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1. Introduction.

This work was motivated by Griess’ construction of the “Monster” simple
group [1].

THEOREM AP. Let A be a commutative (nonassociative) algebra over some
field k satisfying the following conditions:

(1) A is a vector space over k with a system of basis xi, Xs, =+, and X, ;
2y xi=(n—Dx; for 1=i=n; and
3 xxy=—xi—xy for 1=i<j=n.

Then if the characteristic of k is zero or greater than n-+1, then the (k-
linear) automorphism group of A is isomorphic to the symmetric group 2,1 0f
degree n--1.

An example of the algebra A in Theorem A is canonically obtained from a
triply transitive permutation group G on a set Q=/{x,, xi, %Xs -+, Xs}. Let
ELQ7] Dbe its permutation module over some field whose characteristic is zero or
greater than n+1. Then E[Q1=UPM where U is the trivial £[GJ-module and
M is an irreducible [ GJ-module. We identify M with [ 271/U. More precisely,
we put

M={xy, %1, =+, Xap/{xoF %1+ - F x>

where {---> denotes the k-linear subspace generated by :--. Therefore if %
denotes the image of x=k[£2] in £[£2]/U, then

1w:<fly XZJ Ty xn> and

Taking a suitable scalar multiple of x;’s, we shall show:

*) Research supported in part by NSF grant 784726.
1) Griess informed the author that he had obtained a similar result with an additional
condition on A (existence of an associative form).
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THEOREM B. M possesses a G-invariant commutative (non-associative) algebra
structure with the following properties:

1) Zi=(n—1)x; for 0=i=n
(2) :E,,sz—)h—f] fO?‘ 0§Z<]§7'L.

2. Proof of Theorem A.

We first define a new element:
DEFINITION. Xy=—x;—Xy— *+ —Xq.

LEMMA 1. The following conditions hold :
(1 xi=(n—Lx; for all 0=i=n; and

(2) xexy=—x;—x; for all 0=i<j=mn.

Proor. It suffices to show xi=(n—1)x, and x,x;=— x,~x; for ;#0. We
have

xg=(x1t - Fxa)

:§1X%+2 D XXy

1=si<jsn

=(n—1) é x:—2(n—1) g‘,lxi

=—(n—1) élx,-

=(n—1)x,; and
XoXi=(—X1—Xo— = —Xn)X;

= 3 (watx)—(ritx)—xt

=—xot+nx;—2x;—(n—1x;

—=—Xo—X;.

This completes the proof.

LEMMA 2. Let x=asx,+asxst - +Fapxn be an element of A with a;<k,
1=isn, If x*=2x for some A<k, then all nonzero coefficients of x are equal.
More precisely, if there are | nonzero a;’s then one of the following possibilities

hold :

€ a;= ; for .all nonzero a;s; or

A
n+1—2
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2) n+1—2{=A=0 in k with all nonzero a;’s being equal but arbitrary.

Proor. We have

x%= aix%_l—z E Q;0;X:X 5
=1 1sidjsn
n
= 2 bix; ’
=1

where

bi=<n-1)a%—2§3 Qiay
=1

kED
=(n-+1)a?—2 an:)laiak , for 1=</<n.
If x*=2x, we have
Aa;=(n+1ai—2a; élak ) for 1=:i=n.
Suppose a;a;#0. Then

2:(n—{—l)ai—2§:‘,1zzk, and

Zz(n—}—l)aj——Zkéak .

Hence (n+1)a;—a;=0. Since n+1+#0 in k, we obtain a;=a; If there are [

nonzero a,'s, then
A=(n+Da;—2la;=(n+1—20Da;.

We obtain the latter part of our lemma immediately from this.

COROLLARY 3. If x is a nonzero idempotent of A, then

. 1
T on+1-2

X

(x4, - +x4))
where 151, <0, <is<< -+ <, =n for some 1=[=n.
Proor. Put A=1 in Lemma 2.

LEMMA 4. Let x, v be a pair of nonzero elements of A satisfying
x*=(n—x,
yi=(n—Ly, and

Xy=—xi—y.
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Then {x, vy} S {x;; 0=i=n}.

PrOOF. Put
3
x= >, a;x; and
1=1
3
y= Z bixz
=1
Then
n
XY= 2 CiXy
=1
where

ci=(n—1ab;— {2 aib,— i axb;
i=1 B=1
] Eri

=(n+Dab;—a kibk—biééak, for 1<i<n.
=1 =1

Since xy=—x—y, we have for 1=</=<n

{x) (n+Dabi—a: élbk—bié ar=—a;—bi.
By Lemma 2, we have
n—1
a;=0 or i for some [ and
b;=0 or _n=l for some m
v n+1—2m )

Suppose that a;=0 if and only if b;=0. Then x=y and so xy+x+y=(n-+Dx.
Hence xy=—x—y is impossible to hold. Therefore, we may assume, inter-
changing x and y if necessary, that there exists an index 7 satisfying a;=0
but ;0. By (%) we obtain > a,=1. Hence

n—1

n-+1--21 =1

This implies (n+1)({—1)=0. Hence /[=1. Without loss of generality, we may

assume that x=x;. If b;=0, then m=1 by a similar argument as above and so
our lemma holds. Therefore we may assume without loss of generality that
n—1

Y 1—2m (axak oo+t

We compute
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__n=1 ., e L
= T om (xitxexet o +x1xm)
n—1 m '
T on-l—2m [(n—m)xl—gxi].

Since xy=—x—y by assumption, we obtain by comparing the coefficients for x,

n——l_(n_m)__l__n_:l__
n+1—2m o n+1—2m

This implies (n+1)(n—m)=0 and so n=m. Therefore

n—1

y= n+1—2n

(1 F o +xa)=2x,.

Thus the lemma holds in this case also.

The proof of Theorem A now follows immediately from the previous lemma
and Lemma 1.

3. Commutative (nonassociative) algebras associated with
triply transifive groups.

Let G be a triply transitive permutation group on a set £={x,, X1, -, Xz}
of n+1 symbols with n=2. Let k2 be a field of characteristic 0 or greater than
n4+1. Then it is well known that the permutation module k[ Q] splits into the
direct sum of the trivial module U and an irreducible module M of dimension n.

We note that G is isomorphic to a subgroup of >),.;. Since the charac-
teristic of % is zero or greater than n--1, the group algebra k[ G] is semi-simple.
Moreover, every k[G] module is obtained canonically from a K[GJ-module by
reduction for a suitable field K of characteristic zero.

LEMMA 5. The symmetric product SHM) possesses M as an irreducible con-
stituent.

Proor. It suffices to show the lemma for the case in which the charac-

teristic of & is zero. Let y be the rational character of G afforded by M. We
shall show

%)G(x(o)z-kx(ﬁ))x(tf) >0

which will vield our lemma since

o+ (0%)
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is the character of oG afforded by S*M). We have y(o)*=y(s) for all o=+1
and ¥(1)*>y(1) since n>1. Hence

B> Zyor=0.
We have
Ugax(oz)x(a)= U§G(1+x(02))(1 +xla)— <a§61+ gax(o)teza x(02)>
= U§G(1+x(0))2— [Gl—|G]

=2|GI—1G|—-|G]
=0.

Hence the desired conclusion holds.

The previous result shows that M admits a commutative algebra structure.
More precisely we do the following. Since MRM=S*M)YPAXM) and S(M)
= MEPBM’, we have a G-invariant mapping f from MM to M. We define the
product ab of (a, H)eMXM by ab=f(a@b). Since f factors through S*M),
ab=ba holds. Thus a commutative algebra structure is given to M.

Since M=k[21/U, we identify M with k[Q1/U=~k[2]/{xe+ x4 - + x>
For xek[2], # denotes the image of x in M.

THEOREM B. The algebra structure of M given above is uniquely determined.
Movre precisely, if we choose a suitable (same) scalar multiple of %;, 0=i=n, then
the following relations hold :

(1) xi=Mn—1)%; for 0=i=n; and
(2) xx;=—x—%; for 0=i<j=n.

Proor. Since %, ---, and X, are linearly independent, we write every ele-
ment of M in terms of %;, 1=/<n.

Let #%¥i=a.%i+ - +a.%,. Since G is doubly transitive, there is an ele-
ment ¢ in G with cyclic decomposition

So
XX =01 %1+ - +aiXet

=(a;—a)F+ .
Therefore a;=0 for all 7++1. Hence

XiX;=a.%; for Oélén .

2) For simplicity, we write (1)(¢0.--) for (x)(x;x,---), etc.
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Put %, %,=b:%,+ - +b,%,. Since G is triply transitive, there exists an element
a in G with cyclic decomposition

(A2)(G0 +--) -+,
for every ¢ with 3=/<n. Hence we have

flfz:bzfr]‘blfz‘l‘ "l‘bifo“}‘

=(be—b3)E14(by—b)EeF - .
Therefore b,=b,—b; and b,=b,—b,. Since the characteristic of » is not 2, we
conclude b;=b, and b;=0 for 3<7/<n. Hence
fifj:bl(xrl'xj)

Cfor 0=i<jEn.

We next obtain a relation between a, and b,. Pick an element B of G with

cyclic decomposition
(1)(20) --- .

Then from %,%,=b,(%,+%,), we have

-’Elxo:bl(fl‘i‘fo) .
Hence

E(—X— Xy - —Xn)=b(F— X1 — %o— —Xn).

Comparing the coefficients for %, of both sides, we obtain —a,—(n—1)h,=0.
Hence
{ szlz—(n—l)blfl for 0_<_.z§n ,

XX =b:(%: X)) for 0<i<j=n.

Taking #;=—(1/b)%; and calling it %, again for simplicity, we obtain a set
of normalized generators and the relations between them : ‘

leL:(n—l)Zl for Oélén N

=R

ifj:—fi—.fj for 0§l<]§n.

This completes the proof of Theorem B.
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