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0. The Picard number of an algebraic surface is an interesting invariant
of arithmetic nature, but it is in general not so easy to determine it. In this
paper, we consider the case of the (complex) Fermat surface of degree m in P?
defined by

Xoo xP-rxP+xl+x7=0.

Given m, there is an algorithm for computing the Picard number p(X%) of X2,
(see below), but an explicit formula for p(X%) has been known only for m
prime. Inspired by some observation of Weidner [6], we shall generalize this
to a certain extent by using the related results on a Fermat curve due to
Koblitz and Rohrlich [1]. The main results are Theorems 6, 7 and 8.

1. First we review the algorithm for computing p(X%), fixing the relevant
notation for Fermat varieties (cf. [5]).

Fix m>1. For an integer a, let {a) be the least non-negative integer con-
gruent to a modulo m. For any integer n=0, let

ntl
un={a=(ay a, -, ana) | ISe:Em—1, 3 @, =0 ()}

The group (Z/m)* acts on this set by the rule: if te(Z/m)* and a=(a,)eUy,
let t-a=(ta)y). For a=(a;)e¥U;, set loz]:tg:(a»/m; || is a natural number
<n-+1 such that |a|+|—al=n-+2. When n is even, define

Br={acUL | |1-a|=n/2+1, Vie(Z/m)"}.

Then, by the well known characterization of Hodge classes on a Fermat variety

(cf. [5, Th. 1), the cardinality |{®%], added by 1, gives the dimension of Hodge

classes of middle codimension on the n-dimensional Fermat variety of degree m
XE o xPxP+ +x=0.

In particular, we have

M o(X%)=1B%]+1
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by Lefschetz’ theorem. There is a similar description of Hodge classes on a
product of several Fermat varieties; in particular, we have

) ‘ (X X X0)= B * W) +2,

where = stands for juxtaposition.

2. An element a=(a,, @i, as, a;) of B, is called decomposable if a;+a;=0
(mod ) for some 7+ j; otherwise it is called indecomposable. Let D2, (or 32,
denote the set of decomposable (or indecomposable) elements of B%. The num-
ber of decomposable elements is easily computed and is given by the formula:

0 (m:odd)
3 | D% | =3(m—1)(m—2)+0m , 5m:{

1 (m:even).
It is known that the subspace of the Néron-Severi group NS(X2,) spanned by
the cohomology classes of lines lying on X2, has the dimension [®% |41 (cf. the
proof of Theorem 7 below).

For each d|m, let J2.(d) denote the set of a=(a,, -, a;)=3I% such that
GCD (&) (=GCD (ay, -+, ay))=d. Note that the map a~~d 'a is a bijection from
Ju(d) to J2,4.(1). Now, for any a=(a;)=3%, the coefficients a,, ---, a, are
either all distinct or at most two of them coincide. (For, if a,—a, and a,—a,,
a becomes decomposable. If a,—=a;=a, we may assume first a=3% (1) and
further e¢,=1. Then we should have g,—2m—3, which is impossible.) We set
we=1 or 1/2 according as all the coefficients of « are distinct or otherwise.

Given a=3J%, there are (4w, elements of 32, which are permutations of a.
Thus, if we set

@ g(m)= > Wa,
acyZ, ()
up to permutation

then [J%(1)|=24g(m). Note that g(m) is a non-negative integer, since (—1)-«
is not a permutation of a and w.,+-w_. is either 2 or 1. Therefore we can
write

) o(X5)=3(m—1)m—2)+0,+1+24 g‘,mg(m/d).

a<m

3. By the formula (5) (or even (1)), one can compute p(X%), in principle,
for any given value of m. Weidner [6] computed p(XZ%) for m=272, and made
some interesting observation. Namely, let

(6) A(m)=g(m)— {p(m/3)+2¢(m/2)},

where ¢(x) is the Euler function and ¢(x) is defined to be =0 if » is not a
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180) listed below ;

(i)

helped by N. Maruyama, that
(i) 4(m)=0 for all values of m=672 with the same exception as in (i).

Then the main observation in [6] is:
(i) 4d(m)=0 for all values of m=272 except for 28 values of m (m=2, 3, -,

in particular, g(m)=0 if GCD(m, 6)=1 (and m=272).
that (ii) holds for any prime m (cf. [5, p. 181]), and we shall see later that (ii)
is true for all m with GCD (i, 6)=1 (Theorem 6(a)).
wondered if (i) could be true for larger values of m, and found by computer,

Table of m with 4(m) =0 (m=672)

It was known

On the other hand, we

m prime decomposition g(m) ©(m/3) +2¢ (m/2) 4(m)
2 0 2 -2
3 0 1 -1
4 22 0 2 -2
6 243 1 5 —4
8 28 2 4 -2
10 25 6 8 -2
12 2%.3 12 6
14 27 14 12
15 3¢5 12 4
18 2432 32 14 18
20 225 34 8 26
21 37 18 6 12
24 283 50 12 38
28 227 22- 12 10
30 2435 114 20 o4
36 22,32 34 16 18
40 285 32 16 16
42 2437 196 30 166
48 243 40 24 16
60 22345 228 24 204
66 243011 80 50 30
72 2832 44 32 12
78 24313 92 60 32
84 220347 102 36 66
90 24325 80 56 24
120 22345 120 48 72
156 223413 96 72 24
180 2%.3%.5 88 64 24
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Suggested by this, we consider the following question:
Q) Is Aom)=0 for any m>180?

If true, it will give a closed formula of the Picard number of a Fermat surface
as follows. By (6), we have

™ T a(d= 2 ¢d/3+2 2 ¢ld/D+ T Ad)
a>1 a>1 a>1

a>1

=(m/3)y*-+2m/2)*+ Emd(d) ,

a>l

where we define, for a positive rational number x,
{ x if x is an integer
x¥=

0 otherwise.

Let
& e(m)y=_ 2> A(d).
<dlm
By (56) and (7), we have
) o(X2)=3(m—1Ym—2)+0n1-+24(m/3)* +48(m/2)*+ 24¢(m) .

Now, if (Q) is true, then only those divisors d of m with d=<180 (more precisely,
d={2, 3, ---, 180} in the table) will contribute to e(m), and the above (9) will
give a desired closed formula for p(X%) for all m.

4. In the rest of this paper, we note certain results which seem to support
the affirmative answer of (Q) and hence the validity of the formula (9) in its
closed form.

First we exhibit some indecomposable elements of B2, in case GCD (i, 6)>1,
which implies the inequality 4(m)=0 for all m>12.

LEMMA 1. (@) Assume that m=2m’ is even, and [et
o=, m'+i, m—2i, m’), 1=<isEm’—1, i#=m'/2
(i, m'+i, m’+2i, m—4i), 1€’ —1)/2, i+=m’/3
i:{ (G, m’+4, 2i—m’, 2m—4i), (m'+1/2<ism’—1, i#F=m/3.

Then a; and B; are indecomposable elements of B, which belong to JI5(1) if and
only if GCD (7, m")=1.
(b) Assume that m is divisible by 3, m=3m", and let

7=, m"+j, 2m"+j, m—37), 1=j=m"—1, j¥m"/2.
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Then 7; is an indecomposable element of B, which belongs to JL(1) if and only
if GCD(j, m")=1.

LEMMA 2. With the same notation as above,

(a) the four coefficients of each of indecomposable elements o, B; ov 7; in
In(1) are all distinct except for the following cases: 1) m=8, @, as; 2) m=10,
B1y Bss Bss By 3) m=12, Bs, Bs, T4, T

(b) If m>8, then a;, f: (1=i=m'—1, ¢, mN)=D and 7; 1<j=m”"—1, (j, m")
=1} form 2p(m’)+@(m") distinct elements of In(1); moreover there are no pairs
{a, &’} among these elements such that « is a permutation of a.

The verification of these lemmas is straightforward, and so it will be omitted.

PROPOSITION 3. For any m>12, we have
(10) gmyzoim/3)+2¢0(m/2),  i.e, dm)=0.
Proor. This is an immediate consequence of Lemmas 1 and 2 in view of

(4) and (6). g.e.d.

Considering the case 4(m)=0, we have

PROPOSITION 4. The question (Q) is affirmative if and only if the following
statement (Q’) is true:

Q) For any m>180, the set J%(L) of indecomposable elements o of BL, with
GCD (a)=1 consists exactly of o(m/3)+2p(m/2) elements a;, f; (1<i=
m'—1, (¢, m"=1) and y; A=j=m”"—1, (j, m")=1) defined in Lemma 1.

As a consequence of Proposition 3, we obtain (at least) the lower estimate
of the Picard number p(X%):

CH) o(X%)Z30m—1Ym—2)+0,+1-+24(m/3y*+48(m /2 + 24¢'(m)
where ¢'(m)= X Ad).
1<l(11|§.m1’80

5. Now we translate our problem into a problem about a Fermat curve.
We fix the following notation: let AR°CUL, be the set of f=AL, such that
181=1, i.e.

2
Wi={(an a1, 0 150, Zm—1, T o=},
=0

For S=¥UL’, we set
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Hy={te(Z/m)" | It-B]=1}.

Obviously Hj is a full set of representatives of (Z/m)* mod{=+1}.

PROPOSITION 5. The set of indecomposable elements a=(a,, a,, as, as) of B,
with a,+a,;<m is in one-to-one correspondence with the set of pairs (8, 7) of
elements B, 7 of UR° such that (i) Hy=H, and (ii) 8 and 7 have only the last
coefficient in common (i.e. if B=(bs, by, bs), y=(co, €1, ¢2), then by=c, and {b,, b}
ﬂ{(,‘o, 61}:®).

PrROOF. Given a=(a,, '+, a;)&B?% as above, we let
B=(a,, a1, m—ao—a,), 7=(m—a,, m—as, m—a,—a).
Obviously 8, re%5° Now, since a=B%, we have
[t Bl+|—tri=lt-al+1=3  (VielZ/m)),

which implies |¢-Bl=1i-7| for all t=(Z/m)*. Thus we have Hz=H,, and the
pair (B, 7) satisfles the condition (i). The condition (ii) is clear because « is
indecomposable. Conversely, given pB=(bo, by, b:) and 7=(co, ¢1, ¢2) satisfying
the conditions (i), (ii), we let a=(b,, b1, m—cy, m—cy), which obviously defines
the inverse correspondence. g.e.d.

Although it is implicit in the above proof, Proposition 5 is based on a special
case of the “inductive structure” of Fermat varieties, i.e. on the connection of
X% and X5, x X3, (cf. [3], [4], [5D).

6. The study of pairs (B, 7) of elements of %L’ satisfying Hz=H, is related
to the decomposition of the Jacobian variety J(X%) of the Fermat curve X1,
into certain isogeny factors. For this and for what follows, we refer the reader
to Koblitz-Rohrlich [17. We quote a part of their main results, relevant to our
problem, in the following form:

THEOREM K-R. Suppose B, y€UL°’ and Hg=H,. Then

(@) if GCD(m, 6)=1, then B is a permutation of 7.

(b) Assume further that B and y have only the last coefficient in common
and GCD (B, )=1. (b)) If m=3" (n=2), then for some te(Z/m)*, t-8 and t-7
are permutations of (1, 2-3%"*+1,3"'—2) and (3, 2-3*'—1, 3" *=2). (¢c) If
m=2" (n=4), then for some t=(Z/m)*, t-B and t-v are permutations of one of
the following pairs:

1 1, m—4, 3), (m/2—1, m/2—2, 3)
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2) (1, m—2, 1), (m/2, m/2—1, 1)

3) 1, m/2, m/2—1), (2, m/2—1, m/2—1)
4 A, m/2+1, m/2—2), (2, m/2, m/2—2)
5) (2, m—4, 2), (m/4—1, 3m/4—1, 2)

6) (m/2, m/2—-2, 2), (m/4—1, 3m/4—1, 2).

7. From Proposition 5 and Theorem K-R, we can immediately deduce the
following :

THEOREM 6. (a) If GCD(m, 6)=1, then there are no indecomposable ele-
ments of Bh. (B) If m=3" (n=2), then any indecomposable element of B2, with
GCD (a)=1 (i.e. any element of J%(1)) is a permutation of one of v; 1=7=<m/3,
(7, 3=D of Lemma 1. (¢) If m=2" (n=24), then any element of J) s a
permutation of one of a; or B; 1=i<m/2, i:odd) of Lemma 1.

This shows that the statement (Q’) of Proposition 4 is true in the case
where m is either relatively prime to 6 or m is a power of 2 or 3. Therefore
we can state the following results on the Picard number o(X%).

THEOREM 7. Assume that m is relatively prime to 6. Then the Picard num-
ber of the (complex) Fermat surface X% of degree m is given by the formula:

(11 o(X2)=3(m—1)(m—2)+1.
Furthermore the Néron-Severi group NS(X2)RQ is spanned by the cohomology

classes of lines (=1-dimensional subspaces of P%) lying on X2,

Proor. The formula (11) follows from (9) by what we have seen above.
The second statement is a consequence of a more general result, valid for higher
dimensional Fermat varieties (cf. [2], [5, Th. Il[]). More directly, we can show
it in the following way. Consider the 3m? lines in P® defined by

Ly LxoFx,=0, xstx,=0
(12) LC(’Z%I Cxo—}—xz:(), ﬁxl‘}‘X:;:O (Cm:ﬂmzl)-
LE: Cxotas=0,  pa;+x,=0

It is easy to see that these lines lie on X2 (note that m is odd). Let e(LE)
denote the class of L{, in NS (X2)CH¥ X%, Z). It suffices to show that {e(LEM
spans NS (XZ)RXC. For each a=(a,, a,, as, a5)&D% with a,+a,=0 (mod m),
define
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(13) Wa= CZ}y Cuapec(LE).

Then the following facts can be seen without difficulty: first
(14) gHw)=a(g)wa

where g=[{,, -, CleAut (X%) (F=1) and a(g)= roC;-‘J‘. Looking at the inter-
5=

section properties of lines L{7), we have

(15) Wo Boe=—m",
which implies that w,#0 in H% X%, C). Thus o, spans the eigenspace V(a)

CH* X2, C) with “character” « (cf. [5, Th. I]). If we denote by H a hyper-
plane section of X%, then

(16) (=T c(L§P=ZTe(LEy) (=1,2,3),
7

and

an mec(LEY)y=m-c(H)+ b Cooptea, .

a=(ag,2y,22,23)
agta=0(m)

The similar relations hold also for L{% and L§), and it follows that the space
@2 V(a)DCc(H) is nothing but the subspace of H*( X2, ) spanned by c(Léfl})’s.

asEDy,
Since B, =2, in our case (GCD (m, 6)=1), this proves that NS(XZ)RXC is
spanned by ¢(L{9)s. q.e. d.

Question. Suppose m is relatively prime to 6. Is NS(X%) spanned over Z
by ¢(L{H)ys?

From Theorem 6 (b), (¢), we also obtain

THEOREM 8. (1) Assume that m=2". Then
3(m—1)(m—2)+2+24(m—6) (n=3)
(18) p(X2)=4 20 (n=2)
2 (n=1).
(ii) Assume that m=3". Then
(19) p(X3)=3(m—1)m—2)+1+8(m—3).

It should be remarked that the Picard number of the Fermat surface X2,
in characteristic p>0 can become larger than the value of p(X%) in (1) or (9);
for instance, if m=4, it is equal to the Betti number
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bo(X2)=(m—1)(m*—3m+3)+1

if and only if p*=—1 (mod m) for some v (cf. [4, Th. 4.3]).

8. Finally we note that, reversing the above arguments, we can reformu-
late the question (Q) or (Q’) in terms of data for a Fermat curve, which sug-
gests an analogue of Theorem K-R for the values of m not treated in [1].

As an illustration, we state the case where m=3m” with m” odd. By
Lemma 1 (b) and Proposition 5, we see that each of the following pairs of ele-
ments of AL°" satisfies the conditions (i), (ii) of Proposition 5:

(J, m=3j, 2), (m"—j, 2m"—j, 2j) ~ (A=j<m”, (j, m")=1);

(20) {
(J, 2m"+j, m"=2j), 3j, 2m"—j, m"—2j) -A=j<m"/2, (j, m")=1).

Now the question (Q) (for the above m), is equivalent to the following :

QM Let (8, 7) be a pair of elements of AL such that (i) He=H,, (D) 8, 7
have only the last coefficient in common, and (iii) GCD (8, 7)=1. Assume
m=3m" (m”:odd) and m>21. Is the pair (8, ) among the pairs listed
in (20) up to permutations?

This question (Q”), and similar one for m even might be handied by
modifying the methods of Koblitz and Rohrlich [1]. In order to determine all
pairs (8, 7) satisfying Hy=H,, it is also necessary to consider the case where
B and 7y have no coefficients in common. This is a question about the “semi-
decomposable” indecomposable elements of B, (cf. (2)), which is related to the
Hodge Conjecture for the 4-dimensional Fermat variety X% (cf. [5, §4]). There
remains much to be clarified here too.

Note added in proof.

1) The same problem as in this paper has been considered in a recent
article of W. Meyer and W. Neutsch: “Fermatquadrupel”, Math. Ann. 256
(1981), 51-62. Our Theorem 6 (a) answers their Vermutung 2.

2) Recently, N. Aoki has completely solved the question (Q) by verifying
the statement (Q’) of Proposition 4 for all m>180. Thus we have the closed
formula for the Picard number p(X%) for arbitrary m. (cf. Aoki’s Master thesis
at Univ. of Tokyo, in preparation.)
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