As (f(3)ei=1y | ro(y), (4.5) follows immediately. Set

4.6) P={zeK}| f(eYOg=(B), Bpr=1z[5* for some B K*},
4.7 I(PN={UEIx | A =(B), BB =NQ) for some = K*}.

Then P (resp. I(@") is the subgroup of K4* (resp. Ix.) which corresponds to
the unramified class field # of K’. The map x—div(x) gives an isomorphism
PITI O x Kx=I{D"). We see easily that P27T. If

(4.8) P=T (=F{K"TI125KZ),

we see that ¢=¢,° N,k satisfies (A), (B), (D) (see below).
To weaken these assumptions and to look at the situation more closely, let
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us fix our attention to a specific CM-type studied by Shimura in [9]. Let G
be the dihedral group of order 4n (n=2) generated by « and 8 subject to the
relations «**=p8*=1, Baf=a'. Let L be a Galois extension of @ such that
Gal(L/@)=G. We assume that K and F are subfields of L which correspond
to the subgroups <1, 8> and I, B, a”, Ba™> of G respectively. Moreover we

assume that p=qa® on L and that @ is equivalent to :Z;):ak. Then: (K, @) is
primitive; K’ is the subfield of L which corresponds to <1, fa™">; @ is
equivalent to ;ﬁ?‘;,:a‘k.

We assume

(IV) n is even.

(The odd dimensional case would be simpler; see [8], Theorem 9.5.) By (IV),
K does not contain any imaginary quadratic field.

REMARK 5. If we assume
I bdgp does not divide (2),
then we get (II') and (III) by virtue of Prop. A.7. (iii) of [91.

LEMMA 5. The finite abelian group P/T is an elementary abelian 2-group.
Moreover we can take a representative for every coset of P/T in the form
7y - T, where wy is a prime element of Ky, for a prime ideal P;|} considered
as an element -of K*.

ProoF. Take xeP and put r=div(x). Then r&l(D’). Set
(4.9) I(K'/F)=Pg U]k |AP=}.

By Prop. A7 (ii) of [9], we have I(@)SI(K’/F’). Hence we have y*cPr. I
and r=(a)bB; --- B,. Here ac=K’'*, by and B,’s are prime ideals of K’ which
ramify in K‘/F’. Then we see immediately that x?<7T and that e~ 'xe
Ty T lu—)[D{JK;X, with an idéle b of F%* such that div(h)=b.

We use the notation in Lemma 5. Since B, -+ B, =I(P"), we have (B, - B,)¥
=(c), cc’=N(B; --- B,), ce K*. By Rs=NP,, we get (¢?)=(¢). Hence c’=¢cc,ecEp
by (I). Then we get ¢=efcP=¢%; Le. e==+1. If ¢cP=—¢, we get cc?=—c*?
=N(P, -+ B,). This implies that K contains an imaginary quadratic field, which
is a contradiction. Therefore we have c=F and ¢2=N(L, -+ L),

Let p; be the prime ideal of F’ such that p,=Pi We can write Kg,=
F{,i(\/’af-i) with w;=F},. Since p; does not divide (2) and K3, is ramified over
F}, we can take w; as a prime element of Fj. Then +/w; is a prime element
of K%, so that we may put m;=+/w;. We have ¢ (7; - 7))=¢o(W1 - W)=



646 Hiroyuki YosHIDA

o (@1 Ty TR =@, - TWONEB: - Bo=w(w; - @)c’. Note that
@, (W) = w,,(—1) since —; is a norm from K%, Therefore we obtain

(410) g, w =11 (5))e

—1

y ):a)pi(—l). Here we make one more assumption.

(V) Every prime ideal p of F’ which ramifies in K’ satisfies <—Tl>:l. Then
we set

where (

(4.11) ¢o('®/1 'w;):C N

Clearly, this assignment of the value of ¢, @) for a complete set of rep-
resentatives of a set of generators of P/T defines an extension of ¢, to a
quasicharacter of P. Since P=K'*N;,x.(k}), we can define a quasicharacter o
of k% by

4.12) ¢d=d>Nrix: .

Now let (4, §) be a structure of type (K, @) and C be a polarization of A.
The field of moduli M of (A4, ¢) coincides with the field of moduli My of
(4, C, 6p) (cf. Lemma 1). We assume that A is isomorphic to C™/w(2) as
a complex torus with an ideal ¥ of K. (Here o is the map of C"=KRR
onto A used in §3). Then we bhave Mp={x e MK’|x°=x}, where
o———p[?l%[“”'l, MK'/K']*eGal(MK’/F") (cf. [9], Prop. 6). Here [z, MK'/K"]
eGal(MK'/K’) denotes the Artin symbol for relg.. Note that [Mg: Mp1=2.

PROPOSITION 4. With the notation as above, assume that O, D, Av), (V)
are satisfied. Moreover assume either (1) and (1) or (I). Then (A4, C) has a
model over its fleld of moduli.

Proor. It is sufficient to verify that the Hecke character ¢ of ki con-
structed above satisfies (A), (B) and (D). By the definition (4.3), (A) is clearly
satisfied. If xe<hi, we have ¢(x):¢o(zvk,K,(x)):a)(Nk,K,(x))[Nk,K.(x)I;?z
w(x)lx 13", since y=w°N g and Nyx(x)=Np;r(x). Therefore we have proved
(D). Take xeK’* such that x.=1. Obviously ¢o(x)=K™. We have

(4.13) ol x)po(2)P = x | &

for x=T, and also for x< P since every representative of P/T as above satisfies
(4.13). Let us show

(4.14) Po(X)Ox=[(%)Ox .
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We have (4.14) if x=T. Let x=r, - m, be a representative of a coset of P/T
as in Lemma 5. Then we have ¢y(x)0x=¢Dx and f(x)Or=(P, - PBO¥ =cDx
in the notation as before. This finishes the verification of (A), (B), (D) and
completes the proof. '

If n=2, which is the classical case treated by Hecke, we can considerably
weaken the assumptions. To perform explicit computations below, let us
remark the following. This example is studied in [11], p. 74, ¢); we can
identify it with our present notation by putting a=0, f=oz.

THEOREM 3. With the notation and assumptions as above, we assume n=2
and (I). Then (A, C) has a model over its field of moduli.

PRroOF. By Prop. A.7 of [9], we see that (II), (") and (III) are satisfied.
Therefore, in view of the proof of Prop. 4, it is sufficient to obtain a contra-
diction from (B, - B =(c), *=N(P; -+ P.), cEF and

o —1
(4.15) r_[l( - )_—1.
Here we have used the same notation as before. By Prop. A7 of [9], we get
(4.16) N1 o DK/ FND(F/Q)=Np 1o DK’ [ F ) D(F'/Q) .

By (4.15), we have F=QW'd), deZ, d=3 mod4. Hence (2) is ramified in F.
By the assumption (I), (2) is ramified in F/. We can write K:F(\/—(x—}—yx/z))
with x, y€Z such that x--y+/d is totally positive. Then we have F/'=Q(~/d"),
d'=x*—y*d. Using d=3 mod4, we get either d’=1 or 2 mod4 or d’/4=1 or
2 mod4, since we can exclude the case where 4|x and 4]y. Therefore we
obtain 8| D(F’/@). By (4.16), we have 2|Ngo(D(X/F)). Let q be the prime
factor of (2) in F. Since (2)=Nz/o{q), we must have q|D{K/F). On the other
hand, we have q| D(K/F) since [K: F1=2, q divides (2). This is a contradic-
tion and we complete the proof of Theorem 3.

§5. Examples ¢f abelian varicties of CM-type which have no models
over their fields of meduli.

We shall show that there are “counter examples” even in Hecke’s case if
we drop the assumption (I).

PROPOSITION 5. Let p be a rational prime such that p=1 mod4 and let
F'=Q(~ p). Suppose that the class number of F’ is 1 and that (2) remains
prime in F'. Take a rational prime g such that g=3 mod g, (§>=1. Let g=aa’
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with a ftotally positive element a =Dy, wheré a’ denotes the conjugate of a.
Let K'=F'(v/—a) and let (K, @) be the CM-type of dihedral type for n=2
studied in §4 which has K’ as the field of reflex. Let (A, 0) be a structure of
type (K, @) and C be a polarization of A. Then (A, C) has no model over its
field of moduli.

ProoF. Note that we have F=Q(+v/ ¢ ), K=F(v —2(x++/¢)) if a=x+3yvD,
x, yEQ. It is clear that the prime ideal (¢) of F’ ramifies in K’ and that all
the other prime ideals of F’ except (2) do not ramify in K’. Let @ be the
character of F’* which corresponds to K’. By (4.2) and ¢=3 mod4, we see
that

(%.1) w(—1)=—1.

Hence (2) is ramified in K’. Let q be the prime factor of (2) in K’. By (4.16),
we see that the prime factor of (2) in F ramifies in A. This implies that there
is the unique prime factor of 2Z in the normal closure of K over Q. Therefore
we have ¢ =(2); i.e. q€I,(?"). As (%)z—l, we have 2&Nx. ,»(K’*). From
this, we see easily that q is not a principal ideal of K’. By Prop. A.l of [9],
we have [[o(K’/F"): Pg.]=2. Since [(DNSI(K'/F"), we obtain

(5.2) L1(?"): P ]=2.

By a similar method as in the genus theory of quadratic number fields (cf. [1],
p. 271, Aufgabe 25), we can prove that the class number of K’ divided by 2 is

an odd integer using (%):—1. Therefore, by (6.2), [Mx: K’] is odd.

Now put k=Mg, h=My and assume that there exists a Hecke character
¢ of k% which satisfles (A), (B) and (D). As [h: F’] is odd and q is completely
decomposed in %, there must exist a prime factor p of (2) in 2 such that p is
unramified in A/F’ and that the relative degree of p over F’ is 1. Then p
ramifies in % ; so let P be the prime factor of p in k2. By (D), we have

(5.3) du(x)=yx,(x) if xeDj,.

Take x=D}, and put y=¢g(x). Then, by (B), we have y=K*, yyf=1 and
yOr=0g. Hence we get yeZg={x1}. Thus we obtain

5.4) Pp(x)==*1 for x=05,.

We see that kg/h, and K{/F; are isomorphic as quadratic extensions of local
fields. Therefore we may assume that there exists a character @ of Ok; such
that
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(55) B(x)=wz) i xeDf,
(5.6) a(x)=+1 if xeD,.

We have w,(a)=1 since a is a norm. By (6.1), we get w{—a)=—1. Then

w(—a)y=a&(—a)=(a(~—a))?=1 by (5.5) and (5.6). This is a contradiction and
completes the proof.

Numerical Example. Take F'=Q(~'5), K'=F'(~—(8+3+5)). Then we
have F=Q(+/19) and K=F( —2(8++/19)). We see that the class number of
K’ is 2, using either Minkowski’s bound or the Shintani class number formula
[12]. Since [I(@"): Px.1=2 as above, we have Mz=K’ and My=F (for
every (A4, €)). Then the examination of the extensibility of w, with value group
{1} shows that there is no ¢ satisfying (A), (B), (D).
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