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Introduction.

Let p be a fixed prime number, and let B denote the definite quaternion
algebra over the rational number field @ whose discriminant is p. If we denote
by ~ the class number of B, we obtain h? theta series 9,; (1=, j<h) from B,
which are modular forms of weight 2 with respect to the group Z’L(p)z{[f Z]
eSLy{Z)|c=0 mod p}. Motivated by a conjecture of Hecke, Eichler [5] proved

that §;; span the space My(Iy(p)) of modular forms of weight 2 with respect
to I'(p). This “basis problem” has been generalized by Eichler himself, Hijikata-
Saito and Pizer by generalizing the method of [5]. The purpose of this paper
is not to go further in this direction, but just to give a new proof for the
original result of Eichler [5] (which turns out to be simpler). We can in fact
prove more :

THEOREM. Suppose that p=5. Then the coefficients of the q-expansions of
Yi; are p-integral, and their reductions mod p span the space of modular forms
mod p of weight 2 with respect to I'(p), in the sense of Serre [11] and [12]
(see the text for details).

Note that, when p=2 or 3, M,(I'(p)) is one dimensional, and hence the
“basis problem” is trivial.

The content of this paper is as follows. In §1, after recalling the defini-
tions of the Brandt matrices and the theta series, we give an interpretation of
them in terms of supersingular elliptic curves in characteristic p. §2 is a preli-
minary section in which we recall known facts about modular forms mod p.
Using a result of Atkin and Serre [1] (cf. Prop. 2), we prove, in §3, that the
representation matrices of the Hecke operators acting on the space of modular
forms mod p coincide with the Brandt matrices mod p (Prop. 3). Our main
result will then follow easily from this.

The notation introduced here will be used throughout this paper.
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§1. The Brandt matrices and the theta series.

1.1. The notation being as in the introduction, let us take a maximal order
o of B, and a set of representatives a, -+, a; of the left o-ideal classes. Let
o; be the right order of a;, and denote by e; the order of the unit group o} of
0;(1=<i<h). For a positive integer n, let ¢;(n)(1=i, j<h) denote the number
-of elements A of B such that.a7'a;A is integral and N(a7'a;A)=n, where N is
the reduced norm of B over Q. We put b;{n)=ci(n)e;? for 7, j and n as
above; b;{(n) is the number of integral left o;-ideals which are left equivalent
to a7'a; and whose reduced norms are equal to n. We also put c;£0)=1 and
bi(0)=e7!(1=i, j=h). Note that prime factors of e; are at most 2 and 3, and
hence by n) are p-integral for any prime p=5.
. For a non-negative integer n, we denote by B(n) (the Brandt matrix) the
h X h matrix whose (7, j)-component is b;{n); B(n)=(b;s{(n)). Let H be the com-
"plex upper half plane. For a variable z on H, we put g=e? %,

DEFINITION. The notation being as above, we deﬁne the hxXh matrix valued
funcz‘zon O(z) on H by

O(z)= 203(11)qn :
Its G, j)-component is denoted by 9.;(z); 9:5(z)= ibij(n)q".

1t is known that &;,(z) are modular forms of weight 2 with respect to the
group I,(p). But in the following, we forget about the analyticity and consider
:(z) and O(z) as formal powef series in ¢ with coefficients in Z[e7?, -+, €3],
and write them 9;; and O, respectively.

1.2. We next recall some facts about supersingular elliptic curves in charac-
teristic p (cf. Deuring [3], Shimura, Taniyama [14]). Let F,n be the finite
field with p» elements, and F, the algebraic closure of F;. It is known that
there are exactly s non-isomorphic supersingular elliptic curves over F,. Let
i, -+, jn be their modular j-invariants. Then all the j; are contained in F .
We take and fix an elliptic curve E; defined over F,(j;) whose j-invariant is
j'i(l <;<h). Let End(E;) denote the ring of F,-endomorphisms of E; and put
End%E;)=End (E;)®QzQ. For each { (1=<i<h), there is a ring isomorphism &,
of B onto End%E)), and 0,—=07%End (E;)) is a maximal order of B.

It is also known that, for each 7, there is an integral left p;-ideal a; such
that (E;, 0;) is an a;-transform of (E,, 0,) in the sense of [14] 7.1. The left
p,-ideals ay, -+, a, constitute a set of representatives of the left o,-ideal classes,
and hence we may use these ay, -+, a, to define ¢y;(n) and b;(n). Let
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Hom(E;, E;) be the group of homomorphisms (as abelian varieties over F,) of
E,; to Ej.

ProPOSITION 1. The notation being as above, for each non-negative integer
n, we have

# {ZEHOIII (E,,, E])]deg (Z):n} :C”<7’Z)

where deg denotes the degree of homomorphisms, and #S denotes the cardinality
of S.

ProOOF. This is obvious if n=0, and hence we assume that n>0. Take a
positive integer M so that azla;M=D0 is integral. Let A be a b-multiplication of
(E;, ;) to a b-transform (Ej, ;) of (E;, 6;). Then by [14] 7.4 Prop. 13, we
have Hom (E;, E;)=14° 0,;(67%). By [14] 7.2 Prop. 10, we conclude that #*{l&
Hom (E;, E;)|deg (D)=n}=*{a st | N(ba)=n}=*{A<(a7"a;)" [ Maz'a;A)=n}.

Q.E.D.

The following two corollaries follow at once from the above.

COROLLARY 1. For a positive integer n which is prime to p, by{(n) is equal
to the number of subgroups C of E{F,) of order n such that the quotients E;/C
are isomorphic to E;.

COROLLARY 2. As formal power series in g, we have
0; 9= Xigtes®
where the summation in the vight hand side is taken over Hom (E;, E;).

As an illustration, let us describe a result of Pizer [9] (Th. 3.2) in terms
of elliptic curves. It is known that there always exists a supersingular j-
invariant which is contained in F, Take one such j-invariant, and call it j.
Suppose that there exists a supersingular j-invariant (say) j. which is not
contained in F,. Then j,=j% is also supersingular. We obviously have a
degree preserving bijective map from Hom (F,, E;) to Hom (F,, E;), and hence
945==39:;. This happens if and only if the genus of the curve H/I'*(p) is not

zero, where I'*(p) is the subgroup of GL,(Q) generated by Iy(p) and [(; —(1)},
or equivalently if and only if p<37 or p==41, 47, 59 or 71.
§2. Modular forms mod p.

2.1, In this section, we recall known results for later use. We fix a prime
number p=5 and put R={a/b| a, beZ, (p, b)=1}. For an R-scheme X (resp.
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an R-morphism f of R-schemes), we denote by X,(resp. f;) the base change of
X{resp. f) from R to F,. Let X((N)e be the modular curve over @ associated
to I(N); it is a complete non-singular curve over @ whose field of rational
functions is isomorphic to Q{ J(z), (Nz)), where J(z)=¢ *+744+ .- is the usual
elliptic modular function. We denote by X (V) or simply by X,(N) the modular
curve over R associated to I4(N); X,(1) is the projective J-line over R, and
Xo(N) is the normalization of X (1) in X,(N)o,. For a positive integer n, there
is the natural projection ¢¥™: Xo(Nn)— X (N). Also there is an R-morphism
d¥™: Xo(Nn)— X«N) which, on the general fibre, corresponds to the map of
function fields which sends j(z) (resp. J(Nz)) to J(nz) (resp. J(Nnz)).

Suppose now that N is prime to p. Then X (N) is smooth over R (Igusa’s
theorem). On the other hand, the closed fibre X(pN), of X(pN) has two
irreducible components C,(pN) and CupN) both of which are isomorphic to
XoN)s. We henceforce identify Ci;(pN) with X (N), so that ¢%Y, can be iden-
tifled with the identity morphism (resp. the Frobenius morphism) on Ci(pN)
(resp. C{pN)), and that d%" can be identified with the Frobenius morphism
(resp. the identity morphism) on Ci(pN) (resp. Co(pN)). CypN) and Co(pN) meet
precisely at the mutually F,-conjugate “supersingular points” transversally.
(For these facts, see Deligne, Rapoport [2] VI, 6 and Ihara [7] §5.)

2.2. Let M,(I'(p)) be the space of automorphic forms of weight 2 with
respect to Iy(p). We denote by M,(L(p))s the elements of My(IW(p)) whose g¢-
expansions (at infinity) have coefficients in R, and by Mg(ﬂ(p)) the subspace
of F,[[¢]] obtained by reduction mod p (of coefficients) of the elements of
My(I'(pY)r Thus ]\72(]’0(1))) is the space of modular forms mod p of weight 2
with respect to Iy(p) in the sense of Serre [11] and [12].

It is known that there is the sheaf of regular differentials =80y, on
X{(M) provided that M is not divisible by p*([2] I, 2). Q2=8Q% un/r if M is
not divisible by p. If M=pN with N prime to p, then HY(X(pN), £,) can be
identified with the pairs (@, w.) Where w; are l-forms on Ci(pN) which are
regular except for possible simple poles at supersingular points, and satisfy
Resp (@:)=—Resp,(w,) if Ci(pN) and Co(pN) meet at P=Ci(pN) and P,&Co(pN).
The relation between 2 and modular forms is discussed full in details by Mazur
[81 II. We recall that, under the terminology of [8], M,(I(p))r Is isomorphic
to HYX(p), £(cusps)) ([8] Lemma 4.6). The isomorphism is given by:

Mz(]"o(z)))l.a]‘»—»fiqq~ e HY(X{p), £ (cusps)). From this, we easily obtain the

following result of Atkin and Serre.
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PROPOSITION 2 (Atkin, Serre; cf. Atkin [17). Let j,, -, j» be the super-

singulgr J-invariants in characteristic p. Then the g-expansions of fizj—_l_7
Xq% (L=i<h) form an Fpe-basis of MyIf(p))Qr,F pe, where f=q + 744+ - &

F,[{q]1] s the reduction mod p of J.

PrOOF. Let Ci(p) be the irreducible component of Xy (p); which meet the

L zizh) on C(p)=XL),

cusp section at infinity. Then the differentials

form an F.-basis of the restriction of HY(Xy(p)s, .Q(cusps)s)@)pprz to Ci(p).
The assertion follows from this and the above remark. Q.E.D.

REMARK. One can also prove Prop. 2 by using the results of Serre and
Swinnerton-Dyer [11], [12]. Indeed, by [12] Th. 11, we have Mz(ﬂ(p))=
]\7Ip+1(ﬂ(1)). In view of [11] Th. 1, it is therefore enough to show that Af; are
isobaric polynomials of weights p-+1 in @ and R, where Q, R and A are as
in [11] 81. This can be done by a direct computation using the explicit
formula of A (or the Hasse invariant; cf. [11] Th. 3) given by Deuring [3] 8.2.

2.3. Let [ be a prime number which is prime to p. Then we have two
morphisms c=c3: Xo(pl) — Xi(p) and d=d8': X (pl) — X(p). Let ¢c and d¢
be their base changes by Spec (C) — Spec (R). We know that the Hecke operator
T on M(I'(p))=H(Xo(p)Q=rC, 2x,pepclcusps)) is given by the formula:

( f]T(l))qude*oc’g( deq) for feMy(I\(p)), where c& is the pullback, and

dex is the trace (cf. Serre [10] 1 12; cf. also below). This can be “descended”
to R as follows. First note that ¢ and d are étale around the maximal points
of the closed fibre. Take an open affine subscheme ¥ =Spec (D) of Xy(p) which
contains the maximal points of Xy(p); but which does not contain cusps and
supersingular points. Let X=Spec (C) be the normalization of ¥ in X (p/) via
d. Taking Y suitably, we may assume that C is a finite étale D-algebra. On
the other hand, the restriction of the sheaf of regular differentials to X (resp.
Y) is canonicaily isomorphic to 2%z (resp. £2%/z). Since C is locally free of
constant rank over D, we can define the trace from C to D in the usual man-
ner, and hence, tensoring b,z we obtain the trace: 2%z=202%4:8,C— Qb/x.
This gives dy: H'(X, Q% ,z) — H(Y, 2%,z). Combining this map with the pull-
back ¢* of differentials, we obtain an R-linear endomorphism of MyJy(p)e=
HY(X(p), L(cusps)) because My(I(p))r is stable under Hecke operators. This
endomorphism will be also denoted by T(I).
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REMARK. Actually, there is the trace morphism: d«fQx,p1 — Lxycp Which
extends the above one, defined in a general context (Hartshorne [6] III §8).
However, the above elementary (resp. down to earth) description is sufficient
(resp. rather convenient) for our purpose.

§3. Theta series mod ».

In this section, we again assume that p=5. Let f=fy, ---, fn) be the
vector whose components are f,eMg(Fo(p))@pp p2.  FOr a positive integer n
which is prime to p, we denote by T'(n) the Hecke operator acting on MZ(R(p))
Put fIT(n)="f1|T(n), -+, fal T(n)).

PROPOSITION 3. The notation being as above, let n be a positive integer
which is prime to p. Then we have

FITm=B(n)f

where E(n) denotes the reduction mod p of the Brandt matrix.

PROOF. Since the Hecke operators and the Brandt matrices satisfy the same
recursive relation (Eichler [4] formulas (24) and (25)), it is enough to prove the
above assertion when # is a prime number /. As before, let C,(p) be the irre-
ducible component of X,(p), which meets the cusp section at infinity, and
Ci(pl) the irreducible component of X(pl), above Ci(p). Then c¢3* and d§!
induce morphisms 7: Cy(pl) — Cy(p) and d: Cy(pl) — Ci(p). Let 4 be the trace
for differentials relative to 4. Since the trace considered in § 2 commutes with
the base change from R to F, (or pz), our assertion will follow from the

equality : 5*er*< dg ) Ebtk([)fk , which we now propose to prove.

As in §2, we 1dent1fy Ci(p) (resp. Ci(pl)) with X,(1)s (resp. Xi({);). Then
7 (resp. 0) is identified with ¢}, (resp. di;). Let @,(X, f):0 be the transforma-
tion equation of degree /[ in characteristic p; the field generated over F p(j ) by
one of its root is isomorphic to the function field of Xo(J);. From the definition™

of the trace, we easily see that 6*er*( -ﬂ):— d@‘(]f’]) aj T
q d.[ l(]‘l.: ])
—d log @,(j;, J), which is equal to —d log @ (], j:) by the symmetry of @,. But
the roots of @ ], j;)=0 with respect to ] consist precisely of the set of
j-invariants of the elliptic curves that are obtained by dividing E; by cyclic sub-

groups of order [ of E(F,); i.e. o,/ ji)ZkIhI (J—j)ix by Cor. 1 to Prop. 1.
=1

This shows that —d log @,(/, ji)zé‘iEik(l)fk d Q.E.D.
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Let f= ic(n)q” be the g-expansion of f with ¢(n)e(F 2)*. Then we obtain

the following

THEOREM. Suppose that p=5, and let & be the reduction mod pof@. Then
we have @c(l):f. Especially, the theta series mod p gij(l =i, j=h) span Mz(ﬂ(p)).

PrOOF. By Prop. 3 and the well-known relation between the Hecke oper-
ators and the coefficients of ¢-expansions (cf. Shimura [13] 3.5), we have ¢(n)
:ﬁ(n)c(l) for all n which are prime to p. Therefore each component of @c(l)
—/f is a power series in ¢P. But it can be considered as a modular form mod p
of weight p+1 with respect to Iy(1)([12] Th. 11). If it were not zero, then

its filtration is not divisible by p, and hence applying the operator 0=q—(%,

we get a contradiction by [11] Cor. 3 to Th. 5. This shows that @c(l)— f=0.
Q.E.D.

REMARK. Explicitly, we have ¢(1)=4j,—744, -, j,—744).
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