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1. Let K be a finite field with ¢ elements: K=F, Denote by K* the
multiplicative group of K. We extend, as usual, the domain of definition of a
character ¥ of K> to all of K by setting y(0)=1 if y=1, the trivial character,
and y(0)=0 if y#1. For characters y, ¥' of K*, the Jacobi sum is defined by

a.) @ 1= B Ao A—x).

When y, ¥/, xy’ are all #1, we have the equality
(1.2) WG ) =+q .

This property of Jacobi sum is used to estimate the number of solutions in K
of the equation of type

(1.3) yd=1—x".

The purpose of this paper is to generalize the definition (1.1) and the property
(1.2) so that, among other things, we can estimate the number of solutions in
K of the equation of type

(1.4) yi=x*(1—tx™), teK”,

on the elementary level. Our proof of a generalization ((3.4) Theorem) of (1.2)
does not use the additive character of K and so does not depend on the estima-
tion of the Gauss sum as in the usual proof of (1.2).

2. Let A be a finite abelian group and K be the finite fleld with ¢ elements.
By a K-character of A, we shall mean a homomorphism of A into K*. Let &
be a K-character of A. Let a be a character of A and § be a character of K*
in the ordinary sense. Consider the sum

2.1 Jda, B )= T at)pl—t6(x), t=K.

If A=K", &(x)=x, t=1 and a=1, then (2.1) coincides with the Jacobi sum (1.1).
(When a=1 here, there is a slight discrepancy between (1.1) and (2.1) because
«(0)=1.) From the definition (2.1), we see easily that
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2.2) Jea, B; t€(xN=alx)Jla, B;1), x€A,

where @ is the character of A which is the complex conjugate of «. It follows
immediately from (2.2) that

2.3) eer, 85 16CN1=1Jele, B; 1)].

This means that the absolute value of (2.1) may be considered as a function on
the cokernel: Cok é=K*/Imé&. If, in particular, a(Ker &)=1, the sum

* o Py — .
2.4 Jia, B; t)—xem%er Ga(x)ﬁ(l 1&(x)

makes sense and we have
(2.5) Jela, B; )=[Ker &1/, 8; 1),

where we write [X] for the cardinality of a set X. Finally, in the general
case, we put

(2.6) oila, ,8)=262Klfg(a, B DI%.

In the sequel, we shall often use the Kronecker delta 0z y=0(x, v} for elements
x, y of a set, in an obvious way. For example, we have

2.7 Jea, B;0)=LA00q.: -

In view of (2.3), we can also write (2.6) as follows:

(2.8 oo, H=LATS, +[IME] 3 |Jla, ;D).

If, in particular, a(Ker £)=1, we have, from (2.5),

@9 ofa, H=LANLAL, ++[Ker£] 3 1@, 85017,
since [A]=[Ker &][Im &].

3. Now, we shall compute o4, ) by changing the order of summation.
We begin with

(3.1) LEMMA. Let y be a non-trivial character of K* and a, b be elements of
K*. Then, we have

sa,b—:ng(l*aX)z(l—bX)=q5a, —xla)z(h).

Proor. When a=b, we have s, ,= lex(l—ax)P:q—l. When a0, we
TFEQ"

have s, ,= 21 1x((l——ax)(l—bx)‘l). Put y=(1-—ax)1—bx)"'. Since y=0, oo,
x+a~1,p-
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ab™! correspond to x=a"', b7, oo, respectively, under this transformation, we
have Sav= > x)=—ylab™), q.e.d.

#0,ab~
From now on, we assume that 8+1 since the case fS=1 is trivial. Using
the Lemma, the computation of o, ) goes as follows:

oda, B)= 2, x;aa(x)ﬁ(l*tf(x))&(y)ﬁ_(l—l‘f(y))
= % a(0)al) 5 fL—E) 1)
=x§eAa(X)5«(y)(q5(E(X), E(yN—BEENBEN
==z a(X)ﬁ(E(X))O‘((yN?(E(y))+q5(zl§1)=1a(xy‘1)

=—| Ba(B-H(0)|*+¢[4] 3 a(2)

=—[ATda(8-8), D-qLAI Ker £ld(a(Ker &), 1).
Since a(f-6)=1 implies a(Ker §)=1, we get the following
(3.2) THEOREM. When B+#1, we have
oa, By=olaKer &), D(qLAIKer §E]—[AT*0(a(B-5), 1)) .
The definition (2.6) and (3.2) give:
(3.3) THEOREM. If B+1 and a(Ker&)+#1, then
Ja, B; =0 for all t€K.
Combining (2.9) with (3.2), we get:
(3.4) THEOREM. If B#1 and a(Ker&)=1, we have
¢=Im £)0(a(B-8), Voot 3, |JHa, 8501

(3.5) THEOREM. If B#1, then |Je, B; 1) =[Ker&l/q, teK™.
This follows from (2.5), (3.3) and (3.4).

(3.6) REMARK. When A=K*, &x)=x, t=1, a#1, B+#1, af+1, we have Ker &
=1, Cok £&=1 and hence ¢=|/¥(a, 8; DI*=1](a, 8)|% Therefore, (3.4) generalizes
the classical formula (1.2). Note that here we did not use, as in the usual proof
of (L2), the relation J(a, P)G(aB)=G(a)G(S) and the estimation of the Gauss
sum G(a):xg)ra(x)gb(x), ¢ being a fixed additive character 1 of K.
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(3.7) REMARK. When K=F,, ¢: odd, A=K", a=[F=y=the character of order
2 and §(x)=x?% we have [i(a, §; )= 2 y(x(1—tx?) and a(Ker £)=1 if and only if
rEK*

g=1 (mod.4). We also have [Cok&]=[K":(K*)*]=2 and a(B-&)=yyx*=x+1.
Hence the equality in (3.4) becomes g=A%-- B* with A= ¥, §8; 1), B=]#«, §; w),
weK*—(K*)?® This is essentially the formula of E. Jacobsthal [2]. (See also
Chowla [1], Chapter IV.) In many cases, (3.4) provides explicit expressions of
numbers as sum of certain number of squares. However, it does not seem to
provide a constructive proof of the Lagrange’s theorem: any natural number is
a sum of 4 squares.

4. Some examples. Before giving the application of above theorems to
the estimation of number of solutions of equations over K=F, we want to
insert here some examples which are obtained directly from the theorems.

(4.1) Example. Let o be the ring of integers of an algebraic number field, m
be an ideal of o and p be a prime factor of m. Put A=(o/m)*, the group of
invertible elements of the ring o/m and K=o/p=F,, ¢=Np. Call & the natural
K-character A—K*. TFor non-trivial characters «, 8 of A, K*, respectively, we
have the sum Ji(e, ﬁ)zzéa(x)ﬁ(l—é(x)) which coincides with the classical

Jacobi sum when m=p. Since & is surjective, we have [Cok £]=1, [Ker£l=
LAYV LK )=pm){g—1)"". If a(Ker &)+#1, we have Jile, f)=0 by 3.3). If a(Ker &)
=1, (34) gives

g=(g—Dd(a(B§), D+[Ker £]7*| Jile, B)|*
and hence
pm)(g—1)~ if a(B-8)=1,

WECH 5)12{ -
pm}g—1) g il a(B-E)=1.

(4.2) Example. Let {=C be a primitive m-th root of 1 and F=Q() be the
cyclotomic field. Let p be any prime ideal of the ring o of integers of F prime
to m and ¢=Np. Put K=o/p=F, Let A be the cyclic group of order m gen-
erated by { and & be the K-character of A obtained by reducing numbers in A
modulo p. Since p is prime to m, we have [Ker £]1=1 and [Cok &]=(g—1)/m.
Therefore, from (3.5), we have

|Jele, B5DI=vq, teK*.
Since a(l)=¢® for some a<Z, we can also write this as
m—l . .
2L =vg,  teo—yp,

where f is any non-trivial character of (v/p)*.
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5. Let A be a finite abelian group, K be the finite field with ¢ elements
and o, & be K-characters of A. Let b, d be positive integers such that g=1
(mod. d) and (b, d)=1. Consider a function f: A—K defined by

G F)=w(x)X1—tE(x))y, teK*.
Put
(5.2) E={(x, y)e AXK; y*=f(x)}.

Then we have

(6.3 LE]= 2 2 x(f(x),
X

d=1 zc4

where y runs over all characters of K™ of exponent d. From (5.3) we have

G4 ILEI-[Adl= > 1 X x(f(X))"
2%=1x#*11 z€4

Now, as we have y(f(x)=yew(x)x*1—1i(x)), we get
(5.5) Jla, B; f):xCZAx(f(x)),

with a=y-0, f=y" Since f+1, from (3.5), (54) and (6.5), it follows that

(5.6 [LE]-[AT =(d—D[Ker&lvg.

Consider now the equation
B.7 ye=Ff(x)=x"(1—tx™)?, teK”,
where a, b, d, n are positive integers such that ¢g=1 (mod. d) and (b, d)=1.
Put A=K*, w(x)=x2, &x)=x" Then, we have f(x)=w(x)(1—t&(x)P. Call N
the number of solutions (x, ) of (5.7) in KxXK. We have N=[E]+1 since
(0, 0) is the only solution of y?=f(x) outside E. Notice that [E]—-[Al=N—q.
Furthermore, we have [Ker §]=(n, ¢—1)=n. Hence we have
(5.8) IN—g|=(d—Dn/q.

If we assume that (n, ¢)=1, then, since (d, b)=1, the polynomial Y ¢—f(X)e K[ X, Y]
becomes absolutely irreducible and the number m of distinct zeros of f(x)=0 in
K is n-+1. Hence, in this case, we can also write (5.8) as

(5.9 IN—gl =(d—=1)m—1Vg,

which fits the general theorem for curves over K. (See p. 43 (Theorem 2C) and
p. 80 of Schmidt [3].)
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