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The object of this note is to apply the techniques of Swinnerton-Dyer [5]
to the study of certain 2-dimensional 2-adic representations of the Galois group
Gal (Q/Q), namely those which are unramified outside the residue characteristic
of 2 and which are reducible modulo 2. We have been guided by certain por-
tions of Mazur’s Eisenstein ideal paper [1]; in particular, we introduce the
analogue of Mazur’s Hecke algebra T, together with an ideal of 7' which we
call the Eisenstein ideal. Making certain natural hypotheses, we show that this
ideal is principal, giving a specific generator for it. We also determine (up to
conjugation) the image of the given representation.

This work is an outgrowth of the first author’s study of Z-adic representa-
tions attached to modular forms [2]. A subsequent article [3] will explore
applications to such representations, including numerical examples.

1. Let [ be an odd prime. Let @ be an algebraic closure for @, and let
K,C@Q be the largest extension of @ which is unramified away from [ and in-
finity. Let G=Gal(K;/Q). Let E be a finite extension of @,; let O, A, and F
be respectively the integer ring, the maximal ideal, and the residue field of E.
Let

0: G —>GLQ2, E)

be a continuous homomorphism. Thus p is a 2-dimensional 1-adic representation
of Gal(@/Q), unramified outside /. We shall write #r and det for the trace and
the determinant of p, a priors functions on G with values in E. In fact, since
G is compact, p is conjugate to a representation with values in GL (2, D).
Therefore, tr and det are ©O-valued.

Replacing p by such a conjugate MpM™?, and composing it with the natural
map

GL(2, O) —> GL2, F),

we obtain a homomorphism
7:G—GLQ2, F).

*) This author partially supported by the National Science Foundation under grant MCS
80-02317.
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As is well known, this homomorphism may depend on the choice of M. How-
ever, the semisimplification of 7 depends only on G. We shall consider only
the situation in which 7 is reducible, so that its semisimplification is described
by 2 characters

a, B: G —> F*.

Let y: G—Z¥ be the l-adic cyclotomic character, and let
w:G— F¥

be the reduction of y modulo /. (Thus w gives the action of G on the group
wCK¥ of [** roots of unity.) Any continuous homomorphism ¢: G—A, where
A is a profinite abelian group, must factor through y; moreover, if the [-primary
part of A is trivial, then ¢ must factor through w. Since the only maps from

Y2
F* to F* are powers of the natural inclusion F§ —.. F*, we may conclude that
a and f are each the composition of 7 with some power of w. We will write
simply

a=w", B=w™,

with n, me Z/({—1)Z. As our last general hypothesis, we will suppose that n
and m are distinct, so that the two ratios f~*, fa' are non-trivial characters.
This hypothesis always holds if the character def is an odd character; in partic-
ular, it holds if p is the Z-adic representation attached to a holomorphic modular
form of [-power level.

2. Our “Hecke algebra” T is simply the Z,-subalgebra of © generated by
the various quantities tr(g), with g&G. Itis clear that T is a local Z,-algebra
with maximal ideal M=T 1 The residue field 7/M is the prime field Fy,
since for each g=G we have the mod A congruence

tr (g) = 0™ (g@)t+o™(g) € F,.

As a Z,-module, T is free of finite rank; it is therefore complete and separated
with respect to its (/)-adic topology. Using the Artin-Rees lemma, one sees
that this topology on T coincides with the M-adic topology on T, cf. Bourbaki,
Alg. Comm., 11, §3, n°3, Prop. 7 (iii). We therefore have

T~ lim T/,

which permits application of Hensel’s lemma in 7. Because / is odd, the identity
2-det (g)=tr (g)*—tr (g"

shows that the values of det are contained in 7.
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Our definition of the “Eisenstein ideal” I of T is somewhat indirect. We
observe that ¥(G) is the profinite cyclic group Z¥. Choose an element go of G
such that y(g,) generates ZF. Because n and m are distinct, the quadratic poly-
nomial

X2—tr (go)X+det (go)

has distinct roots modulo M. By Hensel’s lemma, it factors over 7. Let » and
s be its roots, ordered so that we have

r=w™g,), s =w™(gy) mod M .

(2.1) LEMMA. There exist unique characters ¢, ¢: G—T* satisfying

SD(go>:7’; éb(go):S .

The product of these characters is det.

PrOOF. Any character G—T%* is the composition of y with a unique map
6:ZF — T*,

Moreover, ¢ will be determined by its value on the generator x=y(g,) of Z¥.
The key point is that 6(x) can be selected arbitrarily: given t€ T*, we have
f(x)=t for some §. This assertion follows easily from the fact that the residue
field of T is the prime field F;, so that T* is the product of the pro-/ group
149 and a cyclic group of order [—1.

We now define »: G—T to be the function tr—¢—¢ and define I to be the
ideal of T generated by all quantities »(g), for g&G. The congruences

tr=o0"to™ =et+¢ modM

show that I is contained in M. It is easily seen that the ideal I is intrinsic,"
although the characters ¢ and ¢ obviously depend on g,. More precisely, we
have the following result.

(2.2) PROPOSITION. Let a and B be characters G—T*, and let | be an ideal
of T. Suppose that we have the congruence
(2.3) tr=a+pf mod].
Then I is contained in J. Moreover, after permuting a and B if necessary, we

have a=¢ and B=¢ modulo J.

Proor. We may assume that J is a proper ideal of T, so that J is con-
tained in M. The congruence (2.3) implies the congruence
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aBf=det mod].
Specializing to g,, we obtain the two congruences
alge)- Blge) = 7s mod J,
algo)+Blgy) =r+s mod [ .

Since » and s are incongruent mod 9, it is clear that we have (possibly after
permuting « and f§):

algy=r, Plgo=s mod].
This gives the last assertion of the proposition, i.e., the congruences a=¢, f=¢.

We therefore have

7(g) = tr (g)—p(g)—¢(g)
=tr(g—a(g)—pg=0 mod/,
for each geG. Thus 7(g) belongs to J for each g, so I is contained in J.
The following “numerical” variant of (2.2) shows how to establish congru-

ences for all quantities fr(g) by checking them for finitely many g. The idea
of proving congruences in this way is one of the main themes of [5].

2.4) Let gy, ..., g be elements of G for which I is generated by 7(gy); - » 7{ge)
Let J be an ideal of T. Suppose that o and B are characters G—T%* satisfying
af=det (mod []), together with the congruences

(2.5) tr(g:) = alg)+plgy)  (mod J)

for i=0 and for i=1, ..., t. Then we have

tr(g) = a(g)+pB(g)  (mod))
for all geG.

PROOF. Again, we may suppose that J is a proper ideal. As before, we
find that « and B coincide with ¢ and ¢ (up to permutation) modulo J. Hence
(2.5) shows that n(g;)e] for i=1, ..., t. By hypothesis, we have I J, whence
the tautologous congruence

tr=o+¢ (mod J).
The conclusion follows.

(2.6) PROPOSITION. Let R be the Z-subalgebra of T generaied by all values of
the character o~: G—T*. Suppose that the character det is R*-valued. Then
the natural map
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R—T/I
s surjective.

ProOF. We must show that the image of R in 7/I contains the images
modulo I of all tr(g). It suffices to show that the image of R modulo I con-
tains the images of all ¢(g) and ¢(g). In fact, we will show that ¢ and ¢ are
already R*-valued.

In view of the fact that R contains all values of ¢¢* and of det=g¢¢, we
know that R contains all quantities o(g)%, ¢(g)®. Thus we are reduced to show-
ing that a unit in R which “becomes” a square in 7T is already a square in K.
This assertion is a consequence of Hensel’s lemma (applied in R), together with
the fact that the residue fields of R and of T coincide and have characteristic
prime to 2.

3. We now begin study of the representation p. After replacing p by a
conjugate MpM~!, we may suppose that o takes values in GL(2, ©) and that

its reduction 7 is given schematically by the matrix

" *
( 0 w’“) .
In other words, letting a, b, ¢, d : G—O denote the matrix coefficients of o

(so that p:<f Z)), we have

3.1 a =", d=owm, c=0 (mod ).

Since the eigenvalues » and s of p(g,) are distinct modulo 2, we may now

find a matrix NeGL(2, O) such that Np(go)N‘1=<g

ment p—NpN™, we find that (3.1) is still satisfied and that p(go) is the diagonal

g) Making the replace-

matrix <6 S)

(3.2) PROPOSITION. For all g=G, we have a(g), d(g)eT. For all pairs
g, g'€G, we have b(g)-c(gHeT.

PrROOF. The first assertion follows from the fact that #r(g) and tr{gg,)
belong to T and that r—s is a unit of 7. The second is then a consequence
of the equation

3.3) b(g)-c(g") = algg—alg)-alg’).
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We now let H=Gal (K;/Q(y,-)) be the kernel of the cyclotomic character y.
Let B be the T-submodule of £ generated by all b(g) with geG. Since the
function b vanishes on the closure of the subgroup of G generated by g, we
see that B is already generated by the b(h) with heH. Similarly, we define
C using the ¢(g). We denote by BC the T-submodule of £ generated by all

products 8-y with geB, reC. Then BC is generated by all products b(g)c(g”)
so that, by (3.2), it is in fact an ideal of T.

(3.4) PROPOSITION. We have I=BC. Moreover, I is the ideal of T generated

by the quantities a(h)—1 for heH, or alternately the ideal of T generated by
the d(h)—1 for heH.

ProOF. In view of the symmetry between a and d, we can prove the
second assertion only relative to the a(h)—1. Let us temporarily denote by J
the ideal of T generated by the a(h)—1. We will then establish the chain

BCcJcIcBC,

thus proving the proposition.

As a first step, we introduce the function “ec mod BC” obtained by compos-
ing the coefficient function e with the canonical map T—7/BC. Call this func-
tion @. Using (3.3) again, we see that @ is in fact a character G—(T/BC)*
Since

a(go):(P(go) ’
we must have

a=e (mod BC),

i.e,

Il

a=¢ {(mod BC).

Similarly, we get
d=¢ (mod BC).

Adding these congruences, we find that 5(g)< BC for all geG ; therefore IS BC.
Now for each heH we have ¢(h)=¢(h)=1. Therefore

La(h)—11+d)—1]=nh) e I.
Similarly,

r(a(h)—1)+s(d(h)—1) = yp(gh) & 1

Because »—s is a unit of 7, we get

alh)—1, dhy—1lel.
Therefore, JS1.
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Finally, for h, h'eH we have
b(h)e(h") = a(hh)—a(h)a(h) =0 (mod J).
This gives the inclusion BC< /.

(3.5) PROPOSITION. Let geGal (K,/Q(w.)). We have ¢(g), ¢(g) =1 (mod M).
Further, we have

7(g) = b(g)c(g)  mod IM.

PrROOF. Since the characters ¢ mod M and ¢ mod M are powers of the
mod / cyclotomic character, the first assertion is clear. Now @¢=ad—bc, so we
have

b(@)e(@)—n(g) = ulp(g)—D+Hd(g)—D+tu,
where
t=a(g)—plg)el
and

u=d(g)—¢p(g)el.
Since [ is contained in M, the second assertion follows.

Now let M be the union of all finite abelian extensions of @(x,) in K; which
have [-power degree. The Galois group X=Gal (M/@Q(y,)) is a Z,-module on
which 4=Gal(Q(y;)/Q) acts by conjugation. In other words, X is a module
over the group ring Z,[4]. As usual, X is the direct sum of the sigenspaces

Xe)={xeX| 6 -x=e(6)-x for all &4},

¢ running over the group of Z¥-valued characters of 4. (In the above defini-
tion, ¢(d)-x denotes the product of x and the “number” &(d)e Z3¥.) Notice that
the various ¢ are the powers of the character obtained by composing the natural
isomorphism
A== (Z/1Z)*
with the Teichmiiller lifting
ZNZys —., ZF.

It is traditional to denote this character by w. If we compose this new « with
the natural map G—4, we obtain a character, again denoted w, which is just
the Teichmiiller lift of our original mod/ cyclotomic character w.

(3.6) THEOREM. Suppose that [ is prime to the class number of the maximal
real subfield of Q(u;). Then each Z,-module X(¢) is cyclic.

Recall that the hypothesis of (3.6) is the well known Vandiver conjecture
for Q(u,). It is true (at least) for all /=<125,000 [6], and no counterexample is
known.
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PrROOF. Since the assertion in question is essentially well known, we will
give the proof rather rapidly. Let A be the [-primary part of the class group
of @(y;); then by class fleld theory, A is given as a quotient of X. Let Y be
the kernel of the natural map X—A. Let Y(e) and A(e) be the eigenspaces
analogous to the X(g) above.

It is easy to see that each eigenspace Y(¢) is cyclic. Indeed, let U be the
{-primary part of the group of units of the completion @ of @(uy) at [, i.e., the
group of units which are congruent to 1 modulo the maximal ideal of the ring
of integers of @. Let € be the intersection (taken in @) of U and the group
of units of Q(u;). Using the l-adic logarithm map, one shows that the eigen-
space U(e) is cyclic for each character e+w, while U(w) is the product of a
eyclic Z,-module and the group p;. By class fleld theory, we have an isomor-
phism

Y—=—U/&,
where the — denotes “closure in the /-adic topology.” The cyclicity then follows.

As a consequence, we obtain that X(e) is cyclic for each character ¢ such
that A(e) vanishes. In view of the hypothesis, we may conclude that X(¢) is
cyclic for each even character e.

To treat the other components, we introduce the odd part X~ of X, i.e,
the direct sum of the X(¢) with ¢ odd. Also, let & now be the group of “I-
units” of Q(u,)*, the maximal real subfield of Q(y;). Thus & consists of all
elements of Q(x,)* which are units locally at all non-archimedean primes of
Q(u)* except for the prime dividing /. As in [0, §4], we see that the group
g/et is a cyclic Fi[41-module. On the other hand, the hypothesis to (3.6) im-
plies rather easily that the natural map

&/e" —s Hom (X, )

arising from Kummer theory, a priori an injection, is in fact an isomorphism.
We may conclude that X~/(X" is a cyclic F;[4]-module, and then by Nakayama's
lemma that X~ is a cyclic Z;[47-module.

(38.7) THEOREM. Suppose that each of the two eigenspaces X(w™ ™) and X(w™ ™)
is cyclic. Then there exists a g&Gal (K,/Q(p,)) for which
B=T-b(g), C=T-c(g), I=T-9(g).
[The characters w* ™ and @™ ® are not assumed to be distinct.]
PrROOF. We subject the function b: G—B to the following: we compose it

with the projection B—B/IMB, and we restrict it to the subgroup Gal (K,/Q(u)
of G. Let b be the new function that we obtain in this way. Since the values
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of a and of d on this subgroup are all congruent to 1 mod 9, 5 is a homomor-
phism. Now B/MB is an abelian I-group (in fact, an F,-vector space), so &
must factor through X. A matrix calculation shows that

Bloro V=" "(g)-b(z)

for ¢=G, reGal (K;/Q(x,)); thus, more precisely, b factors through the cyclic
quotient X(w™ ™) of X. Therefore, if g is any element of Gal (K,/Q(y,)) whose
image in X(w" ™) generates X(w™ ™), then the image of & is the cyclic group
generated by E(g). Thus B/MB is generated as a T-module (or as a group:
the two notions coincide since 7/ is the prime field F,) by b(g). By
Nakayama’s lemma, B is generated as a T-module by b(g).

Analogously, if g maps to a generator of X(w™ ™), then C=T"-¢(g). Taking
a g which maps to generators of both X(w" ™) and X(w™ ™), we find that B is
generated by b(g) and C by c(g). Hence I=B-C is generated by b(g)c(g); by
Nakayama’s lemma, together with (3.5), it is generated alternately by 7{(g).

REMARK. The above argument may be useful even when the X(w*® ™)
are not assumed to be cyclic. It provides a definite list of elements of / which
generate [, the list reducing to a l-element list in case of cyclicity.

(3.8) COROLLARY. Suppose that Vandiver's conjecture is true for | and that I
is non-zero. Then, after replacement of p by a conjugate NpN™' (with
NeGLZ, E)), the representation p takes values in GL(2, T) and its matrix coeffi-
cients satisfy:

3.9 a=gp, d=¢, ¢=0 (mod I).

ProOF. Let B=b(g), r=c(g), with g as above. Then B is non-zero, since

-1
I=(fr) is non-zero. Taking N:(é9 2), we obtain a conjugate with the required
properties.

REMARK. The hypothesis =0 is visibly satisfied whenever p is irreducible
as a 2-dimensional representation of G. Conversely, if p is reducible, then (2.2)
shows that I is 0.

4. In this § we will determine precisely the image of 0, under the follow-
ing four assumptions:
1) The characters w® ™ and w™ " are distinct.
2) The ideal I is non-zero and is principal.
3) The representation p takes values in GL(2, T) and its coefficients satisfy
(3.9). ’
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4) The determinant of p, det, is Zf-valued.

Before beginning to do this, we should make comments about these axioms.
The second and the third are obviously legacies of §3. The fourth, or some-
thing like it, is needed to control the following phenomenon: if we replace p by
the twist of p by a character of G, then T can change significantly, whereas
the image of p is essentially unchanged. The first axiom means that @* ™ is
not quadratic, since we have already been assuming that it is non-trivial. The
case where o™ ™ is quadratic is discussed by Swinnerton-Dyer in [5], and it is
certain that his methods will give information in our more general setting.
Finally, it might be worth noting that (1) excludes the case (=3.

From now on, we shall always assume that 1, 2, 3, and 4 above are true.
We remind the reader that H denotes the Galois group Gal (K;/Q(u)).

(4.1) THEOREM. We have
a b
p(H)z{( d)eSL(Z, T)lazl, d=1, ¢=0 (modI)}.
c

Let X denote the right-hand group. It is evident that p(H) is contained in
X, since ¢ and ¢ vanish on H. Our proof has two main steps: we first show
that p(H) maps onto a certain (rather modest) quotient of X, and we then show
that any closed subgroup on X which maps onto this quotient must in fact be
equal to X. In this sense, our theorem follows the pattern of results previously
obtained by Serre [4, Lemma 3, p. IV-23] and by Swinnerton-Dyer [5, Th. 2,
p.75]. These two authors pass to larger and larger quotients of X by a technique
involving formation of ['* powers. Here we do something a bit different: we
pass to larger and larger quotients by taking commutators of pairs of elements.
We learned this technique from an argument used by Mazur in proving a
similar (unpublished) theorem ; we will point out this argument when it appears
below.

For n=l, let X, be the image of X in SL(2, T/I"), namely the analogue
of X with 7 replaced by the ring 7/I™ It is enough to show that o(H) maps
onto each X,. We show first that po(H) maps onto X, and then that any sub-
group of X, (n=3) which maps onto X,., must in fact be equal to all of X,,.

4.2y Let 6: X—T/IxI/I* be the map

a b
—— (b mod I, ¢ mod I?).
¢ d

Then 6|, is surjective.
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PrROOF. As in §3, let B and C be the ideals of T generated by the sets
b(H), c(H). We have as before BST, C<I, and BC=I. It follows that C=I,
and then by Nakayama’s lemma that B=T. A fortiori, if we regard b as a
map

b:H-—T/I
and ¢ as a map
c: H—1/I%,

we find that the targets in both cases are generated as T-modules by the images
of the maps. However, we can show that the images are T-submodules of the
targets, thereby proving that the maps are surjective.

For the sake of brevity, we will give the argument for this assertion only
in the case of 5. We note, first, that #(H) is a subgroup of 7/I because we
have

a=1, d=1 (mod 1)

on H. On the other hand, we have in T// the formula
4.3) bloza™") = (=)o) blz),

which refines the formula used in the proof of (3.7); here ¢ is intended to be
an element of G and ¢ to be an element of H. It shows that the set H(H) is
stable under multiplication by elements of the ring generated by the values of
o¢~'. Using the hypothesis that I is non-zero, we see that [ has finite index in
T. Therefore, b(H) is actually stable by the Z,-subalgebra R of T generated
by the values of ¢¢~'. Asshown in (2.6), R maps onto T/I. Thus, finally, b(H)
is stable under multiplication by elements of 7'; it is therefore a 7-submodule
of T/I and so is equal to 7/I.

To summarize, we have shown that » and ¢ are surjective; we must now
show that the product map (b, ¢) is surjective. We will refer to this map sim-
ply as 6. Suppose that (8, /)eT/IxI/I* is in the image of §. Choose geG
such that u=(p¢~')g) is not congruent to +1 or —1 modulo M. Let v=1 be
an integer congruent to u mod 9. The image of & contains (v, vy) and also,
because of (4.3), the couple (u 8, u~'y). Hence it contains

(u—=v)g, (u™'=v)y).

Repeating the argument, we find that the image of & contains

(u—v)" B, (W '=v)p)

for all integers N=1. For large N we have (u—v)" =1, since u—v=WM and 7/I
is finite. On the other hand, u~*—v is a unit in 7, because of the way u was
chosen. Thus, by the surjectivity of ¢, the image of § contains all elements of
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T/IxI/I? of the form (0, 7). This, together with the surjectivity of b, gives
the surjectivity of 4.

4.4) The group p(H) maps onto X,.

PrRoOF. Already this assertion will be a formal consequence of (4.2), i.e, a
purely group theoretical statement having nothing to do with p. Namely, let
Y be a subgroup of X, such that the map #|y is surjective. Then we will
show that Y coincides with X,. We do this in two stages, each involving a
commutator argument.

First, let

O: X, — [/I*xT/IxXI/I*
be the map

a b
< d>»—> {(a—1 mod I%, b mod I, ¢ mod I?).
c

It becomes a homomorphism of groups when we give I/[*x T/IxI/I* the multi-
plication law

(@, B, N* (&, B, 1)=(at+a’ + 7, B+F, 1+1),

cf. [5, pp. 71-72]. Assuming that @l is surjective, we wish to see that Oy
is surjective.

For this, it suffices to show that @(Y) contains all («, 0, 0) with acI/I"
Given «, choose y&Y such that 0(y)=(0, a) and y’€Y such that #(y")=(, 0).
If y” is the commutator of y and y’, we find by a computation that (y”)=
(a, 0, 0).

Now, assuming that @]y is surjective, we will show that Y=X, by show-
ing that Y contains the kernel of @, which is the group

1 ?
{( )e SLZ, T/I%)
-1\0 1

(4.5) LEMMA. Given t€I/I?% there exist x, y&€I such that x and y are genera-
tors of the ideal I and such that

z‘e[/[z}.

I=x—y (mod I%).
Proor. Choose a representative for ¢ in I, and denote this representative
again by . Let z be a generator of the ideal I. We have:
t=(+z)—z; ={—2)—(—2).

"It is easy to see that one of ({-=2) is a generator of I.
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Indeed, suppose that t=uz with v 7. Since [ is an odd prime, u cannot
be congruent both to +1 and to —1 modulo M. Thus one of u=+1 is a unit.

Now, given ¢, choose x and y as in the lemma. Let b T be the unit for
which y=bx. Let v=b"x. Choose M, NeY such that:

OM)=(0, b, x);  BOWN)=(0, 1, v).

After some calculation, we find

1 t
MNMN-t= )
0 1

thus completing the proof of (4.4).

We next consider briefly the T-module s{,(T/I) of 2X2 matrices over T/I
which have trace 0. If 8 and B are 2x2 matrices over 7/I, we set

LB, p'1=pB —f Besly(T/]).
(4.6) LEMMA. Every matrix in slo(T/I) is a sum of elements of the form [B, 81

Proor. Using that 2 is invertible in 7/I, one can prove this directly from

the three formulas:
/0 H /0 0\ /£ O
_<0 0)’ (1 0>_:(0 —t)’
[/ a 1 0 1IN /0 a
_<—1 0)’ (—1 0>_:(a 0)’
/fa 1\ /0 1\ 0 a
_<1 0)’ (1 0>_:(—a 0)'
The lemma established, we will now complete the proof of (4.1) by using
Mazur’s argument which was alluded to above. Namely, we will show :

(4.7) Suppose that Y is a subgroup of X, (for n=3) which maps onto X,_..
Then Y is equal to X,.

ProOF. We will show that Y contains the kernel of the- natural map
Xo—Xp-1. A typical element of this kernel may be written
N=1+x1M,

where x is a generator of the ideal I and M is a matrix with coefficients in
T/I. The condition NeSL(2, T/I*) means precisely that M belongs to slo(T/I).
By (4.6), we may assume that M is the commutator [8, 87]. Supposing that
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this is so, we choose representatives for 8 and g’ in M(2, T) and denote these
representatives again by g and p’. The determinants of 1+4-x8 and 14+x"728’
are squares in 7, since they are congruent to 1 modulo k. Thus we may find
a, a'e T* such that

a(l+x8), a’(l+x"2p)e SL2, T).
By induction, there exist 4, A’eY such that we have the mod /"' congruences:
A=al+xp)
A= a’'(14-x"7287).

Again, a computation gives
AA'ATA T = 1+x"1M,
thus proving (4.7) and (4.1).

For the final results, it is convenient to introduce the following abuse of
notation. We have already noted that each character G—T* is the composition
of the cyclotomic character ¥ and a unique character Zf—T* Given a character
of G, we will denote the corresponding character of Z¥ by the same symbol.

This abuse will be applied in the case of the three characters ¢, ¢, and det=¢.
Let (p, ): G—GL(2, T)xZ¥ be the map given by

g+ (o(g), 2(g)) -
Then we have

(4.8) THEOREM. The image of (p, ¥) is the subgroup of GL(2, T)XZF consisting
. a b . . .-
of all pairs ((c d>’ t) which satisfy the conditions:

ad—bc = det (t)
4.9) J[

a = olt), d = ¢t), c=0 (mod I).

PROOF. It is clear that the image is contained in this group. Then the
theorem follows immediately from (4.1) and the surjectivity of y.

(4.10) COROLLARY. The image of p is the group of matrices (j 2) such that
a, b, ¢, d satisfy (4.9) for some tZ¥.

(4.11) COROLLARY. The image of the map (tr, det): G=TXZY consisls of all
pairs (a, e TXZ¥ satisfying:
{ B =det(®)

4.12)
a=o)+¢ot)  (modI)
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for some teZ¥.

ProoFr. Evidently, all pairs in the image satisfy (4.12). Conversely, suppose
that («, ) satisfies (4.12) with the element ¢ of Z¥. We put:

a=(t),
b=1,

c=pOa—et)—¢i)],
d=a—e).

The matrix (f 5) has trace a and determinant 8. By (4.11) we see that it lies

in the image of p.
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