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Introduction.

The theory of integral quadratic forms has a long history. Here we restrict
ourselves to the theory of definite even unimodular quadratic forms. If the
quadratic form is definite, the theory can be translated to the theory of lattices
in Euclidean space.

Let Eo (=R") be a Euclidean vector space of dimension N with an ortho-
normal basis {v,: a8}, where 2 is a finite set with N elements. As usual,
we denote by |2} the cardinality of finite set £, thus N=|2|. The canonical
inner product in Ey is denoted by I(x, y) for x, yeEg, and {(x)=I(x, x) is the
squared length of the vector x in Ep. We call a vector x as m-vector, if
[(x)=m. In this notation, we have

Hva, v5)=0 (a#p), [(vu)=L1.

A lattice L in Eg is a free abelian subgroup of rank Nin Ep. If {a,:acsQ}
is a basis of the lattice L (a,=X) apava, A=(a.p), we put

o(L)=|det AJ, d(L)=det! AA=w(L)*.

(w(L) means the volume of the fundamental domain of the lattice L, and
*AA=(l(a., ap)) is the positive definite symmetric matrix representing the
quadratic form which corresponds to the lattice L, and d(L) is its discriminant.)
Clearly these are independent on the choice of basis. Two lattices are called
equivalent, if an orthogonal transformation transforms one to another. For a
while, we call a lattice L as rational, if the corresponding matrix A is a
rational matrix. Putting

L'={yeEq: Uy, x)eZ for all xeL},

we call this L° the (integrally) dual lattice of L. It is easy to see that [L°: L]
=d(L) for a rational lattice L, where [L°: L] means the generalised index.
By definition, if L is contained in L°, we call L an integral lattice, and if
L=L° we call L a unimodular lattice. If /(x)e2Z for all x in. an integral
lattice L, we call L an even lattice. An even unimodular lattice is a lattice
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which is even and unimodular.

It is known that even unimodular lattices exist if and only if N=0 (mod38),
and equivalence classes of these lattices in dimension N form only one genus
Cwy. The mass-formula of Minkowski-Siegel states that

> {Aut(L)| =My,
LECy

where My is a rational number described explicitly by Bernoulli numbers and
N [373, [5]. The class numbers hy (that is the cardinality of Cy) are known
for first three N’s, that is, h,=1 (L.-J. Mordell), h;;=2 (E. Witt [18]), and
ho=24 (H.-V. Niemeier [16]). But from the mass-formula, it follows that
h4,=8.10" for example.

In this paper, we study the theory from different point of view, that is,
from code-theoretic view point. The code-theoretic methods are known to be
very powerful to the theory [7], [9], [22]. We follow that methods, and con-
sider the relations between the even unimodular lattices and the even self-dual

codes, and the relations between the (binary) super codes and the self-dual
F,-codes.

We begin our studies by preparing some elementary lemmas.

LEMMA A. Every lattice is uniquely decomposed into a divect orthogonal sum
r121.
LEMMA B. Let L be an even unimodular lattice, and xE%L be a vector
such that I(x) is (even) integer. Put K,={ye L :l(x, y)€Z}. Then
Li=K,+Z - x=K,U{x+ K}

zs an (even) unimodular lattice [13], [161.

LemMA C. Let A be an even lattice. For subgroup OCA°/A, put

A= \UJ {b-+4},
el
then A(O) is an even unimodular lattice if and only if 1012=[A°: A] and for
every be®, [(b) is even [16].

REMARK 1. For any b€®, we assume that b is contained in A°, and that
I(b) is the minimum value in b4, if it is possible and easy to choose.

2. From 2(b, ¢)=I(b+c)—I(b)—I(c), we have I(b, c)eZ for all b, cs6.

3. Clearly Lemma B is a special case of Lemma C, but we state them
separately for the later convenience.
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§1. Even lattices of 2-square type and even codes.

Let 4 be an even self-dual code on £2. That is, & is a subgroup of P(2)
(the set of all subsets of 2 which is a vector space of dimension N=|£| over
the two elements field F; under the symmetric difference), such that 4°=.g
and [X|=0 (mod4) for all Xe4. Note that @(2) has a symmetric bilinear
form ¢ defined in the following way ;

ol X, V)=|XNY [(med 2)e F, for any X, Ye®(Q),

to which the annihilator 4° of 4 is defined. (The theory of binary linear code
will be discussed in some details in the subsequent sections.)

We take an orthogonal frame F={+e¢,: a=} of 2-vectors in the Euclidean
space Eg. That is, l(e,)=2 and (e, e5)=0 (a#f). By abuse of language, we

call this frame F an orthogonal 2-frame. Then A= 3\ Ze¢, is an even lattice
acf

such that /IO:%/L For a subset X of 2, we define ey by

(1) ex= 2 ¢,.

aEX

From the above-mentioned code %, we make the following lattice;

leX—I—/l} .

(2) L(ﬂ):<ea, é—eX:ae.Q, XEA[>= U{Z

Xeg

PROPOSITION 1. For even self-dual code ¢, the laitice L(J9r) defived by (2)
is even unimodular. (Thus even self-dual codes exist only if N is a multiple of 8.)

Proor. Noting that X+ YV =X\UY\XNY (the symmetric difference), we have

1 1 1
(3) ?QX“}—‘Z*éy:'é“éxw-i-exny,
1 1
(4) (gex)=751%,
(5) z(leX+zx e):i|X|+2zx (Kot 142 3 x2
2 aEQaa 2 aEXa’a a$XJ“.

As A°/A=<(£2) canonically, this proposition follows from Lemma C.
Especially in (5), l(éeX—]—E xae,X):%IX], if and only if x,=0 or —1 (a= X)
and x,=0 (¢ X). Thus the number of 2-vectors in L(4%) is

2N-+-2'w,,
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where , is the number of tetrads in &, that is, the cardinality of 4,=
(Xea: | X[=4}.

The automorphism group of a lattice L will be denoted by G(L). For any
XeP(2), we put ex(e.)=—¢q (@ X) or e, (e X). Thus we have an isomor-
phism & of @(2) into G(4), and we identify @(2) as a subgroup of G(A4),
sometimes. Clearly

G(AD)=P(2)xS(2), (semi-direct product)

where S(2) is the symmetric group on the set Q. The subgroup H of G(L(4))
consisting the automorphisms which fix the orthogonal 2-frame F is also a sub-
group of G(A), and we have

(6) H=2(Q)x Aut 4,

where Aut.% is the automorphism group of the code 4 which is the subgroup
of S(£) stabilising the code 4.
It is remarkable that the index [G(L(4)): H] is odd for many known cases.
If an even unimodular lattice L contains an orthogonal 2-frame F=

{+eq: acQ), wecall L of 2-square type. In this case, we have ACLC%AzA“.
For x=3 x.¢.= L, putting

X=X(x)=lacQ : x.cZ} 2,
we get a code H=4,=<X(x): x€L) on the set 2.

PROPOSITION 2. Let L be an even unimodular lattice of 2-square type. The
code 9, defined by L is an even self-dual code.

Proor. From definition, we have

X(x+9)=X(x)+X(y), for x,y€L,

1
xzie;{m—kE XoCa, for some x,=Z.

As %exmel, for xe L, we have [ X(x)|=0 (mod4). From |X+Y|=|X|+|Y|
—2|XNY, it follows that [XNY [=0 (mod 2), for any X, Yeus, that is, 444"

As L=L(%), we have |4 |=2"/" from Lemma C. That is, dim J}f—:%N and
dim j[":N——;—N:%N, where dim % means the dimension over F, of the

vector subspace 4, for example. This shows that H°=4.

Thus we have a one-to-one correspondence between even self-dual codes
and even unimodular lattices of 2-square type, by fixing an orthogonal 2-frame.
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To decomposable lattice, it corresponds “decomposable” code, for example.
Moreover we can remove the unimodularity condition, so to even lattice of
2-square type, it corresponds even code (a code ¢ such that cCc¢® and | X|=0
(mod 4) for all Xe). These facts are already noticed by several authors [7],
[97, [22]. In the list of Niemeier [16], nine of twenty four classes are lattices
of 2-square type which can be described by the canonical decompositions of the
next section. Two of them are decomposable and the others are indecomposable.
There is another special class which is the class of Leech lattice [107, [14], its
generalisations will be given in §3.

§2. The cores of lattices and codes.

Let 4 be an even self-dual code on the set 2, and L be the corresponding
lattice of 2-square type with orthogonal 2-frame F={4e¢,:ac=Q}. We call a
subset Xe4 such that | X|=4 a tetrad in 4. Putting J,={Xex:|X|=4}
(the set of all tetrads in 4), we consider a code C generated by 4, Thus
CCIHCP(). We call this code ¢ the core code of 4. If we put h=

dim % —dim C’:%N;dim C, there should exist linearly independent (over Fl)

subsets Yy, -+, Y, such that € and Y; (1=j=h) generate the code 4. These
subsets will be called the extra subsets for 4 2C. For non-empty subset Ze4
which is not in 4, we must have |Z|=8. Especially |Y;|=8 for all Y,

We define an equivalence relation on £ in the following way. For «, S,
we write a~ § if either a=J or « and J can be joined by a sequence of tetrads
in 9 (that is, there exist X;e4, (1=/=m) such that ac X, and f=X,, and
XN X;#=®). Decomposing into equivalence classes, we have

(7) Q:ZhUAgUUAT.

For each 4,, putting
Cd)=<Xed,: XC4>,

we have a code ¢(4;) on 4;, and the canonical decomposition of the core code C;
(8) = 3} Cl)=C(l)B - BC(dy).

This decomposition is unique upto permutations of its components.
Now we consider the core lattice M of L and its canonical decomposition.
For each 4;, we put

L(Ai):<ea, Loy aédi, Xc 4, X€ﬂ4>: U {%eﬁ/li},

2 xXecdp
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where A;= g_Zea, and A= Zi)l A;. Putting

(9) M=% L(d)=L(4) L L L4y,

we call M the core lattice of L and (9) the canonical decomposition of M.
Clearly Mc L M?®, and from Lemma C, there exists a subgroup @=L/ MCM°/M
such that L=M(®). We call this subgroup @ the exira subgroup for LDM.
Note that, for any non-zero element b=®, we must have I(b)=4.

From definition, each L(4;) is generated by 2-vectors and contains an
orthogonal 2-frame {*e,:a=4;}. These lattices are well-known from the
theory of root system of complex semi-simple Lie algebras [6], [19]. Each
L4, is isomorphic to the one of the following even lattices:

(10) Aly Dzm; E7 and ES)

where these are included in the following general lattices:

An:{x: g X0 €L, D x¢:0} s

M

Dnz{x= xit € Z, > x;=0 (mod 2)} s

1l

=1

Bo={x= zi:l xwi: 2%, 15,62, B 1=0 (mod2)},

and E, is the sublattice of [E; consisting x=3 x,v;EE, such that >} x,=0,
where {v;} is an orthonormal basis in the respective spaces. Note that E; is
an even unimodular lattice and is always an orthogonal summand in even
unimodular lattices which contain E,.

It is easy to take orthogonal 2-frames in the lattices listed in (10). Thus
the decomposition (9) of the core lattice M of even unimodular lattice L of
2-square type is easy to see. Conversely, from a direct (orthogonal) sum M of
lattices listed in (10), we can construct an even unimodular lattice whose core
is M, if and only if we can find a suitable extra subgroup in M°/M. The
same is also true for codes. We call these procedures the saturations of lattices
and codes.

Clearly an automorphism of L induces an automorphism of its core lattice
M (see the action on 2-vectors in L). Conversely, an automorphism of M
induces an automorphism of L if and only if it stabilises the extra subgroup
@ modulo M. Thus we have

(11) H=(2)xAut £CG(LYCGM).

The group G(M) is easy to determine. That is, G(M) is described by the
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groups G(L(4;)) and the interchanges between isomorphic factors in L{4;)
(1=:7=7). The group G(X,) is well-known, where X, is a lattice listed in (10).

Similarly, the automorphism group Aut.% of & is the subgroup of the
group Aut C of its core code € which stabilises the extra subsets modulo €. If
we denote by ¥, the even code corresponding to the lattice X,, the group
Aut ¢, is also known, and the group Aut C is described by these groups and
the interchanges of isomorphic factors. We list them in a table with some
explanations ;

A, G(A)=2 Aut A;=1

D, G(D)=(235)-S; Aut 9,=S5,

Dom (in>2)  G(Dop)=22"+S;s, Aut D,,,=2™-S,,

E, G(E)=W(E) Aut&,=SL@S, 2)=PSL2,7)
Eq G(Eg)=W(Es) Aut ;= Af(3, 2)=23-SL(3, 2)

Explanations: The group G=A-B=ADB means the extension of A by B. The
group S, is the symmetric group on n letters, and the group 27 is an elementary
2-group of length n. W(X,) means the Weyl group of the root system X,.
Note that G(D,)=2-W(D,)=W(D,)-2 for n>4.

§3. The super codes and the related lattices.

For an even self-dual code 4 on the set 2, if there are no tetrads in .4,
that is, for any non-zero XeJ4f, we have | X| >4, we call this & a super code
on £. In this case, any two points in £ are not equivalent to each other, and
the core lattice of the lattice L(4) defined by & is A=NxX A, (the direct sum
of N lattices isomorphic to A;). The automorphism group G(A)=G(NXA4,) is
clearly @(2)xS(£2), and the number of 2-vectors in L{4%) is equal to 2N.

THEOREM 1. Let 4 be a super code, and L{I) be the corresponding lattice.
Then we have

(12) G(L(SN=P(D) X Aut =27 -Aut 4 .

ProoF. Each automorphism A stabilises the orthogonal 2-frame F, so we
can write A=ep-0, with Ye®(2) and o =S(£2), and we have

(13) 2(%823):51/(%80(3’)):%ea(m—ﬁ;zeﬁ »

where Z=¢(X)NY. Thus c=Aut 4.
For any Ye®(f2), ¢y is clearly contained in G(L(40)). Q.E.D.

We fix an element « of 2, and put
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1 1
(14) x:Zeg, and yzzeg——ea.

As 4 is self-dual, so 1=8 is contained in 4. Thus x, ye%L(ﬂ) and {(x)
:%N, Z(y):%N—i—l. By easy computations, we know that X, and K, are
equal to

K:<%@X, 2 Xgegs M XEﬂ, EXﬁEO (m0d2)>;

where K.,={ze L(4%):1(z, x)eZ}, for example. We put
15) Lo(#)=K{z+Kj},
(16) L{g)=KJU{y+K}.

As e,—eze K, Li(4) is independent on the choice of a.

From Lemma B, it follows that L) and L,(4) are unimodular lattices
whose arithmetic minima are 3 or 4. Especially L{4%) is even unimodular, if
%NE 7 (mod 2).

Let ¢ be 0 or 1. Though the lattice L, (4) does not contain the orthogonal
2-frame F, we define G,(L,(4)) as the subgroup of G(L,(4%)) which stabilises
the frame F.

we put

THEOREM 2. Let 4 be a super code, and i be 0 or 1. Then

{amn Go( L{I)=9 M Aut 9, (semi-direct product).

PROOF. Any element 1€G(L,(4)) can be written 1=¢p-0, with Y e P(Q)
and o=S5(2). We have, respectively,

1 1 1
Z(Ze,o —Zeg—fey,

1 1 1
2<ZQQ—€a>:Z€Q—?0y+5eata>
1 1
zzeg—ea+(ea+5eg<a>)—7ey,
where ¢ is 1 or —1. As %ey should be in L,(4%), so Y4, that is, syc=.4.
From (13), it follows that o(X)=« for all Xe4. Thus c=Aut.#. Note that
la(XDNY =0 (mod 2) for X, Yeu, if c=Aut . Q.E.D.

The full automorphism group G(L (%)) seems to be very difficult to deter-
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mine. It is also remarkable that the index [G: G4] is odd for the known cases.

If N<24, there exist no super codes. If N=24, super code is unique upto
equivalence. This code is the binary Golay code ¢ generated by the octads of
the Steiner system S(5, 8, 24) whose automorphism group is the Mathieu group
M,,. The corresponding even unimodular lattice L.(¢) is the Leech lattice
whose automorphism group is the Conway’s perfect group .0 [10], [117]. Thus
the index [.0: 2. M,,] is equal to 3°5-7-13.

If N=32, there exist five classes of super codes, one of which is defined by
a certain affine code A (or Reed-Muller code), whose automorphism group is the
affine group Af(5, 2) of the five dimensional affine space over F,. The auto-
morphism group of the corresponding lattice Lo(A) is determined by Broué and
Enguehard [8]. This group is a non-splitting extension of extra special 2-group
of plus type of order 2" by the Chevalley group Dy(2). Thus the index is
equal to 3°-5-17. Note that Broué and Enguehard have determined the auto-
morphism groups of even (unimodular) lattices in infinite series.

§4. Constructions of super codes.

For a finite set £ such that N=|#2| is a multiple of 8, we denote by P(£2)
the set of all subsets of £ which is a vector space over F, of dimension N
with respect to the symmetric difference. We denote by 0 the empty subset of
£2 and by 1 the total subset 2. The space @(£2) has the symmetric bilinear
form ¢ defined by ¢(X, V)=[|XNY| (mod2)eF,. We denote by P«(2) the set
of all subsets of £ with even cardinality. Then we have

18) P(Q)=2(D)=1{0, 1},

where C° means the annihilator of ¢ with respect to the form ¢, for a sub-
space (a code) C of (). Clearly P,(£2) is a subspace of P(2) of dimension
N—1, and @.(2) is a subspace of dimension 1. On the subspace Py(£2), we
define a quadratic form ¢ by putting ¢(X)=0 if |X|=0 (mod4) and ¢(X)=1 if
| X1=2 (mod 4). We have

g X+Y)=¢(X)+¢(Y)+o(X, ¥),

$0 ¢ is a quadratic form on P,(f2) with the associated bilinear form ¢. Now
we consider the automorphism group Aut(P(§2), ¢) and the orthogonal group
O(P(£2), ¢). These groups are determined in Dieudonné’s [25] (pp. 60-63 and
pp- 39-51). Fixing an element a of £, we have the decompositions;

P =P DPR > =LA LDDL P22,
PN =P DD L,
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where 2,=Q\{a} and £,=Py(2.). The space P,(2) is the subspace of all X
such that (X, X)=0, the space Pu(2) is P()NLP(L). The space Lo is a
complementary subspace of P.(2) in P«(£2), and the space {L2.> is a comple-
mentary subspace of ®(£2) in P(£) which is also complementary to P2 in
£5=<1, 2,>. Note that ¢ induces a non-degenerate alternative form on La,
and that ¢ induces a non-degenerate and non-defective quadratic form on La.
Then we have

| Gy —> AUH@(@), @) > G —>1,
GE"L’“XS]D(IOJ’
O(PS8), @)= LaXO(La, q),

where p is the restriction of automorphisms to the space @(f2), and 7 is the
automorphism of @(Q) defined by 7(X)=X+|X[1, and L, is identified with
the subgroup of G consisting the restrictions of 2z (BE€.L,) defined by Ax(1)=1,
2x(X)=X+¢(B, X)1 and 15(2,)=B+,. Note that the quadratic form ¢ is
degenerate form with radical @.(£2). The orthogonal group O(Lq, q) is gener-
ated by orthogonal transvections [25], pp. 41-42;

A X)=X+¢(4, X)A, for XL,

where A is an element of £, such that ¢(A)=1, that is, |A|=2 (mod 4).
Looking the definition of ¢4, we define a linear automorphism 74 of P(2) by

(19 4 X)=X+p(4, X)A=X+{ANX[A,

for any Xe (), where A is an element of Py(£) such that g(A)y=1. Clearly
74 is in Aut(@(2), ¢) and its restriction to @) is an orthogonal transforma-
tion. Note that, if |Al=2, ¢, is the transformation induced by a transposition
of 2. From the formula

rAes(XN=X+1ANX|A+|BNX|B+|BNX|-|ANB|A,
it follows that ¢%=id and
20 TBTATB=Trpld) -

That is, tara=147sif |ANB|=0(mod 2), and 757 4cp=74+5=T4TBT4 if JANB|=1
(mod 2). Thus the group generated by 7, is the group generated by 3-trans-
positions [26].

For an even self-dual code 4 on the set 2, o(4) is also an even self-dual
code, where ¢ is in O(@(2), ¢), and any even self-dual code can be obtained in
this way. As 1 stabilises any self-dual code, because 25(X)=X or X+1 for
Xe@(£2), so it suffices to determine the actions of the transformations 74 on
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each even self-dual code.

Let & be an even self-dual code on 2 and A be an element of P(£2) such
that g(A)=1. Assume that z.(4%) is a super code. Then for all tetrads X in
9, we must have

21) |ANX|=1 or 3,
because T (X)=X+|ANX|A. Thus

THEOREM 3. Any super code is obtained from a saturation of core code of
type a X ADOXD,, by a transformation t,.

Proor. Except for 4; and D,, we can not find any subset A which satis-
fies the condition (21) for all tetrads in the codes corresponding to the even
lattices listed in (10).

For a saturation of a code C=a X A,PHbX D, on the set

.Q:{]., e, a}UX1U UXI,,
where X;={1;, 2;, 3;, 4;}, we must find extra subsets Y, ---, ¥, with hzéa—kb,
such that any linear combination Z of X; (1=:=<b) and Y; (1=<;=<h) other than
0 or X; (1=/=<bh) has the cardinality |Z|=8. Of course, we must have also
|Z|=0 (mod4). We don’t know whether one can obtain always super codes
from these saturations.

Now we consider the special case, that is, the saturations of core code
bXD,. In the lattice D, we fix an orthogonal 2-frame;

e1=v1tvs, @y=V1—Vs, €3 =UstVs, € =VUy—Vs.

Then D, is generated by e¢; (1=7/=4) and %(el—keg—l—es—kea:vl—l—vg, and the
quotient group DY/D, has the representatives O, -é—(el-{—eg), %(814‘@2) and
%(—ez-{—%). Thus for the corresponding even code 9,, we have 9,=

{0, 1={1, 2, 3, 4}}, and {1, 2}, {1, 3} and {2, 3} are the pre-extra subsets for
DD,

We will show that some saturations of bX 9, can be constructed by certain
self-dual F,-codes over a set with b elements, where ¥, is the field with four
elements.

Let w be a root of the quadratic equation x*+x-+1=0 over F, Then *
is another root, and we have w*=1 and 1+w=w? We fix the correspondence
¢ between F,={0, 1, w, &’} and 9}/9., by putting

(22) 00, 1-{1, 2}, o<{l,3}, o'={23,
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which is an isomorphism between abelian groups.
On the vector space F4=F? over F, of dimension b, where 4=1{1, 2, ---, b},
we consider a hermitian form h;

b
hu, v)= ;1 Ui Us,

where u=(ui, -, up), v=(vy, -, vy F?3 and #,=v} (the canonical conjugation
in F,). A self-dual F,-code & on 4 is a subspace & of F} such that *=g,
where 9% means the annihilator of & with respect to the form A[22]. The
weight of u=F? is the number of non-zero components of u and will be denoted
by w(w). Then for a self-dual F,-code ¥, we have w(u)=0 (mod2) for all
usgF. We consider a self-dual Fy-code & on 4 such that

(23) w(u)>2, for all non-zero uc <.

For a binary code bX 9, on the set @=X,U --- UX,, we define the extra subsets
Y, and Z,, by the correspondence ¢ of (22),

@) Yu=S g, Zu=3 dloun,

where we&, and the sums are the symmetric differences (the disjoint sums in
this case). Note that Z,=Y,, and there corresponds the subset Y.+Z, to the

. . . 1 . .
vector w*u. As & is of dimension Eb over F,, we can choose b linearly inde-

pendent (over F,) extra subsets. From the condition (23), we have
|Y,.|=0 (mod4) and |Y,|=8,
for all non-zero u=%. The same holds for Z,. Thus

THEOREM 4. Some saluration of bX D, is constructed by self-dual code over
F, on a set with b elements which satisfies the condition (23), in the above-
mentioned way.

The converse of Theorem 4 is not true in genmeral. That is, there could
exist some saturation of bX @, which does not correspond to any self-dual
F-code. .

It seems that there are no general methods to choose the subset A of
Theorem 3, in order to construct super codes from the saturations of axX AP
bX D, Here we indicate two examples, though the derived codes are already
known ones.

In F%, there is only one self-dual code, upto equivalence, which satisfies the
condition (23). Its generator matrix is
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/1 001 v o
kO 1 0 w1l w
001 vw o 1/,

that is, three rows of this matrix is a basis of our code [22]. The correspond-
ing binary code is a saturation of 6X9,. Putting

A= {41y 42r ] 46}:

we consider the transformation 7, of (19). Checking the effects of 7, on the
tetrads and the other elements of the code, we see that the derived code is
super code which is equivalent to the Golay code.

In F%, we consider a code with the generator matrix

10000111
010061011
00101101
00011110

Then this code is a self-dual code satisfying the condition (23), which is also
unique upto equivalence [22]. In the corresponding binary code which is a
saturation of 8X4d, we consider the transformation ¢, by putting A,=

{4, 45, -+, 4s} and A=A,+X,. Similarly as above, the derived code is a super
code.
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