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1. Introduction.

It is an elementary exercise using the division algorithm to prove that the
quotient of two polynomials A(x) and B(x) with rational coefficients is again a
polynomial, whenever A(n)/B(n)eZ for an infinite set of integers n. It is
natural to ask if a similar result holds for polynomials in several variables. In
particular, what subsets S of the k-dimensional lattice Z* have the following
property?

Property D. If A(x) and B(x)#0 are any two polynomials over Q in #
variables x=(x,, -, x;), and if A(n)/B(n)=Z for all those n=S for which
B(n)=0, then B(x) divides A(x) in Q[x].

In this note we exhibit a class of sets S having the property D, which are
composed of lattice points on certain exponential curves. These are the sets
(1) S={(mt, ---, mp); n=0},

where the m,; are fixed integers =2 and are relatively prime in pairs.
The fact that these sets satisfy D rests on the following theorem of Pisot
[1], p. 233 (see also Cantor [47).

THEOREM. Let ﬁanx" and ibnx" (bn#0 for n=0) be two power series
n=0 n=0
representing rational functions, and assume that 3 b,x™ has exactly one (simple)
n=0

pole on its radius of convergence. Then, if an/bncZ for all n=0, it follows that

S a . . . .
> b" x" is also the power series of a rational function.
n=0 by

A result of Cantor [3] shows that the assumption on the simplicity of the
pole may be discarded. However, we shall only use the theorem in the above

form.
In-§2 we state this theorem in terms of linear recurrences, and give a new
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proof, based on a division algorithm for exponential polynomials which is due
to Ritt [8]. Then in §3 we deduce that the sets S in (1) satisfy property D.
We remark that a similar result may be proved for polynomials over a real
algebraic number field, using a result of Cantor [4]. However this involves no
new ideas, so for simplicity we shall restrict ourselves to the rational field Q.

Finally, in §4 we prove the following resuit, valid for an arbitrary number
fleld K: if © is the ring of integers in K, and A(p)/B(p)s0 for all ,z_ze@k for

which B(Lz)P(éz)q&O (P(x) an arbitrary non-zero polynomial over K), then
Alx)/B(x)eK[x].

2. The Pisot-Cantor theorem.

We first recall the following well-known facts concerning the power series
of rational functions.

(A) X a,x" represents a rational function if and only if {e¢,} is a linear
n=0
recurring sequence, i.e. if and only if there are complex numbers ¢y, -+, ¢r
{¢,#0, r=0), for which
”

(2) Tn4r= 2 Cxlnsr-k, for nzn,,
where n, is some sufficiently large integer.

(B) If ay, -+, a; are the distinct roots of the polynomial
(3) xT—cx" T — s —,=0,

with the ¢, as in (2), and if the multiplicity of a, as a root of (3) is e,, then
the sequences

{nfad}, 185, 0=57=Ze,—1,
are independent (over C) and form a basis for the solution space of (2). In
particular, any solution {a,} of (2) has a unique representation of the form

(4) Un= élpk(n)az‘, nZ=no,
where p(x)=C[x] and deg pr(x)=e,—1.
(C) If {a,} satisfles (4), where the a, are distinct and no p.(x) is zero,

* 1
then the rational function X a¢,x™ has a pole of order 1--deg p, at a_’ for
n=0 %

1<k <s, and no other poles.

We shall refer to these facts simply as (A), (B), (C).

In order to prove the Pisot-Cantor theorem (see the introduction), we shall
work with the coefficients a, and b, in the form (4). It is then convenient to
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introduce the “exponential polynomial”
S
(5) a(x)= glpk(x)e’“"”k,
corresponding to (4), where the logarithms are chosen arbitrarily. We also define
pla)y=pla(x))= max Relog o= max log |atg]| .
1skss 1skss

The following lemma is due to Ritt, and forms the basis for his discussion
in [8] of the arithmetic in the ring of exponential polynomials. (Note that
Lemma 1 is more general than Ritt’s lemma, but the proof is exactly the same.)

LEMMA 1. Let a(x) and b(x) be exponential polynomials, and assume b(x) has
the special form

(6) b(x)= T, gx)e g, "7,

where ¢, is a non-zero constant and Re A,>Re A; for 1=<j<r—1. Then there are
exponential polynomials x(x) and p(x) which satisfy

(7) a(x)=r(x)b(x)+p(x),
and
(8) either p(x)=0 or plp)<u).

We shall also require the following result of Pisot. (See [5], page 138.)

LEMMA 2. Let {z,} be a sequence of real numbers satisfying a linear recur-
rence of the form (2), and let {A,} be a sequence of rational integers. If

i IZn——An12<OO >
n=0
then {A.} also satisfies a linear recurrence of the form (2).

We now prove the theorem of Pisot and Cantor.

THEOREM 1. Let {a.} and {b.} be sequences of complex numbers which
satisfy linear recurrences. Assume that b,#0 for n=0, and that the minimal
recurrence satisfied by by is of the form (2), where the corresponding equation (3)

Z: eZ for

has a unique largest root, of multiplicity one. Then the hypothesis

an

ba

n=0 implies that { } also satisfies a linear recurrence.

PrROOF. By the remarks in (B) we may set
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s
an= 2 pimai,  n=no,

r—1
bnzglqj(n)ﬁ’}%—qr P, nZng,

Where pk} QJEC[-X,—_L (247 ‘8]': QTEC) Q‘rior aﬂd
(9) |B-1>18;1  for l=j=r—1.

We now define a(x) by (5) and b(x) by (6), where 2;,=log §; is chosen arbitrarily,
By (9) and by Lemma 1 there exist exponential polynomials (x) and p(x) satisfy-
ing (7) and (8). Setting x=n in (7) gives that

an _ a{n) _

p(n)
be  b(my FOOT

b(n) ’

Now {k(n)} clearly satisfles a linear recurrence, by (A) and (C). Moreover (o)
< p(b) implies that

for nz=mn,.

for some positive constants ¢ and 4. Since

NZMNo,

2 e‘25”<oo R
n=0

the assumptions of Lemma 2 are fulfilled with

A= Z" . zn=x(n).
Therefore { Z" } does satisfy a linear recurrence. Q.E.D.

REMARKS. 1. The equivalence of Theorem 1 and the theorem stated in §1
follows from (A), (B) and (C).
2. It is clear that we need only assume

a
teZ for n=n,,
ba

for some fixed 7n,=0, in order to guarantee the conclusion of Theorem 1.

b,#0 and

3. The sets S.

For the proof of our main result we need two more lemmas, the first of
which deals with a special case of Theorem 1.

LEMMA 3. Let
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T 3
(10) Ap= izlcia? 3 bn: Eldjﬁ? ’

= =
where the c¢; and d; are non-zero and real, and where the a; and B; are positive
and respectively pairwise distinct. If Z" eZ for those n for which b,#0, then

|1
11 an=bnk§=]luk72, for nz=0,

where the u;, and 7, are real and 7,>0. Moreover 7y lies in the multiplicative
group G generated by the a; and B,

PrROOF. Since b,=0 for at most finitely many 7, and since some §; must
dominate the B; with /#j, Theorem 1 and (B) imply that

a £
=3 un)yE, for n=mn,,
ba i=1

for some non-zero polynomials u,(x)eC[x] and distinct 7, in C. Thus

1 S n S n : n >
(12) Elciai—(]gldjﬁj)<k§1uk(n)rk>, for nZ=n,.
Assume that the assertion of the lemma is false, and let 7, be the 7 of least
absolute value and smallest argument which is not equal to any —;—i—, or for
i

which u,(x) is not a real constant. If B, is the smallest of the §’s, then the
term dyu(n)(fi7 )" in the product on the right side of (12) does not combine
with any other term in the product. Hence (B) shows that d,u(n)(f.7:)" must
equal some term c;a?, for n=n,. But this can only happen if

diuy(m)=c; and Biyr=ay;

i.e. uu(x)=u, is a real constant and 7,=«;/f:. Hence the 7’s all lie in the
multiplicative group G. Now (12) becomes

T $ 1
as3) S car=(2dgi)(Suat),  nzn,
1=1 j=1 k=1
which shows that the real exponential polynomial
S x log g S z log 85 ¢ z logry
2 cee i—(X dje 2 uge
i=1 j=1 k=1

has infinitely many real zeros. Thus it must be identically zero, so that (13)
holds for n=0. This completes the proof of the lemma.
Our final lemma is a special case of Fatou’s lemma [6], [7].

LEMMA 4. Let
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,
Gn= Zlciq%” ,  for mnzme,
&

where ¢, ¢;€Q, ¢:q:#0 and the q; are distinct. If a,€Z for nZn,, then g, Z
for 1=i=s.

We give the following simple inductive proof.
Proor. If r=1 the assertion is obvious. Assume its truth for », and let
T
an:;:)lcz'(]?‘}‘crﬂqyﬂ ,

u .
where ¢,.,;=— with u, ve&Z. Form the sequence
v
bn:van+1—uan
T
=_Zlci(vqi—u)q?, n=nyg.
£

Since b,=Z it follows by induction that g¢,, -+, ¢, are integers. Applying the
same argument with ¢, replacing ¢, shows that ¢..,Z also, and this com-
pletes the proof.

A similar proof works for the most general case of Fatou’s lemma.

We are now ready to prove

THEOREM 2. Let my, -, my be k integers =2 which are relatively prime in
pairs. Let A(xy, -, xp) and B(xy, -+, x4) be non-zero polynomials with rational
coefficients, and assume that

A(m?, -, mp)
0 R =7
B(mt, -, mp)
for those n for which the denominator is not zero. Then B(xy, -+, x4) divides
Alxy, o+, x0) 0 QLxo, -+, Xl
PROOF. Let
an=A(m%, -, mp)

b,=B(m%, -, mf)

for n=0. It is clear that a, and b, have the form (10), where the a; and j§;
are equal to distinct monomials in the m;. Thus our assumptions, together with
Lemma 3, imply that

t
an:bnz uiT?, fOI' T’LZO,
i=1

where u;=@ (this follows from the proof of Lemma 3 or from a simple deter-
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minant argument), and where the 7y; lie in the multiplicative subgroup of @
generated by my, ---, m;. However Lemma 4 shows that each 7; lies in Z, and
since the m; are pairwise relatively prime it follows that

yi=mgit-omgit with e, =0.
Therefore

t
@n=ba 2 Uit - MR =b, Pk, -, ),

for n=0, where P(x)eQ(x). Thus, as in the proof of Lemma 3, the real ex-
ponential polynomial

A(exlogml, . ewlogmk>_B<exlog ml’ - exlogmk)P(erlogm1} e, ezlogmk>

is identically zero. But e®°s™i, ..., ¢lg™k gre algebraically independent over
@, and so we have that

Alxy, 5 x0)=B(xy, -, x)P(xy, 0, xa). Q.E.D.

We note that the same arguments can be used to prove:

THEOREM 3. Let K be a real algebraic number field, let A, BEK[xy, -+, x4
and let o, -, ptx be k positive algebraic integers of K which are not units and
are relatively prime in pairs. If

Aty 5 p8) _ Gn
Bpt, -, p#B)  ba

is an algebraic integer for all those n=0 for which the denominator is non-zero,
then A/BEK[xy, -, Xzl

an

bn

satisfies a linear recurrence, we must appeal to a result of Cantor [4] (Lemma
2, applied to the valuation which is the ordinary absolute value on K). The
proof then proceeds in exactly the same manner using Lemma 3 and Lemma 4
(i.e., its generalization to number fields).

We also make the following remark. If A and B have integer coefficients
in Theorem 2 and B is primitive (the greatest common divisor of its coefficients
is 1), then A/B will have integer coefficients as well. If B is not primitive then
this need not be the case. For example, take B(x)=2 and A(x)=x(x—1). Then

A/ Bly="E0 =

The only change in the proof is at the first step. To deduce that

(g) is an integer for all integral values of x.
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4. A result for number fields.

Let © be the ring of integers in an algebraic number field K, and let x=
(x4, =+, x4). In this section we prove

THEOREM 4. Let A(x), B(x)EK[x], where B(x)#0. If A(w)/B(p)€0 for
all p=0* for which B(p)P(p)#0, where P(x) is any fixed non-zero polynomial in
K(x], then A(x)/B(z)eK[x].

PRrROOF. First we consider the case =1, B(x) irreducible over K. Write
pA(x)=Q(x)B(x)+ R(x),

where pe0, Q(x), R(x)e0[x], and deg R<deg B. Then for every p=0 for
which P(u)B(p)#0, we have

R(p) AW

B(w B
Assume R(x)#0, and let @ be a prime ideal of @ with the property that B(x)
splits completely into distinct linear factors modulo . (The existence of such
a @ follows easily from standard results in algebraic number theory. See also
[2], p. 258.) Then for some p,=0@ we have

—Q(weo.

B(p)=0 (mod @),  R(p)#0 (mod &),

since the congruence
B(x)=0 (mod @)

has deg B>deg R roots. Without loss of generality we may also assume
B(po) P(po)#0. But in that case R(u)/B(uo)&0; this contradiction shows that
R(x)=0, i.e. B(x)|A(x) in K[x].

If k=1 and B(x) is reducible, write

B(x)y=DBy(x) -+ Bn(x)

with irreducible polynomials B;(x) and apply the above reasoning successively
to the polynomials

pm—iA(x)

A= e S T B

and Bi(x), 1=i<Zm.

Here p is a non-zero integer of K with the property that oB{x)eolx] for
i=1, -, m. We then get successively

A A A
B, 'EI_B;’ ,?EK[X],

since
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Adp) A g
By o By pBisilp) -+ pBu()s0
for all p=0 for which B(p)P(p)+0.

Now we consider the case £>1. Assume that

A(,X: xk)) B(,X) xk): P(,X: X}JEK[_X, xk]) where 2—'_—<X1, ) xk—l)y

that B involves the variable x,, and that

%gi—ge@ for all (&, p)e0* for which P(&, 7)B(E, 7)#0.
For fixed £=0*%?, the first part of the proof shows that
(14) AS, x0=fx0B&, 50, flrDeKlx:d,

for all £€€0*% ! for which P(, x,)B(, x,) Is not identically zero. we divide
A(y, xw) by B(y, ;) with respect to the variable x, and obtain

D(NA(y, x)=B(y, x)Q(y, xo)+R(y, x4

where D(y)eK[y], Q, ReK[y, x:] and deg,, R<deg., B. If By(y) denotes the
leading coefficient of B with respect to x, then for all £€0*? satisfying

DEPE, x)B§)+#0

we have R(, x:)=0 by (14). But if R(y, x,)#0 there is certainly a Eepr?
for which

R, x)DE)PE, x1)Bo§)#0.
Thus R(y, x;) is identically zero and
DNA(y, x)=0Q(y, x)B(y, x&).

Applying the same argument to x, in place of x,, we see that for every
variable x; appearing in B(x),

(15) Di(x ) A(x)=Q:(x)B(x),

where x contains all variables x,, -+, x, except x;, and D;, Q; are polynomials.
If B(x) involves only one variable, then (15) shows that A(x)/B(x)eK[{xl.
QOtherwise

Alx)  Qdx) _ Qfx)
B(x) ~ Di{x) " Djx?)

for all 7, j, i#, such that x; and x; appear in B(x). Hence
Di(xPQi(x)=Di(x™)Q,x),

which implies that any factor of D{x%) involving x; divides @:(x). But clearly
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D{x%) involves only variables appearing in B(x), and thus Di{x9)| Q%) in

K[x], i.e. Ax)/Blx)eK[x]. Q.E.D.
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