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In memory of Professor Shintani, who was our friend and teacher

Introduction.

Let p be a prime number, and let @, be the p-adic number field. Let &
be an algebraically closed field containing @, such that the standard p-adic
valuation of @, can be extended to a valuation | | of £ and % is complete with
respect to this valuation | |.

Let PY(k)=Fk\U{co} be the one dimensional projective space over k. Then
the linear fractional group PSL(2, k) acts on P*k) by

a
PSL(2, k)a(

b
d) i P k)=2z—> (az-to)/(bz+d)e P (k).
c

Hence subgroups of PSL(2, k) can be regarded as transformation groups on
Pi(k).

Let L be a finite extension of @, contained in %, and let o be the integer
ring of L. Let G=SL(2, L) and K=SL(2, 0). Then G is a locally compact
group and K is a maximal compact open subgroup of G. Let @={XeM.(L);
tr(X)=0}. Then & can be regarded as the Lie algebra of G and K (cf. §1).
Let D be the complement in P(k) of P! L)=L\U{co}, and let V be the space
of k-valued analytic functions on D (cf. [6]). Then V contains the space U of
all rational functions f(z)=k(z) such that all poles of f(z) belong to P'(L).
Further V can be regarded as the completion of U with respect to a countable
number of semi-norms (cf, § 2).

For each negative integer s, put

7(g) f(2)=(bz+d)*f((az+c)/(bz+d))

a

for any g:( )EG and f(z)eV. Then r; is a continuous representation of

¢
G on V, and U is a G-invariant subspace of V. We may say that these rep-
resentations are the p-adic analogue of the holomorphic discrete series of
SL(2, R)., Also, these representations seem to be closely related with the
Schottky uniformization of degenerating curves (cf. [8], [3], 4], [1D).

Let U be the subspace of U consisting of all f(z)eU such that f has a
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partial fractional expansion of the form

o 1

f@)= Zod%‘f”zm—l- 21 > d¥(z—b)p™  (a finite sum)
m= j=1 m=s

with b, L and d{® k. Then we see that U, is a closed G-invariant subspace
of U. Let V, be the closure of U; in V.

The object of this paper is to study the continuous representation z;: G—
Aut,V. We conjecture that (1) V, and V/V, are topologically irreducible
G-modules, and that (2) no two of them for various s are topologically equiva-
lent.

On the other hand, 7, induces two more important representations: One is
the continuous representation of K on V, and the other is the algebraic repre-
sentation of the pair (&, K) on U. For these representations, we can prove the
following results (cf. §3):

(i) V and V, are topologically indecomposable K-modules;
(ii) U, and U/U, are algebraically irreducible (&, K)-modules.

In particular, U; and U/U; are topologically irreducible K-modules. We also
study the equivalence between the U; and the U/U,.

As for generalization of the representations z;, we can construct certain
infinite dimensional representations T parametrized by locally analytic characters
x: L*—Fk* in spaces of locally analytic functions on L. Our representation z;
can be obtained as the dual representation of one of such representations Ty
The details about the representations T, will be published in a following paper.

§1. The p-adic Lie algebra &.

Let @, be the p-adic number field, and let & be an algebraically closed
field containing Q,. We assume that the standard p-adic valuation of @, can
be extended to a valuation | | of &, and that %2 is complete with respect to | |.
Let L be a finite extension of @, contained in %, let o be the integer ring of
L, and let p be the maximal ideal of 0. Let G=SL(2, L) and let K=SL(2, o).
Then K is an open compact subgroup of G.

Let

G={Xe M,(L); tr(X)=0}.

Then & becomes a Lie algebra with
GxG3(X,YV)—[X, V]=XY -V Xe6.

We consider & as the Lie algebra of G. Since K is"an  open subgroup of G,
& can be regarded also as the Lie algebra of K.
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Let X be an element of &. Since % is an algebraically closed field contain-
ing L, there is P=SL(2, k) such that P~*XP has the form

A 0 01
(i) ( ) (Agk) or (i) ( )
0 —2 00

Let t be an element of L, and let

exp(tX)= > X"

a=0 n!

t2 0 0 t
P“(tX)Pz( or ,
0 —2 00

this series converges for [tA|<|pY?~?]| in case (i), and converges for any ¢
in case (ii). Furthermore, if this condition is satisfied, exp(tX) is an element
of M,(LYNSLQ2, k)=SL(2, L)=G. Since

et* 0 1 ¢
P? eXp(tX)P:( ) or ( R
0 et 01

My(L).

Since

where ¢° is defined by e*= iz”/n 1, exp(tX) satisfies
n=0

|tr(exp(tX))—2| = |t e~ —2|=|(e" —1)(e" ¥ —1)| < | p¥/ P~ |
in case (i)

and |[tr(exp(X))—2|=0 in case (ii). We observe that any element geG
satisfying |tr(g)—2|<|p¥ ¥ 2| can be written as g=exp(Y) with Y=

i (g—1)"(—1)"*/ne@. In particular, the image of the exponential map con-
n=1

tains any sufficiently small principal congruence subgroup K,=ig=SL(2, o);
10
g= modulo p”}» of K.
( 01 )

01 0 0 10
Example. © is generated by X,.= , X = and Y= .
00 10 0—1

1 ¢
For these elements of &, exp(tX) is given by: exp(z‘X+):<0 ) and exp(tX.)

t

1 0 e
= ) for any t€ L, and exp(tY )= 0

>for [t] <|prier-b],
¢

e—b
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§2. The space V of analytic functions on P*(k)\P¥L).

Let £ and L be as in §1, and let PY(k) and P(L) be the one dimensional
projective space over k& and over L, respectively. Let D=P'2)\P*L). Since
PYL) is a compact subset of P%%), D is an open subset of P(%). Let V=
O(PY()\P*(L)) be the space of k-valued analytic functions on D (see [6] for
the definition and the proof of the following assertions).

Let {r.}5-: be a strictly decreasing sequence of positive numbers such that
each 7, belongs to |2*| and limr,=0. Since P(L) is a compact subset of
PYk), PY(L) is covered by {zeP(k); |z]|>r7"} and a finite number of open
balls of the form {z€k; |z—a|<r,} (e L). We denote by E, the complement
in P*(k) of this covering. Then

El(_—_EzC CEnC CD and D:UEn .
By our definition, each E, has the form
{zeP(k); (z]=r7h, lz—ailzr, (=1, -, )}

where [,eN, a;L, |a;|Sv3* and |a;—a;| >v. G#J). Let ©(E,) be the space
of k-valued analytic functions on E,. Then &(FE,) is the set consisting of
f: En—k such that f can be expanded on E, in the form

Cr) f@)= niocmzm+ § m’;‘:cmz—aam

with cm, ¢?<k. Here we assume that this series converges on E,. Hence
lem|73™—0 (m—c0) and |cP |r7—0 (m——oco). It is known that the coefficients
¢m and c$P are uniquely determined by f. For such an element f of &(E,), let

I £la=Max( Max |calrz™, Max ¢ |7).
o0 m<loo 1sisly
—ms—1

Then || ||, is a norm of the k-vector space O(E,), and O(E,) is complete with
respect to || |,. It is known that

I Fla=Max| £(2)|

holds. Since O(D) is the set consisting of f: D—% such that the restriction of
f to each E, belongs to ©(E,), the semi-norms | ||, (n=1, 2, ---) give on O(D)
a structure of a Fréchet k-vector space. In particular, @(D) is complete with
respect to this topology.

Let IJ be the set consisting of all rational functions f(z) of z such that the
coefficients of f(z) belong to £ and f(z) has no pole in D. Since % is algebra-
ically closed, each element f of U has a partial fractional expansion:
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o 1 —o0
fl2)= Zodmz"‘—i— > 2 dP(z—b)™  (a finite sum),

m= j=1 m=-1
where dn,, d’ % and b, L. It is easy to see that f can be expanded in the
form (C,). Hence U is a k-subspace of V=0(D). Furthermore, any finite sum
of the form (C,) belongs to U. Hence U is dense in each ©(E,). Since
OE)COE, )T - CO(EY, U is dense in V=Ilim O(E,).

a b
Let G=SL(2, L). For any g= p =G and zePY(k), we write glz)=
c
(az+c)/(bz+d): By (6) of Proposition 3.4 of [6], f(g(z)) is an analytic function

on g(D)=g(P{k)\g(PXL))=D. 1t is easy to see that this action
‘ SLZ, LYXV>2(g, f(2)) —> flgzheV
is continuous.

§ 3. Discrete series.

3-1. The representation r,. Let &, L, V,U, G, K, -~ be as in §2. We
fix a negative integer s. For any element f of V=0(P'()\P¥(L)) and for any

a b
g= eG=SL(Z, L), put
¢ d

az+c> )

7 (@) f(@)=(bz+d)’ f(_bm ]

Since (bz+d)* is analytic on D=P*EN\PY L), ={g)f(z) is an analytic function
on D. Hence ng) is a k-linear endomorphism of V. It is easy to see

PROPOSITION 1. =, is a continuous representation of G on V, and U is a
dense G-invariant subspace of V.

a 0
It is well-known that G is generated by A(a)z( 1) (aes L™, Clo)=
0 a

c
the following formula:

10 -1
( 1) (ce L) and Iz( O). For such an element g, =(g)f(z) is given by
1

m(Ala))f(z)=a"*f(a%2);
T (CleNf(@)=flz+c);
r(Df)y=(—2)'f(—1/z).

Let §, exp(tX), X, X_, Y, - be as in §1. For any X&® and f(z)eV, we
observe that

(=) @)=lim + {r(expt XN D~ (2)
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is well-defined. Explicitly,

(@mX@=lim ez +1f( )@}

=—2"f"(2)+s2f(2);
(dr XD @)=lim - {fle+ - F2) =3

L1
(d ﬂs)(Y)f(Z)=1Hzn't— {e~tf(e**a)—f(2)} =2zf (2)—sf(2).
We note that, if W is a closed K-invariant k-subspace of V, then (dz ) (&)W CW.

3-2. Indecomposability. For each negative integer s, let U, be the subspace
of U consisting of all rational functions f whose partial fractional expansions
have the form

f@y= 3 dnzm+ Z‘, 3 dPe—b)"

(dw, dP €k, bjeL). We observe that U, is closed in U, and that the closure
of Us; in V is the set V, consisting of all functions feO(D) such that for any
positive integer =, the restriction of f to E, has an expansion of the form

o0

oo ln —
f@A= 3 enz™+ 3 X eRz—ad™  (em SR
Let

f@)= 3 dnz™+ 3 S dPe—b)™  (dn, dP ek, IeN, be L)

3

Jj=1

be the partial fractional expansion of feU, Then the z(A(a))f(z) (acLl™)

and the 7(C(c))f(z) (ce L) have partial fractional expansions of the same type.
Further, since

ws(zm=(—z)y""elU, (m=0 or m=s)
and since ’
7 (D(e—b)m=(—2) bz Dm=m 35 (T (=D epommsiey,
(belL”, mXs),
(D) f(z) is an element of U, Hence U, is a closed G-invariant subspace of U.
Since V, is the closure of U, in V, V, is a closed G-invariant subspace of V.

Let o be the integer ring of L, and let K=SL(2, v). Then K acts transi-
tively on P¥L). Let @ be the Lie algebra of K (cf. §1). Then we have
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THEOREM 1. Let s be a negative integer, and let z,: G—Aut,V be as before.
Then the smallest (&, K)-invariant k-subspace of U containing 1/z is U.

PROOF. Let W be the smallest (&, K)-invariant k-subspace of U containing
1/z. Since W=1/z, W contains w(C(—c))z *=(z—c)"? for any c=o. Since W is
a @®-invariant k-subspace, W contains

—(dr (X )z t=z"2,
Repeating the same argument, we observe that W contains
z7* and (z—o) " (c=0)

for any positive integer h. Since z,()z¢ "=(—2)*(—z")*"*=(—2)*, W contains
z"® for any non-negative integer h. Since W is a k-subspace of U, W contains
all rational functions f of the form

o 1 —o »
f(z):mE:OdmZm_l“ ;; mgld%)(z—bj)m
(dn, dP €k, bjeo, lIEeN). Let ¢ be an element of L\o. Then |—c|>1. Hence
—c¢*eo. Since
z{)z—c) t=(—2) (—z 1= ) t=(—2)* e zFc7H)?

is contained in W, (z—c)™* belongs to W. Hence, repeating the above argument,
we see that (z—c¢) " belongs to W for any positive integer 4. Since W is a
k-subspace of U, W contains all rational functions f of the form

=) 1 —c0 3
fl2)= Eodmzm—}- 121 m}:_ildi,{’(z—b,-)’”
(dm, dP €k, bj=L, IeN). This shows UCW. Since U is a (&, K)-invariant
k-subspace containing 1/z, WCU. Hence W=U and the theorem is proved.
Since U is dense in V, and since any closed K-invariant k-subspace is

invariant under ®, the following corollary follows from Theorem 1.

COROLLARY. Let m: G—Aut,V be as in Theorem 1. Then the smallest
closed K-invariant k-subspace of V containing 1/z is V.

Since (—1)'z(I)l=2z%, repeating similar arguments as in the proof of Theo-
rem 1, we can prove the following theorem.

THEOREM 2. Lef zy: G—Aut,V be as before. Then (1) the smallest (@, K)-
invariant k-subspace of U, containing 1 is U,; and (i) the smallest closed
K-invariant k-subspace of V, containing 1 is V..
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Since PXL) is compact, D=P{EN\P L) is a completely regular quasi-con-
nected set (cf. [6], Proposition 2.3). Hence the theorem of identity holds for
functions in (D) (cf. [6], Theorem 3.7). Namely, let f and g be analytic
functions on D, and let 4 be a subset of D having at least one accumulation
point in D. We assume that f(z)=g(z) for any z=4. Then f(z)=g(z) for any
ze D.

By making use of this fact, we can prove

LEMMA 1. Let =, be as before, and let f be an element of V. Then:

(1) f(z) is a constant iff (dw ) X_)f(z)=0.
2) f@=a/z (ack) if [dx)Y)f(2)=(—s—2)f(2).

PrROOF. Since (dx)(X.)f(z)=f"(z) and (dz)(Y)f(2)=2zf'(z)—s[f(2), the neces-
sity is obvious in each case. Hence we shall prove that it is sufficient.

Let f(z) be an element of V=&(D) satisfying f’(z)=0. Since f(z) can be
expanded into a convergent power series at each point z,&D, f is locally a
constant at each point z,&D. Then, by the theorem of identity, f is globally
a constant on D. Hence (1) is proved.

Let f(z) be an element of V satisfying 2zf'(z)—sf(2)=(—s—2)f(z). Then
zf'(z2)=—f(z). Let F(z)=zf(z). Then F(z)e0(D) and

F'(2)=f2)+zf(2)=0.

Hence F(z) is a constant. Therefore f(z)=F(z)/z has the form f(z)=a/z (ack).
Therefore the lemma is proved.

Now we can prove the indecomposability of z.

THEOREM 3. Let m,;: G—Aut,V be as before. Then U is an indecomposable
(®, K)-module, and V is a topologically indecomposable K-module.

ProoF. Let U=H,®H, be the direct sum of two (&, K)-invariant k-sub-
spaces. Then z7'eU is a sum of h,eH; (=1, 2): z7'=h;+h.. By Lemma 1,
(dr)(Y)z'=(—s—2)z"! holds. Hence

(d 7)Yy Hdr )Y ) he=(d 7)Y )z =(—s—2)z7'=(—s=2h1+-(—5—=2)h..

Since the H; (i=1, 2) are G-invariant, this equality shows (d=x)(Y)h;=(—s—2)h;
(¢=1, 2). By Lemma 1, this shows h(2)=a;/z (a;€k). Since ai/zta./z=
hi+h,=1/z, either a, or a, is not zero. Hence H; or H, contains 1/z. It
follows from Theorem 1 that H,=U or H,=U. Therefore U is an indecom-
posable (&, K)-module.

If V is a direct sum of two closed K-invariant Ek-subspaces; then, repeat-
ing the same argument as in the above case, we can show that one of the
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subspaces contains 1/z. It follows from Corollary to Theorem 1 that this
subspace coincides with V. Hence V is topologically indecomposable.

Since & is the Lie algebra of K, the following corollary follows from
Theorem 3.

COROLLARY. Let m, be as before. Then U is a topologically indecomposable
K-module.

REMARK. By repeating similar arguments, we can show that Vs is a
topologically indecomposable K-module.

3-3. Irreducibility. We need the following lemma to prove the irreducibility
of Us; and U/U..

LEMMA 2. Let my: G—Aut,V be as before, and let
+oo 1 —o0 B
(&)= mgmdmzm+ ;1 mg_ldi,{)(z—bﬂ’n

(dm, d9 <k, by;eL”) be the partial fractional expansion of feU. For any two
different integers g and 7, let

Torf@r= Lsfg man@+(z —r) s}
Then

m—r

— K m : s (mr 9}
Tof@= B 1 dwt D 3 (A

1
b=t
Proor. Since

)@ +H(5 =) Gr=2f (@)= (@),

we have
(=T 2™ =(m—r)z™
and
(g—rT ¢ Llz—b)"=(m—r}z—b"+mb(z—b)™*.

Since T, is k-linear, we obtain the lemma.

Now we can prove that the (&, K)-module U, is algebraically irreducible.
Namely, we have

THEOREM 4 Let ms: G—Aut,V, U, K, @ and dz, be as before. We con-
sider Us as a (8, K)-bimodule. Then Us has no (&, K)-invariant k-subspace W
satisfying {0} EW&U.,.

PrOOF. Let W be a (8, K)-invariant k-subspace of U, different from {0}.
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Then W contains a non-zero element f. Let
o0 ) )
f(Z)Z m;@dmzm%- _72:)1 Esd%)(z—bj)m

U, dP EE, doy=d 3= - =ds1=0, bye L*, b;#b; ({#j)) be the partial frac-
tional expansion of . Then one of the d, and the d¥ is not zero. Since

ns(I)(z—b)s“"=(—-1)S(—b)s—h é%(i’ )b—h+i(z+b—1)s—h+i(_1)h—i

(h=0, b+0), we may assume that either dn+0, or df+#0 with b;€0. Since
7 CH)z—b)m=2z" (m=<s), we may assume that dn+#0. Since r([)z"=
(—1y"™z'"™ we may assume that d,#0 with m=0. Since W is G-invariant
and since (dz )X )f(z)=f'(z), we may assume that d,+#0. Hence W contains
an element f of the form

[@=1+ 3 dnz"+ B duz™+ sz:l 3 aPe—b)".

Since this is a finite sum, we use a finite number of the operators To,
(reZ, r=1 or r=s) and construct an element f of W of the form

f=1+3 3 dPe—bym  (@Pek, beL).
Jj=1 m=s$
Then
e 1-1 -—eo .
RCOND=1+ 5 dpzrt 3 3 dPe—brbom.

Hence we have constructed an element f of W of the same form and with a
strictly less number /. Repeating this process, it follows that W contains 1.
Since W is a (®, K)-invariant k-subspace of Us, it follows from Theorem 2 that
W=U, Therefore we have proved Theorem 4.

As for the quotient (@, K)-module U/U,, we can prove the following result.

THEOREM 5. Let 7, G—Aut,V, U, Us, K, G and dr, be as before. Let f
be an element of U which is not contained in Us. Then the smallest (&, K)-module
containing f is U. In particular, U/U; is an algebraically irreducible (8, K)-
module.

PrOOF. Let W be the smallest (§, K)-invariant k-subspace of U containing
f, and let

+o0 Loew
f(z): m;_wdmzm')f" _El mg_ld%)(z—bj)m
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dm, dP €k, byeL*, b;#b; (i#])) be the partial fractional expansion of f. Then
one of the d,, and the d¥ (O>m>s) is not zero. If d$ +0 with b;¢0 and
0>m,>s, Wwe may assume that m, is the smallest one with this property so
that d$°=0 for any m with m,>m>s. Since

z () z—b)"=(—2)(—2z " =b)"=(—2)"""b"™(z+b")"

(b= L*, 0>m>>s) has poles only at z=0 and z=—b", z,(I}z—b)™ has a partial
fractional expansion of the form

s=m . m .
2} efz'+ ‘Zlei(z—l—b‘l)z
i= f=m—

(e}, ek, en#0). Since m(Dz™=(—z)"™ and =z (HU.CU; we see that the
coefficient of (z-+b79)™ of the partial fractional expansion of z{([)f€W is not
zero. Hence we may assume that one of the dn (0>m>s) and the d¥
O>m>s, b;eo, b;#0) is not zero. If d$ is not zero, then the coefficient of z™
of the partial fractional expansion of x(C(b;))f is not zero. Hence we may
assume

fR=amt 3 dazmt 3 3 dPE—b)t  O0>me>s).
MEMY Jj=1 m=-

Now we apply the procedure in the proof of Theorem 4 and erase the
second and the third sum in the right hand side of the above equation (use
Ty q (g#mo) instead of To ). It follows that W contains z™. Since

—I-(d N X Ygmo=zm0"teW ,
Mo

we repeat this procedure and see that W contains z°*. Since
z(Dzt i =(—2)(—z )y =—zteW,

W contains 1/z. Since the smallest (&, K)-invariant k-subspace of U containing
1/z is U, W contains U. Since W is a k-subspace of U, U contains V. Hence
W=U and hence the theorem is proved.

REMARK. It follows from Theorems 4 and 5 that U; and U/U; have no
non-trivial closed K-invariant k-subspaces. It is likely that V and V/V, have
no non-trivial closed K-invariant k-subspaces.

We note here that the transitivity of K on P(k) is essential for the irre-
ducibility. For example, if we replace K by the principal congruence subgroup
K, of level p™ (n=1), then the irreducibility fails.

3-4. Equivalence of representations. As for equivalence of the represen-
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tations, we have the following result:

THEOREM 6. Let s, s’ and s” be negative integers. Then

1) U is not G-equivalent to any S-submodule of Vg (s'#5) nor V/Vs.
(2 If s is mot —1, then U/U; is not G-equivalent to any G-submodule of
Ve nor V/Vs (s”558).

ProOOF, Let s and s’ be negative integers, and let =, and =, be as before.
Then leU,; is a non-zero solution of

(dr)(X)f=0
{ (dr)(Y)f=—sf.
If (Us, w5) is equivalent as a ®-module to a G-submodule W of (V, z..), then
(dme XX )f=0
{ (dre )Y )f=—sf

has a non-zero solution f in W. By Lemma 1, (dr,)X.)f=0 implies that f is
a constant. Hence

(drs )Y )f=22f"(2)—s'fe)=—5s"f(2) .

Since f+0, s=s’. Further, since 1€W, it follows from Theorem 2 that U,CW.
Therefore s=s’ and U,CW.

Let #o: G—Aut,(V/Vs) be the quotient representation of ms. If (Us, 7s)
is equivalent as a G-module to a G-submodule W of (V/V,., #,), then

{ (dreaXX)f=0  modulo V,.
(dze)(Y)f=-sf modulo V,

has a non-zero solution in W. For each n, let E,, a;, --- be as in §2. Then
co In —o0
@)= 2 cnz™+ 2 2 eP(z—ay)™ modulo V.
m=0 =1 m=-1 -
with ¢n, cP k. Since Vo is G-invariant and since
oo ln s
dra)(XIf@)=f"()= X menz™ '+ 2 2 meP(x—a)™
m=0 =1 m=-1

modulo V.,

it follows from (dx)(X_)f(z)=0 modulo V, that ¢{=0 for 0>m>s”-+1. Hence

o in —oo
= Z=)Ocmz”‘+ > 2 cP(z—ay)™ modulo V.

i=1 m=§"+1
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Since f(z)& V., we choose n such that at least one of the ¢{%; (1=/=/,) is not
zero. Since V. is $-invariant and since

(dms)(¥Y)f(2)=2zf"(2)—s"f(2)

il
Ms

In —oo 3
@m—s"yenz™+ Z‘i mgﬁc;,? 2zm(z—a)™ '—s"(z—a;)™ modulo Vi
& s

3
i

o

1
Ms

in
2m—s")cnz™+ Zi (" +2)c i (z—a)*™*!

m

I

0

ln -

3 S {@m—sMe®+2m+Dae it (z—a)™  modulo Vi,

i=1 m=

it follows from (dz.XY)f(z)=—sf(z) modulo V. that s”+2=—s. Then s+s”
=—2 and s, s”<—1. Hence s=s"=—1. Then V=V, and feV,. Since thisis
a contradiction, (U, =) is not equivalent as a @-module to any G-submodule of
(V/V g, #s).

We assume that s# —1. Then f=2z"*! modulo U, is a non-zero solution of

{ (dz)(X)f=0
7YV F=(s+2)F .

It (U/U,, #;) is equivalent as a &-module to a G-submodule W of (V, zy),
then

{ (dms (X)f=0
(drs YY) f=(s+2)f
has a non-zero solution feW. By Lemma 1, (dz, X X_)f=0 implies f=a (ask).
Then

(drs XY )f(2)=2zf"(2)—s flz)=—5"f(2).
Hence s+2=—s’. Since s, s’=<—1, this shows that s=s’=—1. Since this con-
tradicts the assumption s#—1, (U/U;, %) is not equivalent as a &-module to
any G-submodule of (V, x,).

If (U/U,, %) is equivalent as a &-module to a &-submodule of (V/Vy., %),
then

{ (dre )X )f(2)=0 modulo V.
dryY)(2)=(s+2)f(z2) modulo V.

has a solution feV\V,. For each neN, let E,, a;, -~ be as in §2. Then

oo In —o0
f(z):%)ocmzm—}— Z}l mgzlci,f’(z—ai)m on E,
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with ¢p, ¢? k. Since (dr XX )f(z)=0 modulo V., we have ¢ =0 for 1=:=/,,
s”+1l<m=—1. Since f&V,, we choose n such that at least one of the ¢,
is not zero. Since Vg is G-invariant,

(@r XV (E)=22f ()" (2)
= 5 @m—senzm+ 3 (" Defale—a )

n

In -
+ ; 2 A@m—s")eiR +2mADacid} (z—a)™  modulo V.
Since one of the ¢, is not zero, it follows from (dz.)(Y)f(z)=(s+42)f(2)
modulo V that s=s”.

ReEMARK. If V and V/V, are topologically irreducible K- (or G-) modules,
then Theorem 6 implies that no two of them for various s are equivalent.

REMARK. It follows from the proof of Theorem 6 that dim,Homg(Us V)
=1 in the category of @&-modules. Since U; is dense in V,, it follows that
dim;Homz(V;, Vo )=1 in the category of continuous K-modules. But this fact
does not necessarily imply the irreducibility of V; as a topological K-module.”
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