On self-dual, completely reducible
finite subgroups of GL(2, k)

By Nagayoshi IwanoRI and Takeo YOKONUMA

Dedicated to the late Takuvo Shintani

In order to explain J. McKay's marvelous observation [2] concerning the”
mysterious relation between the irreducible complex representations of the binary
polyhedral groups and the Dynkin diagrams of Euclidean type, Happel-Preiser-
Ringel [3] gave the classification of the finite groups which admit a faithful
self-dual two-dimensional representation over a field whose characteristic does
not divide the order of the groups. However the conditions given in [3] on the
fields for a given group do not seem to be precise. It seems that they did not
consider the necessity of the conditions.

In this note, we give the above classification by different method and show
the necessary and sufficient conditions on the fields. Then using the Perron-
Frobenius theory on non-negative matrices, we determine all the diagrams which
can be realized as the representation graphs of the above representations.

Notations. (1) We denote by €, and ®,, the cyclic group of order n and
the dihedral group of order 2n respectively.

(2) The polyhedral groups (I, m, n) (1</=m=n) are the groups generated
by three elements P, @, R with the defining relations: P'=Q™=Rr=PQR=1.

It is known that the‘group (I, m, n) is finite if and only if %—i—%+—712—>1, i.e.

one of the following cases (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5) ([1]). These groups
are respectively Dy, Ui, S, Us.

(3) The binary polyhedral groups <[, m, n> (1<I=m=n) are the groups
generated by three elements P, @, R with the defining relations: P!=Q"=R"
=PQR. The group </, m, n) is finite if and only 'if the corresponding poly-
hedral group (/, m, n) is finite. -When this is the case, PQR=2 is a central
element of order 2 and the kernel of the canonical homomorphism is (Z>.

1. The determination of the finite groups admitting a faithful, completely
reducible, self-dual two-dimensional representation.

First of all, let us introduce the definition of the field for representation of
a given group.
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DEFINITION. Let G be a finite group. A field k is called a field for rep-
resentation (of degree 2) of G if k satisfies both of the following conditions (1)
and (2). (We denote by char(k) the characteristic of &.)

(1) The group algebra kG of G over k is semi-simple (i.e. the char(k)
does not divide the order of G).

(2) G has a faithful self-dual two dimensional representation over k.

We now determine the finite groups which have fields for representation.

THEOREM 1. For a finite group G, the following three conditions (1), (II)
and (1) are equivalent.

(1) G has a field for representation.

(1) The complex number field C is a field for representation of G.

() G is isomorphic to one of the following groups: Cn, Dpn, the finite
binary polyhedral groups <, m, n).

PrOOF. (I)=>(11) is well-known (e. g. [2]) and (I)=>(1) is trivial. Let us
show (1)>(). Let & be a field for representation of G and p: G—GL(Z, k)
be a faithful self-dual two-dimensional representation over k. Identifying G and
p(G), we can assume that GCGL(Z, k). Since p is self-dual, the eigenvalues
a, B of 6=G in the algebraic closure k of k coincide with those of ‘o™*. Then
we have either a=a"!, =8 or a=f", f=a"'. So af=det(¢s)==x1 and G
is contained in the group SL*(2, k)={c=GL(2, k)|det(z)==x1}.

Case 1. GaSL{2, k) (then char(k)+2).

Let H=GNSL(2, k), then [G: H]=2. For ¢=G—H, we have ¢°=1. In
fact, the eigenvalues a, B of o satisfy ¢f=—1. From above remark, we have
a?=p*=1. Then, ¢ being diagonalizable, 6’=1. Then we have cho*=h"? for
6G—H, heH and this implies that H is abelian. H is isomorphic to a finite
subgroup of the multiplicative group 2—{0}. So H is cyclic and G=®,, if H
is of order n.

Case 2. GCSL(2, k).
Since PSL(2, k)=SL(2, )/3 operates naturally on the projective line P
over b, G=G/3, also operates on P, where 3={%1} and 3,=GM3.

Case 2.1. There exists a common fixed point on P: for all elements in G.

By our assumption, we see that E? is the direct sum of two one-dimensional
G-invariant subspaces. So G is isomorphic to a subgroup consisting of diagonal
matrices in SL(2, k), i.e. G is cyclic.

Case 2.2. There does not exist any common fixed point.
Since every ¢ <G is diagonalizable over E, we see that each element & in
G—1{1} has just two fixed points in P;. Let G#*=G— {1}, P/ be the set of the
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fixed points on P, of &, and 2= \U P?. Then by [4] Q is the disjoint union

Geg¥

of three G-orbits 2, 2, and 2,. Let p;=2; and G, be the stabilizer of ps in
G. Let y; be the order of G,;, where we can assume v, <y,<v,. We have the
following possibilities [4]:

Y1 Vg Vg |G| G G

2 2 n 2n (2, 2, n) By
2 3 3 12 2, 3, 3) Ay
2 3 4 24 2, 3, 4) &,
2 3 5 60 2, 3,5 Ay

In all cases, |G| is even. So |G| is even and G has an element a of order
—1 0
2. We then have a:( ), 3={1, a} SG and 3,—3. Therefore we can con-
0 —

clude easily that G is isomorphic to one of the finite binary polyhedral groups.

2. The necessary and sufficient conditions for a field for representation.

THEOREM 2. Let k be a field. The necessary and sufficient conditions for k
to be a field for representation of the finite groups €,, Du,, €2, 2, nd, €2, 3, nd
are given by the following table.

G The conditions for the field %
n=1 none
&, n=2 char(k)+#2
n=3 char(k) Y n and 7,k
c;\z ___(2 2 n) n=2 char(k)qEZ
o n=3 char(k) Y 2n and 7,€k

char(k) f 2n, 7.,k and there exist

<2, 2, n | % yck such that xyt=y1,—4
2,3, ny char(k) / 6n, 7.,k and there exist
B=n=5) x, y=k such that x*+4y*=y%,—3

where {,ek is a primitive d-th root of unity and re=Cq+E3 We
note that if y,&% for some {4, then it is so for every primitive d-th
root of unity in &

Proor. 1) G=6,=<{o)>. The cases n=1, n=2 and the necessity of the
condition when n=3 follow easily. To show that the condition is sufficient,
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01
consider the representation p given by p(a):( )
Tn

2 G=(2, 2, n)=(P, Q, R|P*=Q*=R"=PQR=1). Similarly to the case of
01 01
G=E,, define p by ‘0(19):( ) > p(Q):(l 0>, o(P)=p(Q)o(R).
J— ?"n

3) G=<2, 2, ny=<Py, Qo, R\ Pi= E=RI=P,Q,R,>. Let [ G—GL(Z, k) be
a faithful self-dual representation. By the proof of Theorem 1, p(G) is contained
in SL@2, k). Let p(P)=P, p(Qs)=0Q, p(Ry)=R. Then,

~1 0
) PZ—:QZ:R":PQR:( ) .
0 —1

01 a b
We can assume Pz( . O). Let Q:( d)l Then ad—bc=1, a+d=C+C*
— c

b d
=0 and R:—(PQ)”:( > It follows that b—c=Con+Ga=7n=k. Since
—a —c¢

2
b=c-+7en, d=—a and ad—bc=1, we have a2+(c—l—l§"—> :%(rén—/l). The ele-

ments x=2a, y:2<c+1§"—) of k satisfy x®+y*=y%,—4. Since char(k)} |G|, we

have char(k) | 2n.

Now we show that the condition is sufficient. Taking x, y=k such that

%, C:%(y_72n>; d=—a, b=c+7s. Then, from

01 a b b d
the above calculation, P= , Q= , R= are contained in
—10 ¢ d —a —c¢

SL(2, k) and satisfy (x). So these elements determine a self-dual representation
p of G. Let us show that p is faithful. Since the order of R is 2n and |G|
—4n, the order of M=Ker p is at most 2. Suppose that |N|=2, then N=<(Z,
where Z,=P,Q,R,, s0 G/N=D,,. On the other hand G/N=(R)=EC,,. This is
a contradiction.

D G=42, 3, n>={Py, Qo, Ro| Pi=Q}=Ri=P,Q,R,>. Similarly to the case
3), we have the relations

12+ y?=7%,—4, we define a=

-1 0
() PZZQSZR"ZPQR:< )
0 -1

2

a b 1\2
In this case, a-+d={+{'=1 for Q= " and we have (a——) +
¢
(c+ %L>Z=-}l~(7§n—3). To show the converse, we prove that the representation

p.constructed as ahove is faithful. The subgroup G,=<P, Q, R)> of SL(2, k)
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has £ as a field for representation and we see that G; is not abelian, consider-
ing the order of P=QR. Suppose Ker p=0+ {1}, then G, is a quotient group
of G/{Z,»=(2, 3, n), where Z,=P,Q,R,, But G; has the central element

-1 0
( 0 1) of order 2. We can conclude that M= {1}.

COROLLARY. Let k be a finite field Fy of qg=p° elements where p is a prime
number. Then we can restate the conditions in Theorem 2 as follows.

G The conditions for the field £
¢, g=-+1  (modn)
Den g==+1 (modan), p>2
2,2 n g==+1  (mod2n)
2, 3, ny g==+1  (mod2n), p>3

ProoF. It is well-known that any element « in a finite field 2 can be
expressed in the form a=x2+7y? (x, y=k). So the last conditions in the cases
of (2,2, n>, 2,3, n> hold always. 7.=C;+{3'€k is equivalent to ({;+{zH)%=

9 1Lr79={,--{3% This means that {{%, (3% and {4, (7'} satisfy the quadratic
equation 2—74+1=0. So we obtain that r,ekeli={; or ({={;'e¢—1=0
(mod d) or ¢g-+1=0 (mod d). And then ¢ and d are relatively prime.

REMARK 1. Some of the conditions on » mentioned in Theorem 1 of [3]
are not the necessary conditions. For example, in the case of G={2, 2, m),
Theorem 1 of [3] says that {,mek for even m and {n<=k for odd m. But we
know from Corollary that F, is a field for representation of G when m=3.
Then &, F, and L&l When m=4, though (& F,, F; is a fleld for repre-
sentation. In the case of G=<2, 3, 35, Theorem 1 of [3] says that {,=k% for a
field of representation. But in this case also, k=F, is a field for representation,
Let us show an example of characteristic 0 case. From Theorem 2, k=8(,)
is a field for representation of <2, 3, 3), because {;-+{'=lek and 1*--(+/ 31)*
=—2. But £,&Q,). In the cases of {2, 3, 47, <2, 3, 5) also, the conditions on
k in [3] should be adjusted.

REMARK 2. It is well-known that <2,3,3>=SL2, Fy) and <2,3,5)=SL(2, F,).
One can prove these by constructing the matrices which satisfy the defining
relations of <2, 3, 3> or <2, 3, 5> by the method of Theorem 2, taking the exis-
tence of the unipotent matrices into account. Therefore, from Corollary, we
have the following well-known inclusion relations, where p is a prime number.
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For p=3 or p>3, SL2, F)GSL(, Fp).
For p=5 or p>5, p=-1 (mod5), SL(Z, F)SSLE, F,).

3. The representation graphs and generalized Euclidean diagrams.

To begin with, we recall the definition of the representation graphs for the
convenience of readers. Let 2 be a field for representation of a finite group G.
Let kG=U,P --- BA, be the decomposition of G into the simple components
;. We can assume that 9; is the total matric algebra Mgy,(E,) of degree d;

over a skew field E;. Then we have ]Gl:éd%ei, where e;=dim,E;. Let
=1

(pi, Vi) be the irreducible representation corresponding to %;. Then the dimen-
sion d; of V; is equal to d;e;. Let (p, V) be a faithful self-dual two-dimensional
representation of G over 2. Then the multiplicity ¢;; of p; in p& p; determines
a non-negative matrix C=(c;;). We can express C in the form of a graph,
which is called the representation graph of p: Consider the graph I" with n

vertices gy, -+, pn. If €520, then we write ¢, loops around the vertex p;. If
cijtc;: >0 for i=j, we write opl ,Oo; . If ¢i;=c;=0 for i+ j, there is no
(ci5 €54)
edge between the vertices p; and p;, We use the following convention: If ¢y;
pi P o1 Pi
=c¢;=1, we write O———0O and if ¢;;>1 and ¢;=1, we write &===20 (cy;
arrows).

Since p is faithful, the matrix C is indecomposable (i.e. for every (7, j),
i#j, there exists a sequence (73, ---, 7,) such that ¢y ¢, - ¢4,;70) ((2]) and we
can apply the Perron-Frobenius theory on non-negative matrices. We quote the
following relation from [3]: e;cij=e;c;; for 1=4, j<n.

PROPOSITION 1. The matrix C=(cy;) has the following properties.

(o) Every component c;; is a non-negative integer.

(B ¢i;>0 if and only if ¢;>0.

(r) The matrix C is indecomposable and the Frobenius root of C equals 2.

(0) There exist row vectors whose components are all positive integers X=
(dy, -, dy), x=(dy, -, dn) such that

{232:%, 2x=x'C,
Min{d,, -, do} =Min{dy, ---, da} =1.
(8) For all Z., di{gi.

Proor. Comparing the degrees of p®p,;=3] ¢s;p:, we have 2&8=%C. Then,

since d;=e;d; and e;c;;=e,c;;, we have 2x=x'C.



Self-dual, completely reducible finite subgroups 835
Remark that % and x in (0) are uniquely determined.

DEFINITION. The matrices C and their graphs satisfying («), (B) and () in
Proposition 1 are called of generalized Euclidean type, and those which moreover
satisfy ci;=0 for all i are called of Euclidean type.

Since the classification of the matrices of Euclidean type is well known, we
show here the classification of the matrices of generalized Euclidean type which
are not of Euclidean type.

Although the following result is given in [3], we shall prove it here by
using the Perron-Frobenius theory on non-negative matrices (cf. e. g. [5]).

THEOREM 3. The matrices of generalized Euclidean type which are not of
Euclidean type are given by the following graphs.

Proor. First of all, we can verify that the numbers under the vertices
give the components of the vector £ satisfying %C=2%, and can conclude that
these are of generalized Euclidean type.

We remark that, by the Perron-Frobenius theory, the Frobenius root of the
graph decreases if some of vertices or edges are taken off from the original
graph. Therefore, the Frobenius root of the graph which contains properly one
of the graphs in Theorem 3 is larger than 2, and the Frobenius root of the
proper subgraph is less than 2.

Now, we show the generalized Euclidean graph with loops coincides with
one of those in Theorem 3.

Case 1. For some i, ¢;;=2. The graph contains L#. Therefore it coincides
with L¥.
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Case 2. For all i, c;=1, and Ec” 2. The graph contains L, Therefore
it coincides with fl.

Case 3. Xcyu=1. Let m=Maxc;;. Suppose m=2, then it contains BL, or
[ i#j

CL,. Therefore m=2 and it coincides with BZL or Cfl Suppose m=1. If
the graph has a Junctlon (i.e. the vertex z which has at least three j such that
¢:;>>0), it contains DL; and is equal to DLL If there is no junction, the graph
is one of the followings:

If the former case occurs, the graph coincides with sz. The latter case is
impossible because of L,.

4. The determination of representation graphs.

In this section we determine the graphs of generalized Euclidean typs which
can be realized as the representation graphs of a finite group admitting a field
for representation.

From the condition (&) of Prop031t10n 1, we can conclude that the following
graphs are impossible:

Calculating d;, d;, e;=d,/d; for the remaining graphs, we verify that ¢;<3.
(This is given in [3].)

PROPOSITION 2. If a field k is a field for representation of a fimite group
G, for the simple component W;=My(E;) of the group algebra kG, we have
dim, E;=<3. In particular, the skew fields E; are all commutative. (In fact, we
show later that dim,; E;=<2)

COROLLARY. Let G’ be the commutator subgroup of G. Then [G: G’jzdz ;.
i=1
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In particular, G is abelian if and only if all d; are equal to 1.

'Proof. The irreducible representations of G/G’ over k are those p; such
that'Ker‘piQG’.' Then p(k[G/G' N=p(kG)=N;= My E;). Therefore, Ker p;
DG’ & pi(G) is abelian pl(k Gy=M, (‘El)Ais commutative & d;=1 (because E; is
commutatwe) So R{G/G]= @?I and [G: G 1= EdlmkE Eel

- Now, we determme the representatxon graphs of falthful self-dual two-
dimensional representations over 2 of the groups mentioned in Theorem 1, (IID.
In the following, these representations are called the realization of G.

Case 1. G is abelian, i.e. G=C, or €,xGE,.

Ii G=@,, the realization is p=14P1ls (1 is the unit representation) and the
representation graph is L} If G=6,=<(o), the irreducible representations of G
are p;=1; and p,=e¢ (e(o)=—1). The realization are p,Pp, and 2p,, their

o
graphs being Iy and 61—(2—’—2)—% respectively. For G=€,x€, the realiza-
O1 D2
tion is ‘essentially unique and thé graph is A,
O3 P4

Let G be €,=<{¢> (n=3), and p be a realization of G. Then the eigen-
values «, 8 of p(G) are the primitive n-th roots of unity and af=1 because p
is self-dual. Put a=6={, and =01

Case 1.1. d<k.

The irreducible representations of G over k are p; (0=i=n—1) where g;(0)
=0 and p=p,PBpn-.. Then pRp;=p;+:Bp;-1 (pr=po) and the representation
graph is ;1”_1,

Do

o1 Pn-1

D2

Case 1.2. 0k, n—=even=2m. 0 )
From 0+6*<k, we have 6/+60-’=k. Then ﬁj(a)z( .y > =
J— JLfg-J
=m—1) is the irreducible representation over & and equivalent to p;Dpn,-; over
k(0). These (m—1) representations and gy, pn (defined in Case 1.1) are the
complete representative system of the irreducible representations over % of G.
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Then we have the representation graph which is obtained by “folding” of that
of Case 1.1. ’

Po f1 2 fm-2  Om-1
O=—=0—0—"0—0 <:wo fm
folding

(7,; 1 2 2 2 e 2 2 Om+1
d; 1 1 1 1 1 1
e; 1 2 2 2 2

4

Case 1.3. Ok, n=odd=2m-+1.

Similarly, g; (1=j=m) and p, give the complete representative system. The
representation graph is as follows.

Do 01 P2 o
O==0——O0——0—-- <::| oo
foldmg
2

Pm+1

REMARK. Now we conclude that L . ({=2) cannot be realized as representa-
tion graph because all d; of L, are 1.

Case 2. G=D,,=(, 2, n) (n=3).

Case 2.1. n=even=2m.

From the defining relations G=<(P, Q, R|P*=Q*=R"=PQR=1,=<Q, R|Q*
=R"=1, QRQ'=R"'), the one-dimensional representations of G are the follow-
ing y: =024 n(@Q=p(R)=1; 1{Q)=—1, 1(R)=1; 7:(Q)=1, s(R)=—1; %{Q)
=y (R)==1.

Define (m—1) representations p; (1=j=<m—1) of G over k by p,(Q)=
(O 1), p;(R):( 0 _1 ) where §={,. Then we can verify;

1 0 -1 646/
1) py, =, pm-1 are absolutely irreducible and inequivalent.

2)  {rw %o Ysr Y P>+, Pm-i} 1S the complete representative system of the
irreducible representations.

We can assume that the realization p equals p,. The representation graph
is as follows.
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e xs -
z>0—0——o—-—---"0_<’<z (all e;=1)
y& prpe Prm-1 X

Case 2.2. n=odd=2m+1.
Similarly, {yi, %2 p1, -+, pw} Is the complete representative system of the
irreducible representations.

x pr pe pm
N ‘O—*JQ @ll e;=1)
p £

Case 3. G=2,2, n)> (n=2).

Case 3.1. n=even=2m.

From the defining relations G=<P, Q, R|P*=Q*=R"=PQR)>=<Q, R|Q*=R",
QPQ@'=R"'), the one-dimensional representations of G are the following y;
(1=i=4): 0w @=pR)=1; (@=—1, pR)=1; @=L, rR)=—1; Q)=
y(R)=—L1

Let 0=lon, s=0+07, s;=07+077 (j=1, 2, --). The fleld % for representa-

a B 0 1
tion of G satisfies sek. We can assume that p(Q)z( 5), p(R):( . )
s - s

The_zn ad—pBy=1, a+0=0 and the defining relations give
) a?+saf+ fr=—1.

Then for each j, there exist x, y=k which satisfy
(Fevv) x:s;xy+yi=(—1).

In fact, if #=k, then put x=0™/, y=0. If Ok, then £2(0)/k is a Galois exten-
sion of degree 2, and @<k for 1=j=<n—1. Therefore k(0)=Fk(#))=K. Con-
sider the norm map N from K to 2. Then (¥¢¥r) means (—1)Y=N(K). On the
other hand (¥%) means (—1)=N(K) and we have the result.

a: .\
Using x and y, we can find aj, b;, ¢; and d;=k such that pj(Q):( ’ J)
i 4j

and m(R):( > satisfy the defining relations and give the representation
—1 S;

p; of G. p; (1=£j=n—1) are absolutely irreducible and non-equivalent. And
{1 225 2 % 01, pa-y gives the complete representative system of the irre-
ducible representations of G and the representation graph is as follows for

p=ps:
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XAz ]
Gl e=D
X2 i @ A

The representations corresponding to black vertices are the representations
of G/{PRQR>=(2, 2, n)=%s,.

Case 3.2. n=odd=2m+1, {,<k.

G has the following four one-dimensional representations: y:(@)=y(R)=1;
2(@)=—1, 5 R)=1; 4 Q)=Cs, 3 R)=—1; xl@)=—L,, x{R)=—1. The absolutely

irreducible representations py, *-*, pn-1 0f degree 2 are determined as Case 3.1
andywe have the following representation graph.

% xe
xz:> o1 pe pr-3 <Zx4

Case 3.3. n=odd=2m+1, {,Ek.
G has two one-dimensional representations y; and y,. Let g.=y:Dy. Then

fn is an irreducible representation over k# and we have the following representa-
tion graph.

L1

A1
e;=1 except gn
- ——O————@O
XZ pl 502 pn-z pn-l /‘l;/n eizz fOl' ﬁn

REMARK. We verify that CN}g,l O—OEO cannot be realized as
representation graph. Suppose that a finite group G has G,: as a representa-
tion graph. Then |G{=8, [G:G'J=4 and G=<2,2, 2> or (2,2,4), which is
impossible. Since 52,1 is the only possible case where ¢;=3 appears, we know
that dim, E;=2.

Case 4. G=<2, 3, n) (3=n=5).

These groups have the irreducible representations of degree >2 over the
algebraic closure 2 of k. So the maximum of the degrees of the irreducible
representations over k is also at least 3. On the other hand, the possible graphs
of generalized Euclidean types which have Max d,;>2 are of type F &1 EG, §7
and E,. Comparing the orders of G, we know that the representation graphs
of <2, 3, 3> are of type ﬁm or ]fs; those of (2, 3, 4> are of type E7; those of
{2, 3, 5> are of type Eg.
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3
G=¢,35 e ¢ . T
& —0——0—0 S>—e—0

1 2 3 4 5 6 4 2

The numbers mean d;=d;; the representations corresponding to
black vertices are the representations of (2, 3, 5)=%,.

2
G:<2, 3, 4> Xl p T P®Xz XZ
&——F-—O0 S -0 -@ O —a
1 2 3 4 3 2 1

The representations corresponding to black vertices are the
representations of (2, 3, )=8,; yi=1g, ¥ is the one-dimensional
representation given by

1(P)=p(R)=—1,  7(@)=1.

Case 4.1. G=<2, 3, 3.
When w={;k, G has three one-dimensional representations x, y. and ys
where 1=1s; 7(P)=1, x:(Q)=0, 1(R)=w*; 3:(P)=1, 3(Q)=0e", y(R)=w. The
representation graph is of type Es:
Az
12973

@
DO

The representations corresponding to black vertices
are the representations of (2, 3, 3)=%,.

When o={;¢k, f.=2Dys 6:=(0Qx)P(p&ys) are the irreducible repre-
sentations over k. The representation graph is of type F 01t

X1 1Y fs P2
e—O0— >0 —e <— ) 5
d; 1 2 3 4 2 folding
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