On unitarizable highest weight modules of Hermitian pairs

By H. GARLAND® and G.]. ZUCKERMAN*®

Dedicated to the memory of Takuro Shintani

§0. Introduction.

We let g denote a real, simple Lie algebra with a fixed Cartan decomposi-
tion g=f+p, and we assume f has a one-dimensional center, so that (g, f) is a
Hermitian symmetric pair. We assume n:gc—End V is a highest weight rep-
resentation in the sense of the first paragraph of §2, (2.1), below. In this paper,
we first give a necessary and sufficient condition, in terms of the weights of =,
that = be unitarizable (see Theorem 3.1), below. Then we apply this criterion,
using a result obtained independently by R. Parthasarathy and Zuckerman
(Theorem 4.2, below) to obtain a sufficient condition on the highest weight of =,
which guarantees = is unitarizable. This last result is Theorem 4.5, below.

We emphasize that our proofs are entirely algebraic. This claim depends,
in particular, on the existence of an algebraic proof of unitarity for irreducible
finite-dimensional representations of compact, semi-simple Lie algebras. Such
an argument is given in [4], Theorem 12.1, for loop algebras and that argument
translates directly to the compact, semi-simple case.

In part, the argument in [4] inspired the unitarity result given here for
Hermitian pairs. A second inspiration was the paper [10] of R. Parthasarathy.
In [10], a necessary and sufficient condition for unitarizability is given for a
certain family of highest weight modules. Our initial idea was to see if we
could prove the sufficiency (Theorem B of [10]) without involving the spin
representation, as in [10], but rather, by relying on an argument similar to
that in [4]. This strategy eventually succeeded, but we had to find a substi-
tute for Cartan-Weyl theory, used in [4]. This led us to use Theorem 4.2 in
order to prove the sufficiency condition in Theorem 4.5, below. OCur final result,
Theorem 4.5, below, is somewhat stronger than Parthasarathy’s, in that we
need not assume we have a nondegenerate infinitesimal character and in that
we can relax his integrality condition.

There are several algebraic treatments, in special cases, for the unitarity
of highest weight modules of Hermitian symmetric pairs (see, e.g. [7], [8],
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[130). Also, after completing this work, we learned that Theorem 3.1 was also
obtained by Enright, Howe, and Wallach, and used by them in their classifi-
cation of unitarizable highest weight modules [1].

§1. Preliminaries concerning Hermitian pairs.

We let g denote a real, simple Lie algebra and we fix a Cartan decomposition
g=%+yp. Thus, if (,) denotes the Cartan-Killing form of g, then (,) restricted
to ¥ is negative-definite, and restricted to p is positive-definite. Moreover, T and
p are orthogonal with respect to (,). In this paper, we assume throughout, that
t has a one-dimensional center. Thus (g, ) is a Hermitian symmetric pair (see
[6D.

Whenever aSg is a subspace, we let agcSge denote the complexification of
a. We fix a maximal torus t<f (so t¢ is a Cartan subalgebra of g¢), and we
let 4 denote the set of roots in 15, the dual space of tc. Then we have the
root space decomposition

gC:iCEB-U-aEAga ’

where for a4, g¢ is the root space

g*={Eegcllt, El=alt), teic).

Now, [fc, pc1Spe, and so, 4 fortiori [te, pc]Spe, and of course [ie, T,
since fc is a subalgebra of gc. It then follows that each g® is contained in
either ¥¢ or in pe. In the former case we say a is a compact root, and in the
latter case, we say « is a non-compact rooi. We let 4y denote the compact
roots, and 4, the non-compact roots. We then have

Ad=4,04, (disjoint union).
We let q denote the real subspace q=ig in ge. Then, of course, g¢ is the
direct sum of real subspaces
ge=q+1q,
and we let * denote conjugation with respect to this direct sum decomposition.

Thus, if £=¢,+igs, g1, ¢2=0q, then we set §¥=g,—ig,. It is easily checked that
* ig conjugate linear, and is a Lie algebra anti-automorphism in the sense that

(LD [&F, &0=06., &% &, &esac.

Incidentally, the fact that * is bijective is obvious from the definition. In fact,
it is also obvious from the definition that * is involutive in the sense that
(Ex*=¢, for all £=gc.

If tetSiq, then t*=-—t, and it follows from this and from (1.1) that
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(1.2) (89)*=g™*, acd.
Indeed, if e=g% we have for t<t,

[t, e*]=[e, t¥1*

=[e, —tT*=[1, e1*

=aDe*=—a(l)e*,

since a(t) is pure imaginary for t=t. We can further refine (1.2).

879

LEMMA 1.3. We may choose a set of nonzero root vectors {e,} acs, €a=a®

for each a4, so that
ef=e_q, (Ca, e-a)=1, acd;.

ei=—e_q, (¢a, e-a)=1, acd,.

Proor. It follows from (1.2) that if e,=g% then efeg 2, and hence it

suffices to prove that we can choose the family {e.}.cs, SO that
(ea, e5)=1, acdy; (e, ef)=—1, acd,.
If xq=g7, then for ceC,
(cxa, (cxa)®)=|c|* (x4, x&),

and so it suffices to show that if x.=g% x.+#0, then

(1~4> (xa: x§>>0) C(EA{,
(xa; -xill‘)<0, aEAp.
However,
xa—{—xiéeq, Z.(xa—‘xzi)eq’
and so
xt+x¥) et it acd,,
H(xa+x5)eED if asd,.
Thus, if a4,

0>@(xatx8), i(xatxE)
=—2xq, x5).
If a=4,, we have similarly,
0<—2(x0, x¥).

Thus, we obtain (1.4), and hence, as we have noted, the lemma.
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We introduce an ordering on the roots 4, such that aed is positive if
a(t.)>0, where .=t is some fixed nonzero element of i (=center of f). We let
4, denote the corresponding set of =+ roots, and we let

:pt:-u-aedn‘ tga 3
where

4, =404,

A!, t:A!mAt ’
by definition. Then

[p+: :P+]:DQ—: :p—]:() .

We let U(ge) denote the universal enveloping algebra of ge. We fix a set
of root vectors {¢e}aes as in Lemma 1.3, and we fix an orthonormal basis
hy, -+, by (I=dimgl) of tc. Then we can write the Casimir element CeUlge),
corresponding to the Cartan-Killing form, as

(1.5) CZE%:II/L%—}_Z&EAQ—&Q& .
We let
B:fc@_]_l_aed+ga ’

so b is a Borel subalgebra of g¢, and has the property that
b=(be)DONPpe)
:f]!+p+ >

where 6:=bNfc, by definition. We say more generally that if 8 is any sub-
space of gr, then 8 is O-stable if #3=8, where 6 is the automorphism of q¢
which is +1 on fc and —1 on pe. Then, 8 is f-stable if and only if

§=ENI)DENYC) .

§2. Highest weight modules.

Let V denote a (possibly infinite-dimensional) vector space over €, and let

T gc—>End Vv

be a Lie algebra representation. We will always assume that: (See also [5].)

(21) (i) = is irreducible.

(ii) V is a direct sum of finite-dimensional fc-modules.

(i) = is a highest weight representation; i.e., there exists voeV, v,#0,
and there exists pete such that
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() ve=ptve, t&ie,
u(t,) is real, and
w(eq) ve=0 if aedy,. or acd, .

We note that *: ge—ge¢ extends to a conjugate-linear involution (still denoted
by *) of U(ge), such that

(uyuay*=ufu¥, u,, uSU(gc).

We also extend z to a representation of U(ge) (still denoted by ). It is then
known (see [13]) that V admits a non-trivial, Hermitian inner product {,}, (not
necessarily positive-definite), such that

2.2) (r(u)vy, v} = vy, TUFe}, v, 1€V, nEU@C).

We may reformulate (2.2) as asserting that r(u)=n(u*), ueUlge), where
z(u)* denotes the Hermitian-adjoint of z(u), with respect to {,} (in particular,
(2.2) asserts that z(u)* is well-defined).

If vete, then we set

V,={peV|z@)-v=vt), (i},

If V,#0, then we call v a weight of V or of z, and V, the corresponding
weight space. The following facts are easily deduced from (2.1).

23) (i) V=I,W,; (direct sum) where i ranges over some index set, and each

W, is an irreducible fc-module.
(ii) The space V is a direct sum

V=1,V,

of weight spaces, and each weight space V, is finite dimensional, and is a direct
sum of its intersections with the subspaces Wi.

(iii) Each weight v is of the form y=p—f:+,, Where B: is a sum of
positive compact roots, and f, is a sum of positive, noncompact roots.

We may take 4y _\Ud, . as a new set of positive roots, and in this case,
take ay, -+, o to be the corresponding simple roots.

DEFINITION 2.3. For a weight v of z, we let ht(y) (the “height 7 of v) be

defined by
ht)y=n, n=2Xiani,
where

2.4) v=p+Dln;, each n;a nonnegative integer
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(note that every weight v of = is of the form (2.4), thanks to (2.3), (iii), and
our choice of simple roots).

LEMMA 25. (i) If v, v’ are two distinct weights of =, then V,and V,, are
perpendicular with respect to {,}.
(i) If W, and W, are two inequivalent, irreducible fc-submodules of V, then

W, and W, are perpendicular with respect to {,}.

Proor. If t=it is chosen so that v(f)#v'(¢), then f*=t, and for veV,,
v'eV,,, we have

v v, v’} = {z(th, v’}
={v, (W} =v'O{, v},

and since v(¥)#v’(t), we conclude

{v, v} =0.
This proves (i).
If W, has highest weight v;=t¢, and if v;eW, is a highest weight vector
(=1, 2), then (i) implies
{v1, v} =0.

If w,eW, is any vector, however, then if uy=1l,c4, _¢* (50 uy is a maximal

nilpotent subalgebra of f¢), then there exists §=U(uy) so that

wy=mu(&)v;.
Moreover (uy)*=uj, and thus

{wy, va} = {v1, w(E*F)va}
=c {vy, vs}, cel,

since v, is a highest weight vector of W,. However f{vi, v} =0, as we noted
earlier. Hence, v, is orthogonal to W,. But then, since WiNW, is a fc-sub-
module of the irreducible fc-module W,, we have Wi 2W,, and this proves (ii). ®

If vets, and
20y, a) - 20y, a)
(@, ) =77 (a, @)

’

for all a4, , (in this case we say that v is f-dominant), then by the ¥-type of
V corresponding to v, we mean the sum of all irreducible f-submodules, with
highest weight v. When we speak of such a f-type, it will be understood that
it is non-zero.
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$3. A necessary and sufficient condition for unitarity.

We let p (resp., p:; resp., p,) denote one-half the sum of the roots in 4+
(resp., in Jy.; resp, in 4,.). We let (,) denote the symmetric bilinear form
on 1}, corresponding to the Cartan-Killing form, and note that (,) is then
positive-definite on the R-span of the roots. We let || | denote the correspond-
ing norm. We then have:

THEOREM 3.1. If (x, V) is a highest weight module as in (2.1), with highest
weight p and highest weight vector v, then a nontrivial Hermitian inner product
{,}, such that {v,, vo} >0, and such that (2.2) holds for {,}, is positive-definite if
and only if for every weight v+ p which is the highest weight of a ¥-type, we have

(3.2) v+ p1— pull? > Lt pr— 11

PrOOF. Assume that (3.2) holds for every weight v+ g which is the highest
weight of a f-type. Then, in order to prove {,} is positive definite, it suffices
to prove {,} restricted to each f-type of V is positive definite by (ii) of
Lemma 2.5. But then we argue by induction on the height of the highest
weight v of the ¥-type. Indeed, for v of height zero, we have v=g, and the
corresponding ¥-type has multiplicity one. Since {vo, vo} >0, by assumption, we
deduce by the invariance of {,} (which follows from 2.2) that {,} is positive-
definite on the I,-module generated by v, (Incidentally, this can be proved
algebrajcally, using the same type of argument we are developing now for
Hermitian pairs, combined with Cartan-Weyl theory: see [4], where precisely
this argument is used in the case of loop algebras.)

Now assume {,} is positive-definite on all t-types with highest weight
having height <m. Assume v is the highest weight of a f-type, and ht(v)=m.
To complete the induction, it will suffice to prove {w, w} >0, whenever w is a
linear combination of highest weight vectors of the f-type corresponding to .
(Exactly as for the case yv=yg, above, it suffices to restrict attention to such w.)

So, let w be such an element of V.. Then

(3.3) rles) w=0, acd,..

From the expression (1.5) for C, we have

(3.4) C:C1+C2 s
where
(35) Cl':2 Eaez!!’_,,e—rxea“_z Eaedpﬁeae—a ’

and where
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(3.6) Co=Shsh¥+2h ,—2h, .

In (3.6), h,, (resp, h pp) is the element of i, corresponding to g, (resp., to pg,),
when we identify {¢ with iz by means of the Killing form.

We then consider
{z(Cw, w},

and evaluate this expression in two different ways, using (3.4)-(3.6), and (3.3).

First, since = is a highest weight module, z(C) is a scalar multiple of the
identity operator, and to find this scalar, it suffices to compute =(C)-v, for the
highest weight vector v,. But

W(CD’ V=0 »
and thus
7(C) - ve=n(Co)ve=(|| #+ p1— | 2— |l pr— P, >0 .
Thus
(CN)) {ZQw, w} =g+ pr—p*—l pr— pu I {w, w}.

On the other hand, we have
{m(Chw, w} =2 Faes, , {rle-arlecw, wh+2 Zaes,  {rlea)nle-w, w}
=2 Daed, , imle-aw, nle-Hw},

by Lemma 1.3, by (2.2), and by the assumption that w is a linear combination
of highest weight vectors of a f-type. By induction, this last expression is
negative, i.e. we have

(3.8) {z(Chw, w} <0.

(At least one of the above summands {z(e-.)w, n(e- w}, acd, ., is strictly
positive, since w is not a highest weight vector.) On the other hand,

{m(Cow, w}=(lv+p:—psl*—ll p:— s {w, w},
and using (3.8), we thus obtain
3.9 {7(Chw, w} <(v+pr—psl*— 1 pr— o) {w, w}.
But it follows from this, from (3.7), and from (3.2), that
{w, w}>0.

Finally, we note that, if conversely, we assume {,} is positive-definite, then
we obtain (3.8), and hence (3.9). Since (3.7) holds in any case, we then obtain
(3.2), for every weight v=x which is the highest weight of a f-type, from the
fact that {w, w}>0. &
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§4. A sufficient condition for unitarity.

Let t2b be any proper parabolic subalgebra of g¢, containing b Let u:
denote the unipotent radical of t, and let 4: denote the set of all roots a4,
such that g*Cu.. We let

4y y=4N4d,,

and note that 4, ,=4:N\4, &4, ;.

DEFINITION 4.1. We say that the highest weight module V, with highest
weight g, satisfies the r-cone condition, if for every f-type of V, the highest
weight v of that {-type is of the form

v=ptf,

where f is a sum of roots in J .
We let p-,: denote one-half the sum of the roots in dey=dv—4. .

ToeoreM 4.2 (Parthasarathy-Zuckerman). If V is a highest weight module
in the sense of 2.1, with highest weight p, and if for all acsd.,,, one has

4.3) (p+ pr—pp, )20,
and if for all acd,—4, one has
(4.4) (#+2Pr,h (X)ZO ’

then V satisfies the t-cone condition.

THEOREM 4.5 (See also [101.) If V is a highest weight module with highest
weight p, p satisfying (4.3) and (4.4), then V is unitarizable (as a g-module).

ProoF. Let {,} be a non-trivial, Hermitian inner product on ¥V which
satisfies (2.2), and such that {v, v} >0 for some v€V. By Theorem 4.2, we then
know that-if v is the highest weight of a f-type, then

y=p+p,
where B is a sum of roots in 4., But then,
v+ pi— pslf*
=| p+ p:— pu 42+ 00— oy BB, B)
Zllp+pe—popl*+(8, B), by (43)
>\ e+ pr—poll®, if p+#y, so that 3+0.



836 H. GarLanp and G.]J. ZUCKERMAN

Hence, (3.2) holds, and thus by Theorem 3.1, {,} is positive-definite.

§5. Proof of Theorem 4.2.

We first observe

LEMMA 5.1. Suppose there exists a Ulgc)-module A such that

(1) A is a dirvect sum of finite dimensional irreducible fc-modules.

(ii) The I-type with highest weight p occurs with multiplicity one in A.

(ili) For every ¥-type of A, the highest weight v is of the form v=p+p,
where B is a sum of roots in Ay .

Then the highest weight module V with highest weight p is a subquotient of
A, and hence V satisfies the t-cone condition.

PROOF. Let A(g) be the ¥-type of A corresponding to the irreducible
f-module W, with highest weight s (The definition of I-type is given after
(3.2)). The g¢-submodule U(ge)A(y) in A contains W, with multiplicity one.
Hence, every proper ¢c-submodule of U(ge)A(p) does not contain W,. Let B
be the sum of all the proper gc-submodules of U(ge)A(p). Then B itself is
proper and maximal, and the quotient C=(U(gc)A(w))/B is nontrivial and irre-
ducible over U(ge).

By (iii), A, and hence C has no f-type with highest weight p—a, a<d].
It follows that for the highest weight vector v, of C mle)ve=0, for acd, _.
Thus, C is a highest weight module in the sense of (2.1) and C has highest
weight . By a standard argument, we must have C=V. Finally, property
(iii) implies the t-cone condition for C=V.

THEOREM 5.2. Suppose p satisfies conditions (4.3) and (4.4) of Theorem 4.2.
Then there exists a module A satisfying conditions (1), (ii), and (ili) of Lemma 5.1.

REMARKS. There are two proofs of Theorem 5.2: the first, found by R.
Parthasarathy, is published in [9] and uses a construction generalizing the
work of Enright and Varadarajan [3]; the second, found by Zuckerman, is
unpublished [14], (but was presented in spring of 1978 to a seminar at the
Institute for Advanced Study in Princeton, N.].). This second proof uses an
algebraic version of a construction in the (unpublished) Berkeley thesis of
Wilfried Schmid (see [11]). Cone conditions were first discussed by R. Blattner
and independently by Schmid, in his thesis (see also [127).

Here is a sketch of Zuckerman’s construction:
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Write r=I+u, where { is reductive and &-stable, and u=u. is the nilradical
(u is also #-stable). Then INfc is a reductive subalgebra of f,. Let M(gc, Ic)
be the category of ge-modules which are direct sums of irreducible finite dimen-
sional fc-modules. Similarly, define the category HM(g¢, IM¥e). For any ge-module
X, let X“© be the sum in X of all irreducible, finite-dimensional fs-submodules.
Then X9 is a ge-submodule of X, and the rule Xm—X“¢ defines a left
exact functor S from M(gc, TcNI) to H(ge, o).

LEMMA 5.3. Any object in M(gc, $ecM) has a resolution by injective objects
m ..W(gc, fcmt)

We can thus introduce the right derived functors RS, i=0 of the functor
S: for any object X in M(ac, fcND), let I* be an injective resolution. Then SI*
is a complex of objects in H(gc, f¢). Define

(5.4) RiISX=H¥SI*).

For our purposes, the key general fact about the “ derived functor ” modules
RiSX is the following:

PROPOSITION 5.5. For each irreducible t-type W,, there is a natural isomor-
phism

(5.6 Hom, (W,, R*SSX)=H'(fc, feN], W.QX),

where W! is the module dual to W,, and H*(¢, IcN\l, —) s the relative Lie
algebra cohomology functor.

Now let p satisfy condition (4.4) of Theorem 4.2.

LEMMA 5.7. There exists a unique one-dimensional t-module E such that ic
acts through the linear functional

(5.8) p+2pe .
We now form the gc-module
(5.9) X=Homyw(Ulse), E)

where the left action of go on X comes from the action of g¢ on U(ge) via
right multiplication.

Next, we pass to the ge-module

(5.10) X___X(rcﬂn .
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Finally, let d= —;—(dim fc—dim(tcND)).

Theorem 5.2 follows now from the statement:

(6.11) If p satisfies both conditions (4.3) and (44) of Theorem 4.2, then the
module A=R%SX, for X as in (5.10), satisfies conditions (i), (ii), and (iii) of
Lemma 5.1.

In fact, condition (i) of Lemma 5.1 follows from the definition of the derived
functor module R?SX. Conditions (ii) and (iii) of Lemma 5.1 follow from a
technical argument using the isomorphism (5.6), as applied to the module X in
(6.10). Here, only the structure of X as a fc-module plays a role.

REMARKS. 1) A deeper argument using the g¢-module structure of X and
a duality theorem for the derived functors R*S (see [2]) leads to the sharper
statement :

(5.12) If p satisfies both conditions (4.3) and (4.4) of Theorem 4.2, then for X
as in (5.10),

(6.13) RiSX=0  for i#d,

and R4SX is irreducible as a ge-module.

2) Parthasarathy [10] has proven the following result, which complements
Theorem 4.5:

THEOREM 5.14. If V is a unitary highest weight module with highest weight
U, and for every root «a of ¢ in gc,

(5.15) 2(#"‘.0!—9», le)

(a]a)
is a non-zero integer, them there exists a parabolic subalgebra 12 such that p
satisfies conditions (4.3) and (4.4) relative to t.

3) Combining 1) and 2) we see that if a highest weight module V is
unitary and p satisfies (5.15), then for some r25, V is a derived functor module
Re¢SX for X as in (5.10).
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